首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

This study reports the combined use of a rhamnolipid type biosurfactant (BS) along with phytoremediation and bioaugmentation (BA) for bioremediation of hydrocarbon-contaminated soils. Bacterial isolates obtained from hydrocarbon contaminated soil were screened for rhamnolipid production and isolate BS18, identified as Shewanella seohaensis, was selected for bioremediation experiments. Growth of BS18 in mineral salt medium (MSM) with diesel oil as the carbon source showed a maximum biomass of 8.2?g L?1, rhamnolipid production of 2.2?mg g?1 cell dry weight, surface tension reduction of 28.6?mN/m and emulsification potential (EI24%) of 65.6. Characterization of rhamnolipid based on Fourier transmittance infrared (FTIR) analysis confirmed the presence of OH, CH2/CH3, C=O, and COO stretching vibrations, respectively, which are distinctive features of rhamnolipid type BSs. In bioremediation experiments, the lowest hydrocarbon concentration of 2.1?mg g?1 of soil for non-sterilized soil and 4.3?mg g?1 of soil for sterilized soil was recorded in the combined application of rhamnolipid, phytoremediation, and BA. This treatment also yielded the highest hydrocarbon degrading bacterial population (6.4 Log Cfu g?1 of soil), highest plant biomass (8.3?g dry weight plant?1), and the highest hydrocarbon uptake (512.3?mg Kg?1 of plant).  相似文献   

2.
Soil contamination caused by heavy metals and organic pollutants has drawn world-wide concern. Biotechnology has been applied for many years to the decontamination of soils polluted with organic and inorganic contaminants, and novel nanomaterials (NMs) has attracted much concern due to their high capacity for the removal/stabilization/degradation of pollutants. Recently, developing advanced biotechnology with NMs for the remediation of contaminated soils has become a hot research topic. Some researchers found that bioremediation efficiency of contaminated soils was enhanced by the addition of NMs, while others demonstrated that the toxicity of NMs to the organism negatively influenced the repair capacity of polluted soils. This paper reviews the application of biotechnology and NMs in soil remediation, and further provides a critical view of the effects of NMs on the phytoremediation and micro-remediation of contaminated soils. This review also discusses the future research needs for the combined application of biotechnology and NMs in soil remediation.  相似文献   

3.
A field-scale study was conducted in a 4000 m2 plot of land contaminated with an oily sludge by use of a carrier-based hydrocarbon-degrading bacterial consortium for bioremediation. The land belonged to an oil refinery. Prior to this study, a feasibility study was conducted to assess the capacity of the bacterial consortium to degrade oily sludge. The site selected for bioremediation contained approximately 300 tons of oily sludge. The plot was divided into four blocks, based on the extent of contamination. Blocks A, B, and C were treated with the bacterial consortium, whereas Block D was maintained as an untreated control. In Block A, at time zero, i.e., at the beginning of the experiment, the soil contained as much as 99.2 g/kg of total petroleum hydrocarbon (TPH). The application of a bacterial consortium (1 kg carrier-based bacterial consortium/10 m2 area) and nutrients degraded 90.2% of the TPH in 120 days, whereas in block D only 16.8% of the TPH was degraded. This study validates the large-scale use of a carrier-based bacterial consortium and nutrients for the treatment of land contaminated with oily sludge, a hazardous hydrocarbon waste generated by petroleum industry. Received: 20 October 2000 / Accepted: 22 March 2001  相似文献   

4.
In 2000 there was an oil spill at the Getúlio Vargas Refinery (REPAR/PETROBRÁS) in Paraná, Brazil. Nearly five years after contamination and the use of bioremediation, a study was carried out to identify the effects of the contaminated soil and the bioremediated soil on the germination and initial growth of Mimosa pilulifera seedlings. The experiment consisted of three treatments: petroleum-contaminated soil, bioremediated soil and uncontaminated soil, with five repetitions each. The following measurements were taken after 30, 60 and 90 days of planting: the percentage of germination, biomass and leaf area of the eophylls, biomass and length of the shoot and the roots in addition to the shoot/root ratio. The percentage of germination and the root biomass were not affected by the contaminated soil or by the bioremediated soil. On both the contaminated soil and the bioremediated soil biomass and leaf area of the eophyll were reduced. Plant length and shoot biomass were lower in the contaminated soil. Furthermore, the effect of the contaminated soil and the bioremediated soil was greater in the shoot than in the root system, since the bioremediation reduced the toxicity of the petroleum-contaminated soil.  相似文献   

5.
Phytoremediation is a nondestructive, cost-effective in-situ technology to clean up contaminated soils. In the case of contamination with petroleum hydrocarbons, plants enhance microbial degradation of the contaminant in the rhizosphere. The potential of this technology for the tropics should be high due to prevailing climatic conditions favoring plant growth and stimulating microbial activity. Investigations of the potential of tropical plants for phytoremediation, however, are scarce. The present work studied two grasses and six legumes from the eastern savannah of Venezuela on their reaction to crude oil contamination in soil. Results shall help to identify plants with a potential for phytoremediation and subsequent studies. Seedling emergence and biomass production were determined for plants growing in soil contaminated with 0%, 3%, and 5% heavy crude oil. Contamination had, in general, a tendential but not significant negative influence on seedling emergence. Dry matter production was reduced by only a few percent to up to 85%. Furthermore, in some legumes inhibition of nodulation was observed. The grass Brachiaria brizantha and the legumes Centrosema brasilianum and Calopogonium mucunoides are promising for phytoremediation because in contaminated soil they combined high seedling emergence with least affected biomass production. Since they are cultivated forage/soil cover species also in other regions of the tropics, their potential for phytoremediation of petroleum contaminated soils extends beyond Venezuela.  相似文献   

6.
Contamination of soil by petroleum hydrocarbons is becoming prevalent in Malaysia. Infiltration of soil contamination into groundwater poses a great threat to the ecosystem and human health. Bioremediation can occur naturally or can be enhanced with supplementation of microorganisms and fertilizers. However, fertilizers are expensive and therefore alternative nutrient-rich biomaterials are required. In this study, two organic wastes from agricultural industry (i.e., sugarcane bagasse and oil palm empty fruit bunch) were investigated for possible enhanced bioremediation of soil contaminated with Tapis crude oil. Two bacterial strains isolated and characterized previously (i.e., Pseudomonas aeruginosa UKMP-14T and Acinetobacter baumannii UKMP-12T) were used in this study. Sugarcane bagasse (5% and 15%, w/w) and oil palm empty fruit bunch (20%, w/w) were mixed with soil (500 g) spiked with Tapis crude oil (3%, v/w). The treated soils as well as controls were incubated for 20 days under controlled conditions. Sampling was carried out every four days to measure the number of bacterial colonies (CFU/g) and to determine the percentage of oil degradation by gas chromatography. The two biostimulating agents were able to maintain the soil moisture holding capacity, pH, and temperature at 38-40% volumetric moisture content (VMC), 7.0, and 29–30°C; respectively. The growth of bacteria consortium after 20 days in the treatment with sugarcane bagasse and oil palm empty fruit bunch had increased to 10.3 CFU/g and 9.5 CFU/g, respectively. The percentage of hydrocarbon degradation was higher in the soil amended with sugarcane bagasse (100%) when compared to that of oil palm empty fruit bunch (97%) after 20 days. Our results demonstrated the potential of sugarcane bagasse and oil palm empty fruit bunch as good substrates for enhanced bioremediation of soil contaminated with petroleum crude oil.  相似文献   

7.
The high hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) strongly reduces their bioavailability in aged contaminated soils, thus limiting their bioremediation. The biodegradation of PAHs in soils can be enhanced by employing surface-active agents. However, chemical surfactants are often recalcitrant and exert toxic effects in the amended soils. The effects of two biogenic materials as pollutant-mobilizing agents on the aerobic bioremediation of an aged-contaminated soil were investigated here. A soil historically contaminated by about 13 g kg(-1) of a large variety of PAHs, was amended with soya lecithin (SL) or humic substances (HS) at 1.5% w/w and incubated in aerobic solid-phase and slurry-phase reactors for 150 days. A slow and only partial biodegradation of low-molecular weight PAHs, along with a moderate depletion of the initial soil ecotoxicity, was observed in the control reactors. The overall removal of PAHs in the presence of SL or HS was faster and more extensive and accompanied by a larger soil detoxification, especially under slurry-phase conditions. The SL and HS could be metabolized by soil aerobic microorganisms and enhanced the occurrence of both soil PAHs and indigenous aerobic PAH-degrading bacteria in the reactor water phase. These results indicate that SL and HS are biodegradable and efficiently enhance PAH bioavailability in soil. These natural surfactants significantly intensified the aerobic bioremediation of a historically PAH-contaminated soil under treatment conditions similar to those commonly employed in large-scale soil bioremediation.  相似文献   

8.
Heavy metal contamination of land and freshwater resources is a serious concern worldwide. It adversely affects the health of animals, plants and humans. Therefore, remediation of toxic heavy metals must be highly considered. Unlike other techniques, phytoremediation is a holistic technology and can be used in large scale for soil remediation as it is costless, novel, environmentally-safe and solar-driven technology. Utilization of non-edible plants in phytoremediation is an ingenious technique as they are used to generate new bioenergy resources along with the remediation of contaminated soils. Some nonfood bioenergy crops such as Salix species, Miscanthus species, Populus species, Eucalyptus species, and Ricinus communis exhibit high capability to accumulate various metals and to grow in contaminated lands. However, there are still sustainable challenges facing coupling phytoremediation with bioenergy production from polluted lands. Therefore, there has long been a need for developing different strategies to resolve such challenges. In this article review, we will discuss the phytoremediation mechanism, the technique of phytoremediation coupling with bioenergy production, sustainable problems facing linking phytoremediation with energy production as well as possible strategies to enhance the efficiency of bioenergy plants for soil decontamination by improving their characteristics such as metal uptake, transport, accumulation, and tolerance.  相似文献   

9.
Phytoremediation is a nondestructive, cost-effective in-situ technology to clean up contaminated soils. In the case of contamination with petroleum hydrocarbons, plants enhance microbial degradation of the contaminant in the rhizosphere. The potential of this technology for the tropics should be high due to prevailing climatic conditions favoring plant growth and stimulating microbial activity. Investigations of the potential of tropical plants for phytoremediation, however, are scarce. The present work studied two grasses and six legumes from the eastern savannah of Venezuela on their reaction to crude oil contamination in soil. Results shall help to identify plants with a potential for phytoremediation and subsequent studies. Seedling emergence and biomass production were determined for plants growing in soil contaminated with 0%, 3%, and 5% heavy crude oil. Contamination had, in general, a tendential but not significant negative influence on seedling emergence. Dry matter production was reduced by only a few percent to up to 85%. Furthermore, in some legumes inhibition of nodulation was observed. The grass Brachiaria brizantha and the legumes Centrosema brasilianum and Calopogonium mucunoides are promising for phytoremediation because in contaminated soil they combined high seedling emergence with least affected biomass production. Since they are cultivated forage/soil cover species also in other regions of the tropics, their potential for phytoremediation of petroleum contaminated soils extends beyond Venezuela.  相似文献   

10.
生物反应器法处理油泥污染土壤的研究   总被引:11,自引:0,他引:11  
采油过程产生的油泥是整个石油烃污染源的重点。在陆地生态环境中 ,烃类的大量存在往往对植物的生物学质量产生不利影响 ,更重要的是石油中的一些多环芳烃是致癌和致突变物质 ,这些致癌和致突变的有机污染物进入农田生态系统后 ,在动植物体内逐渐富集 ,进而威胁人类的生存和健康[1 ,1 1 ] 。大量的废弃油泥 ,不仅污染农田 ,同时也给石油行业带来巨大的经济损失。污染土壤的治理主要有物理、化学和生物 (生物修复 )方法 ,生物修复方法被认为最有生命力。污染土壤生物修复技术主要有 3种 ,即原位处理、挖掘堆置处理和反应器处理。反应器处理是…  相似文献   

11.
Phytoremediation: an overview of metallic ion decontamination from soil   总被引:23,自引:0,他引:23  
In recent years, phytoremediation has emerged as a promising ecoremediation technology, particularly for soil and water cleanup of large volumes of contaminated sites. The exploitation of plants to remediate soils contaminated with trace elements could provide a cheap and sustainable technology for bioremediation. Many modern tools and analytical devices have provided insight into the selection and optimization of the remediation process by plant species. This review describes certain factors for the phytoremediation of metal ion decontamination and various aspects of plant metabolism during metallic decontamination. Metal-hyperaccumulating plants, desirable for heavily polluted environments, can be developed by the introduction of novel traits into high biomass plants in a transgenic approach, which is a promising strategy for the development of effective phytoremediation technology. The genetic manipulation of a phytoremediator plant needs a number of optimization processes, including mobilization of trace elements/metal ions, their uptake into the root, stem and other viable parts of the plant and their detoxification and allocation within the plant. This upcoming science is expanding as technology continues to offer new, low-cost remediation options.  相似文献   

12.
The use of pyrolyzed carbon, biochar, as a soil amendment is of potential interest for improving phytoremediation of soil that has been contaminated by petroleum hydrocarbons. To examine this question, the research reported here compared the effects of biochar, plants (mesquite tree seedlings), compost and combinations of these treatments on the rate of biodegradation of oil in a contaminated soil and the population size of oil-degrading bacteria. The presence of mesquite plants significantly enhanced oil degradation in all treatments except when biochar was used as the sole amendment without compost. The greatest extent of oil degradation was achieved in soil planted with mesquite and amended with compost (44% of the light hydrocarbon fraction). Most probable number assays showed that biochar generally reduced the population size of the oil-degrading community. The results of this study suggest that biochar addition to petroleum-contaminated soils does not improve the rate of bioremediation. In contrast, the use of plants and compost additions to soil are confirmed as important bioremediation technologies.  相似文献   

13.
Biodegradation of diesel oil (5 g(middot)kg [soil dry weight](sup-1)) was investigated in five alpine subsoils, differing in soil type and bedrock, in laboratory experiments during 20 days at 10(deg)C. The biodegradation activities of the indigenous soil microorganisms and of a psychrotrophic diesel oil-degrading inoculum and the effect of biostimulation by inorganic fertilization (C/N/P ratio = 100:10:2) were determined. Fertilization significantly enhanced diesel oil biodegradation activity of the indigenous soil microorganisms. Biostimulation by fertilization enhanced diesel oil biodegradation to a significantly greater degree than bioaugmentation with the psychrotrophic inoculum. In none of the five soils did fertilization plus inoculation result in a higher decontamination than fertilization alone. A total of 16 to 23% of the added diesel oil contamination was lost by abiotic processes. Total decontamination without and with fertilization was in the range of 16 to 31 and 27 to 53%, respectively.  相似文献   

14.
In less developed countries, the prevalence of soil contaminated with used lubricating oil is high and the situation worsens with the economic advancement. The contamination has been shown to adversely affect the environment and human health. To mitigate, bioremediation could be adopted to tackle the problem of hydrocarbon-contaminated soil. Thus, this experimental research carried out the bioremediation using chicken manure in soils contaminated with 5%, 10% and 20% w/w used lubricating oil for a 42-day composting period. To compare, this research also experimented with the 5%, 10% and 20% oil-contaminated soils untreated with chicken manure. The results showed that the highest total petroleum hydrocarbons (TPHs) reduction efficiency of >60% was achieved in the 5% oil-contaminated compost remediated with chicken manure. The highest biodegradation rate of lubricating oil of 0.023–0.0025 day?1 as measured by the first-order kinetics could also be achieved under the 5% oil contamination condition with the application of chicken manure. The findings highlight the prospect of chicken manure as a proper nutrient for enhanced remediation of hydrocarbon-contaminated soils, particularly of low contamination concentrations.  相似文献   

15.
本试验以毒死蜱污染土壤为研究材料,利用降解菌DSP-A分别与高丹草、紫花苜蓿、多花黑麦草进行联合修复,探讨了植物-微生物联合修复毒死蜱污染土壤的效果,以及影响联合修复的因素,结果表明,植物.微生物联合修复的效果优于单一的植物修复及单一的微生物修复效果。与DSP—A菌群较合适的植物是高丹草,该组合对毒死蜱的降解率达到96.44%,其次是多花黑麦草。研究了微生物数量、植株密度以及土壤湿度对联合修复效果的影响,结果表明,DSP.A菌菌液稀释倍数越大,联合修复的效果越差。植株密度对联合修复的影响,主要表现为对植物根系生长的影响。植株密度越大,对生存环境的竞争越激烈,植物根系的生长越不好。除了紫花苜蓿外,高丹草和多花黑麦草根系的生长均受到影响。高丹草种植密度为12株/盆时,与DSP—A菌的联合修复效果最好,多花黑麦草则为10株/盆。土壤湿度是影响联合修复的重要因素,不仅影响植物的生长,对微生物的生长也有影响。土壤湿度过大,造成土壤的含氧量降低,不利于植物根系和好氧细菌的生长,从而影响土壤中农药的降解。土壤湿度过小,容易造成植株缺水,根系生长和微生物的生长。高丹草与DSP.A菌、多花黑麦草与DSP—A菌联合修复最适浇水量都为20mL/d,紫花苜蓿与DSP—A菌联合修复最适浇水量都为15mL/d。  相似文献   

16.
Abstract

An experiment was performed for 240 days to evaluate the oil removal through natural attenuation (NA) and phytoremediation (PH) combined with surfactant (SF), in soil up to 76,585?mg kg?1 of total petroleum hydrocarbons (TPH). A completely randomized design was applied using a 4?×?6 factorial arrangement, with four concentrations of oil and six recovery technologies. The technologies were combinations of Leersia hexandra (Lh) grass, NA (native microorganisms), and doses of Tween® 80. The results recorded treatment means with statistical differences (Tukey, p?≤?0.05 and 0.01). Oil in presence of 5% SF stimulated the formation of grass roots. The SF promoted a significant increase in the biomass of grass stems and leaves but did not contribute to oil removal or microbial density. Unexpectedly, the PH inhibited the removal of oil and induced a decrease in fungi, hydrocarbonoclastic bacteria, and heterotrophic fungi. NA combined with 2.5% SF removed 95% of 48,748?mg of TPH. The best technology for soil decontamination was bioremediation through hydrocarbonoclastic bacteria stimulated with 2.5% SF.  相似文献   

17.
Aim of this trial was to verify the occurrence and the distribution of hexachlorocyclohexanes (HCHs) in soil, sediment, straw, alfalfa, other animal feed grown in farms with contaminated soil. In the present study two years of monitoring activity in the province of Roma and Frosinone was reported. Experimental trial in two contaminated sites was carried out on uptake and translocation of HCHs in maize and alfalfa. In 19 sites soil, forage and weed has been collected for two years, soil samples consisted in cores of 40 cm to test the presence of HCHs at different deep. The analytical determinations in soil and plant samples were carried out by gas liquid chromatography with electron capture detector and confirmed by mass detector. In the first year (2005- 2006) 68% of soil samples were contaminated (HCHs > LOQ) and 3% of vegetable samples. In the second year (2006- 2007) 42% of soil samples resulted positive and 26% of vegetable matrix. In particular B hexacyclohexane was detected in wheat stem (0.037 mg/kg) with a soil contamination of 0.039 mg/kg and in alfalfa (0.012 mg/kg) with presence in soil of 0.004 mg/kg. Experimental trials on maize evidenced a translocation factor for this isomer stem/soil of 0.006 mg/kg ? and for grain of 0.005 mg/kg. On alfalfa translocation factor root/soil was 0.01 and shot/soil 0.009. A propose to calculate the threshold value of soil contamination to admit crop grown destined to animal feed, would be based on HCHs LOD values weighted with translocation factor.  相似文献   

18.
Phytoremediation is an alternative to other technologies for the clean up of petroleum contaminated soil. Ten vegetatively propagated cultivars of bermudagrass were examined for their potential to reduced oil sludge contaminated in soil and select the most efficient cultivar. Soil was mixed with different rates of oil sludge (0, 10, 20, 30, and 40% (w/w) to obtain 0, 2, 4, 6, and 8% total petroleum hydrocarbons (TPHs). Ten cultivars of bermudagrass were planted in pots filled with respected mixtures of soil and sludge. Shoot and root weights and percent reduction in the contamination level were measured after six months. Shoot weight reduced as contamination level increased. The root weight increased up to 6% TPHs level. As contamination level increased, the percent reduction in contamination increased. Reduction was 37.7, 41.0, 35.0, 34.0, 45.0, 41.3, 34.5, 41.3, 34.5, 41.3, 55.0, and 43.6% under Tifdwarf, Tifgreen, Tifway, ISF1, ISF2, JP1, JP2, and Midlawn, 3200W18-4 and 3200W19-9 at the highest contamination level 3200W18-4 was the most effective cultivar followed by ISF2, 3200W19-9, JPI, and Midlawn, respectively. The results suggested that bermudagrass is an efficient species for phytoremediation of petroleum contaminated soil and the selection for more tolerant and efficient cultivar is possible.  相似文献   

19.
Bioremediation Potential of Terrestrial Fuel Spills   总被引:9,自引:1,他引:8       下载免费PDF全文
A bioremediation treatment that consisted of liming, fertilization, and tilling was evaluated on the laboratory scale for its effectiveness in cleaning up a sand, a loam, and a clay loam contaminated at 50 to 135 mg g of soil−1 by gasoline, jet fuel, heating oil, diesel oil, or bunker C. Experimental variables included incubation temperatures of 17, 27, and 37°C; no treatment; bioremediation treatment; and poisoned evaporation controls. Hydrocarbon residues were determined by quantitative gas chromatography or, in the case of bunker C, by residual weight determination. Four-point depletion curves were obtained for the described experimental variables. In all cases, the disappearance of hydrocarbons was maximal at 27°C and in response to bioremediation treatment. Poisoned evaporation controls underestimated the true biodegradation contribution, but nevertheless, they showed that biodegradation makes only a modest contribution to gasoline disappearance from soil. Bunker C was found to be structurally recalcitrant, with close to 80% persisting after 1 year of incubation. The three medium distillates, jet fuel, heating oil, and diesel oil, increased in persistence in the listed order but responded well to bioremediation treatment under all test conditions. With bioremediation treatment, it should be possible to reduce hydrocarbons to insignificant levels in contaminated soils within one growing season.  相似文献   

20.
A number of diverse technological options are being considered for the remediation of soil contaminated with weathered crude oil in Kuwait. The bioremediation technique involving the use of composting soil piles was selected from among the most appropriate methods and evaluated on a pilot scale. The field test was conducted from November 1992 to September 1993 at the Burgan oil field. Soil piles were constructed from the contaminated soil after amendment with necessary soil additives. The piles were subjected to regular irrigation and turning, and a monitoring program was carried out, including monthly soil sample collection from each pile for the measurement of petroleum hydrocarbon PAHs, soil microbial counts, mineral and metal concentrations. The results obtained showed that the composting soil pile treatment resulted in the reduction of up to 59% total extractable matter of oil contamination within 8 months. This article describes the technology used and summarizes the results obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号