首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 313 毫秒
1.
The effect of feeding by the armored scale, Rhizaspidiotus donacis (Leonardi, 1920) (Hemiptera: Diaspididae) on the growth of the plant Arundo donax L. (Poaceae) was evaluated under field conditions in its native range. The study was designed to evaluate the impact of R. donacis, a candidate agent for biological control of A. donax which is invasive in arid riparian ecosystems of the Southwestern USA and Mexico. The study was carried out at five A. donax sites in the Province of Alicante, Spain, differing in altitude and climate. At each site, 30 infested lateral shoots were selected and 15 were randomly treated monthly with imidacloprid insecticide. Shoot lengths were measured monthly over a 1-year period in a comparative growth analysis. Shoots infested with R. donacis had an over 2-fold reduced growth rate as compared to treated shoots. Growth of shoots varied by site, and the effect of R. donacis on growth was most pronounced in the late spring, when mature females produced first instar scale crawlers. The impact of R. donacis on A. donax growth under field conditions in the native range, combined with its narrow host specificity, indicate that R. donacis is a promising candidate for biological control of A. donax in North America and other areas invaded by this weed.  相似文献   

2.
Reclamation of highly disturbed lands typically includes establishing fast‐growing, non‐native plants to achieve rapid ground cover for erosion control. Establishing native plant communities could achieve ecosystem functions beyond soil erosion, such as providing wildlife habitat. Pipelines, or other disturbed corridors through a landscape, present unique challenges for establishing native plant communities given the heterogeneity of soil environments and invasive plant propagule pressure. We created two structural equation models to address multiple related hypotheses about the influence of soil pH on plant community composition (current diversity and vegetative cover of the original restoration seed mix and background flora, and invasive plant density during mix establishment and current density) of a highly disturbed landscape corridor restored with native species. To test our hypotheses we conducted a plant survey on a gas pipeline crossing two state forests in the north‐central Appalachians that had been seeded with a native‐based mixture 8 years prior. Low soil pH was a strong predictor of density of the invasive annual plant, Microstegium vimineum, and had resulted in lower species diversity and cover of the seeded mix. Overall, our data provide evidence that native‐based grass and forb mixtures can establish and persist on a wide range of soil environments and thrive in competition with invasive plants in moderately acidic to neutral soils. Advancing knowledge on restoration methods using native species is essential to improving restoration practice norms to incorporate multifunctional ecological goals.  相似文献   

3.
Pereskia aculeata Miller (Cactaceae) is an invasive alien species in South Africa that is native in Central and South America. In South Africa, P. aculeata outcompetes native plant species leading to a reduction in biodiversity at infested sites. Herbicidal and mechanical control of the plant is ineffective and unsustainable, so biological control is considered the only potential solution. Climatic matching and genotype matching indicated that the most appropriate regions in which to collect biological control agents were Santa Catarina and Rio de Janeiro provinces in Southern Brazil. Surveys throughout the native distribution resulted in 15 natural enemy species that were associated with the plant. Field host range data, as well as previous host plant records, were used to prioritise which of the species were most likely to be suitably host specific for release in South Africa. The mode of damage was used to determine which species were most likely to be damaging and effective if released. The most promising species prioritised for further study, including host specificity and impact studies, were the stem-wilter Catorhintha schaffneri Brailovsky & Garcia (Coreidae); the stem boring species Acanthodoxus machacalis Martins & Monné (Cerambycidae), Cryptorhynchus sp. (Curculionidae) and Maracayia chlorisalis (Walker) (Crambidae) and the fruit galler Asphondylia sp. (Cecidomyiidae). By prioritising the potential biological control agents that are most likely to be host-specific and damaging, the risk of conducting host specificity testing on unsuitable or ineffective biological control agents is reduced.  相似文献   

4.
The removal of invasive species is often one of the first steps in restoring degraded habitats. However, studies evaluating effectiveness of invasive species removal are often limited in spatial and temporal scale, and lack evaluation of both aboveground and belowground effects on diversity and key processes. In this study, we present results of a large 3‐year removal effort of the invasive species, Gypsophila paniculata, on sand dunes in northwest Michigan (USA). We measured G. paniculata abundance, plant species richness, plant community diversity, non‐native plant cover, abundance of Cirsium pitcheri (a federally threatened species endemic to this habitat), sand movement, arbuscular mycorrhizal spore abundance, and soil nutrients in fifteen 1000 m2 plots yearly from 2007 to 2010 in order to evaluate the effectiveness of manual removal of this species on dune restoration. Gypsophila paniculata cover was greatly reduced by management, but was not entirely eliminated from the area. Removal of G. paniculata shifted plant community composition to more closely resemble target reference plant communities but had no effect on total plant diversity, C. pitcheri abundance, or other non‐native plant cover. Soil properties were generally unaffected by G. paniculata invasion or removal. The outlook is good for this restoration, as other non‐native species do not appear to be staging a “secondary” invasion of this habitat. However, the successional nature of sand dunes means that they are already highly invasible, stressing the need for regular monitoring to ensure that restoration progresses.  相似文献   

5.
The armored scale Rhizaspidiotus donacis (Leornardi) was evaluated as a potential biological control agent of the invasive reed grass Arundo donax in North America. No-choice tests, native range field surveys and non-target host exposures were used to determine the fundamental host range of the scale collected from Caloma, Spain and Perpignan, France. Thirty-five species, including two genotypes of A. donax and seven ecotypes of Phragmites australis, along with closely related grasses, economic grasses and habitat associates were tested. In quarantine no-choice testing using releases of 200 crawlers per plant, normal development of R. donacis was observed on A. donax and A. formosana, with very limited survival to the adult stage on Spartina alterniflora and Leptochloa spp. In follow-up studies using 1000 crawlers per plant, 10 live adult females were found on Leptochloa virgata, and one adult female on Spartina alterniflora, but average adult female abundance per plant was (2580%) 26-times lower on L. virgata and over (39,090%) 100-times lower on S. alterniflora than on A. donax. Field surveys were conducted at five locations in Spain and France at which A. donax infested with R. donacis, co-occurred with two non-target species of concern and R. donacis was only found on A. donax. Six-month field host exposures in Spain using potted Leptochloa plants entwined with heavily infested A. donax confirmed that R. donacis is specific to Arundo under field conditions. Based on our results, the scale R. donacis appears to be specific to the genus Arundo and is unlikely to harm native or cultivated plants in the Americas.  相似文献   

6.
Invasive plants are often associated with greater productivity and soil nutrient availabilities, but whether invasive plants with dissimilar traits change decomposer communities and decomposition rates in consistent ways is little known. We compared decomposition rates and the fungal and bacterial communities associated with the litter of three problematic invaders in intermountain grasslands; cheatgrass (Bromus tectorum), spotted knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula), as well as the native bluebunch wheatgrass (Pseudoroegneria spicata). Shoot and root litter from each plant was placed in cheatgrass, spotted knapweed, and leafy spurge invasions as well as remnant native communities in a fully reciprocal design for 6 months to see whether decomposer communities were species‐specific, and whether litter decomposed fastest when placed in a community composed of its own species (referred to hereafter as home‐field advantage–HFA). Overall, litter from the two invasive forbs, spotted knapweed and leafy spurge, decomposed faster than the native and invasive grasses, regardless of the plant community of incubation. Thus, we found no evidence of HFA. T‐RFLP profiles indicated that both fungal and bacterial communities differed between roots and shoots and among plant species, and that fungal communities also differed among plant community types. Synthesis. These results show that litter from three common invaders to intermountain grasslands decomposes at different rates and cultures microbial communities that are species‐specific, widespread, and persistent through the dramatic shifts in plant communities associated with invasions.  相似文献   

7.
The effect of the alien horse-chestnut leaf miner, Cameraria ohridella, on native fauna was studied by comparing the species richness of native leaf miner communities and the abundance of selected native leaf miner species in the presence and absence of horse-chestnut trees infested by C. ohridella, in various environments in Europe. The species richness of native leaf miner communities in Switzerland was lower at sites where C. ohridella was present than at control sites. In Switzerland, France and Bulgaria, several native leaf miner species were significantly less abundant in the vicinity of infested horse-chestnuts. The native species most affected by the presence of the invasive alien species were those occurring early in the year and sharing their parasitoid complex with C. ohridella. These results suggest apparent competition mediated by shared natural enemies because these are the only link between C. ohridella and native leaf miners using other food resources.  相似文献   

8.
Seed dispersal mutualisms are essential to ensure the survival of diverse plant species and communities worldwide. Here, we investigated whether the invasive Argentine ant can replace native ants by fulfilling their functional role in the seed dispersal of the rare and threatened endemic myrmecochorous plant, Anchusa crispa, in Corsica (France). Our study addressed the potential of Linepithema humile to disperse elaiosome-bearing seeds of A. crispa, examining L. humile’s effects on (1) the composition of communities of ants removing seeds, (2) the number of seed removals, (3) seed preference, (4) the distance of seed dispersion, and (5) seed germination. We caught seven native species at the control site, but only the Argentine ant at invaded sites. L humile removed A. crispa seeds in greater numbers than did native ants, respectively 66 and 23%, probably due to their higher worker density. The invader was similar to native ants with respect to distance of seed transport. Finally, rates of seed germination were not significantly different between seeds previously in contact with either Argentine ants or not. Taken all together, these results suggest that the Argentine ant is unlikely to pose a threat to A. crispa population. These results have important implications for the management of this rare and threatened endemic plant and provide an example of non-negative interactions between invasive and native species.  相似文献   

9.
Exotic species change the structure and composition of invaded communities in multiple ways, but the sign of their impact on native species is still controversial. We evaluated the effects of the thistles Carduus thoermeri and Onopordum acanthium—two of the most abundant exotic plant species in disturbed areas of the Patagonian steppe—on the native tending ant assemblage. Exotic thistles showed an increased number of plants with aphids and had greater aphid density than native plants. Since native tending ants were present only in plants with aphids, their abundance was higher in infested thistles than in native plants. Path analyses confirmed that ant activity depended more on aphid density than on thistle traits. Our results suggest that the presence of exotic thistles in disturbed areas of NW Patagonia indirectly benefit the native ant assemblage through the maintenance of an increased aphid population. This illustrates how the impact of exotic on native species can depend on the ecological context.  相似文献   

10.
Theories and models attempt to explain how and why particular plant species grow together at particular sites or why invasive exotic species dominate plant communities. As local climates change and human‐use degrades and disturbs ecosystems, a better understanding of how plant communities assemble is pertinent, particularly when restoring grassland ecosystems that are frequently disturbed. One such community assembly theory is priority effects, which suggests that arrival order of species into a community alters plant–plant interactions and community assembly. Theoretically, priority effects can have lasting effects on ecosystems and will likely be altered as the risk of invasion by exotic species increases. It is difficult to predict how and when priority effects occur, as experimental reconstruction of arrival order is often difficult in adequate detail. As a result, limited experimental studies have explored priority effects on plant community assembly and plant invasions. To determine if and how priority effects affect the success of invasive species, we conducted a greenhouse study exploring how the arrival order of an invasive grass, Bromus tectorum, affects productivity and community composition when grown with native grasses. We found evidence for priority effects, as productivity was positively related to dominance of B. tectorum and was greater the earlier B. tectorum arrived. This suggests that priority effects could be important for plant communities as the early arrival of an invasive species drastically impacted the productivity and biodiversity of our system at the early establishment stages of plant community development.  相似文献   

11.
Plant invasions pose a serious threat to native ecosystem structure and function. However, little is known about the potential role that rhizosphere soil microbial communities play in facilitating or resisting the spread of invasive species into native plant communities. The objective of this study was to compare the microbial communities of invasive and native plant rhizospheres in serpentine soils. We compared rhizosphere microbial communities, of two invasive species, Centaurea solstitialis (yellow starthistle) and Aegilops triuncialis (barb goatgrass), with those of five native species that may be competitively affected by these invasive species in the field (Lotus wrangelianus, Hemizonia congesta, Holocarpha virgata, Plantago erecta, and Lasthenia californica). Phospholipid fatty acid analysis (PLFA) was used to compare the rhizosphere microbial communities of invasive and native plants. Correspondence analyses (CA) of PLFA data indicated that despite yearly variation, both starthistle and goatgrass appear to change microbial communities in areas they invade, and that invaded and native microbial communities significantly differ. Additionally, rhizosphere microbial communities in newly invaded areas are more similar to the original native soil communities than are microbial communities in areas that have been invaded for several years. Compared to native plant rhizospheres, starthistle and goatgrass rhizospheres have higher levels of PLFA biomarkers for sulfate reducing bacteria, and goatgrass rhizospheres have higher fatty acid diversity and higher levels of biomarkers for sulfur-oxidizing bacteria, and arbuscular mycorrhizal fungi. Changes in soil microbial community composition induced by plant invasion may affect native plant fitness and/or ecosystem function.  相似文献   

12.
Park  Ikju  Thompson  David C. 《Biological invasions》2021,23(6):1663-1668

One of the main obstacles of classical biological control is that biological control organisms cannot be recalled once they are released in nature. It is particularly true for the flowerhead weevil, Rhinocyllus conicus Frölich, which was released as a biological control organism for the invasive musk thistle, Carduus nutans L. (MT). While weevils successfully suppressed introduced populations of musk thistles and other invasive thistle species, non-target attacks have been reported on multiple native thistles including federally listed threatened and endangered (T&E) thistle species. To investigate the foraging behavior of female weevils on invasive and native thistles, we examined volatile organic compounds (VOCs) emitted from MT and a T&E plant species, Sacramento Mountains thistle, Cirsium vinaceum Wooton & Standley (SMT) in the Lincoln National Forest, New Mexico. We used a dynamic headspace volatile collection system and gas chromatography-mass spectrometry to compare volatile profiles between MT and SMT. Female weevils reacted to 7 electrophysiologically active chemical compounds in the blends based on gas chromatography-electroantennography. The behavioral response of female weevils was indifferent when VOCs from both thistles were offered in y-tube olfactometry experiments. Yet, they preferred VOCs collected from MT to purified air. The searching time of female weevils was longer to VOCs collected from SMT over controls. Investigating signals during the initial host recognition of released biological control organisms may open new opportunities to reduce non-target attacks on T&E plant species.

  相似文献   

13.
Exotic plant invasion may alter underground microbial communities, and invasion-induced changes of soil biota may also affect the interaction between invasive plants and resident native species. Increasing evidence suggests that feedback of soil biota to invasive and native plants leads to successful exotic plant invasion. To examine this possible underlying invasion mechanism, soil microbial communities were studied where Ageratina adenophora was invading a native forest community. The plant–soil biota feedback experiments were designed to assess the effect of invasion-induced changes of soil biota on plant growth, and interactions between A. adenophora and three native plant species. Soil analysis showed that nitrate nitrogen (NO3-N), ammonium nitrogen (NH4+-N), and available P and K content were significantly higher in a heavily invaded site than in a newly invaded site. The structure of the soil microbial community was clearly different in all four sites. Ageratina adenophora invasion strongly increased the abundance of soil VAM (vesicular-arbuscular mycorrhizal fungi) and the fungi/bacteria ratio. A greenhouse experiment indicated that the soil biota in the heavily invaded site had a greater inhibitory effect on native plant species than on A. adenophora and that soil biota in the native plant site inhibited the growth of native plant species, but not of A. adenophora. Soil biota in all four sites increased A. adenophora relative dominance compared with each of the three native plant species and soil biota in the heavily invaded site had greater beneficial effects on A. adenophora relative dominance index (20% higher on average) than soil biota in the non-invaded site. Our results suggest that A. adenophora is more positively affected by the soil community associated with native communities than are resident natives, and once the invader becomes established it further alters the soil community in a way that favors itself and inhibits natives, helping to promote the invasion. Soil biota alteration after A. adenophora establishment may be an important part of its invasion process to facilitate itself and inhibit native plants.  相似文献   

14.
The invasive plant pathogen Phytophthora cinnamomi (Stramenopila, Oomycota) has been introduced into 15 of the 25 global biodiversity hotspots, threatening susceptible rare flora and degrading plant communities with severe consequences for fauna. We developed protocols to contain or eradicate P. cinnamomi from spot infestations in threatened ecosystems based on two assumptions: in the absence of living hosts, P. cinnamomi is a weakly competitive saprotroph; and in the ecosystems we treated, the transmission of the pathogen occurs mainly by root-to-root contact. At two P. cinnamomi-infested sites differing in climate and vegetation types, we applied increasingly robust treatments including vegetation (host) destruction, fungicides, fumigation and physical root barriers. P. cinnamomi was not recovered at three assessments of treated plots 6–9 months after treatments. Given the high rates of recovery of P. cinnamomi from untreated infested soil and the sampling frequency, the probability of failing to detect P. cinnamomi in treated soil was <0.0003. The methods described have application in containing large infestations, eradicating small infestations and protecting remnant populations of threatened species.  相似文献   

15.
Despite frequent occurrences of invasive rats (Rattus spp.) on islands, their known effects on forests are limited. Where invasive rats have been studied, they generally have significant negative impacts on native plants, birds, and other animals. This study aimed to determine invasive rat distribution and effects on native plant populations via short‐term seed removal trials in tropical rain forest habitats in the Luquillo Experimental Forest, Puerto Rico. To address the first objective, we used tracking tunnels (inked and baited cards inside tunnels enabling animal visitors’ footprints to be identified) placed on the ground and in the lower canopy within disturbed (treefall gaps, hurricane plots, stream edges) and undisturbed (continuous forest) habitats. We found that rats are present in all habitats tested. Secondly, we compared seed removal of four native tree species (Guarea guidonia, Buchenavia capitata, Tetragastris balsamifera, and Prestoea acuminata) between vertebrate‐excluded and free‐access treatments in the same disturbed and undisturbed habitats. Trail cameras were used to identify animals responsible for seed contact and removal. Black rats (Rattus rattus) were responsible for 65.1% of the interactions with seeds, of which 28.6% were confirmed seed removals. Two plant species had significantly more seeds removed in disturbed (gaps) than undisturbed forest. Prestoea acuminata had the lowest seed removal (9% in 10 days), whereas all other species had >30% removal. Black rats are likely influencing fates of seeds on the forest floor, and possibly forest community composition, through dispersal or predation. Further understanding of rat–plant interactions may be useful for formulating conservation strategies.  相似文献   

16.
金飞宇  束华杰  刘建  管章楠  张淑萍 《生态学报》2016,36(11):3156-3166
玫瑰(Rosa rugosa Thunb.)原产于我国东部沿海、日本、朝鲜半岛和俄罗斯远东地区,18世纪作为园艺种引入欧洲后逃逸并入侵至北海和波罗的海周边多个国家以及北美沙质海岸,而中国野生种群却在过去30年间持续萎缩,成为珍稀濒危物种。从玫瑰种群生物学角度,通过文献比较和综合,在阐明玫瑰生态学特性和野生分布变化的基础上,全面论述了玫瑰种群在我国的生境退化、种群动态、种子繁殖、遗传多样性、濒危机理、保育方面的成果和悬疑问题;并结合欧洲入侵种群分布范围和敏感生境、对本地群落和物种的影响、种子繁殖、遗传变异、种群扩张和模拟预测、管理和控制方面的研究进展,分析了濒危种群和入侵种群数量动态、群落组成、幼苗更新、遗传变异、管理策略方面的差异及其影响因素;进而提出未来的玫瑰研究可从濒危种群和入侵种群的比较研究、种群和灌丛的动态监测、适合度相关性状的变异及其遗传基础、基于种群生物学的保育或控制4个方面为切入点,集中探索玫瑰种群濒危和入侵动态的规律、遗传基础和主要驱动力,为玫瑰保育和管理提供理论依据,为相似物种的适应和进化机制研究提供例证。  相似文献   

17.
Invasions by introduced ant species can be ecologically destructive and affect a wide range of taxa, particularly native ants. Invasive ant species often numerically dominate ant communities and outperform native ant species in effective resource acquisition. Here, we describe interactions between the invasive ant Anoplolepis gracilipes (Smith) and resident ant species in disturbed habitats in NE Borneo. We measured interference competition abilities of A. gracilipes by performing arena bioassays between two A. gracilipes colonies and seven local ant species, and measured its effective resource competition at baits within supercolonies and at supercolony boundaries. Furthermore, we compared ant species diversity and composition at baits among (A) core areas of A. gracilipes supercolonies, (B) supercolony boundaries and (C) outside supercolonies. Anoplolepis gracilipes was behaviorally dominant over most ant species except Oecophylla smaragdina. Within supercolonies, A. gracilipes discovered all food baits first, and monopolized the vast majority throughout the course of the experiment. At supercolony boundaries, A. gracilipes discovered baits later than resident ant species, but subsequently monopolized half of the baits. Furthermore, the activity and diversity of the ant community within A. gracilipes supercolonies was lower than at its boundaries and outside supercolonies, and the ant communities differed significantly between infested and noninfested areas. Our study supports the hypothesis that successful establishment of A. gracilipes in anthropogenically disturbed habitats may negatively affect resident ant communities through high levels of direct interspecific aggression and almost complete monopolization of resources within high‐density supercolonies.  相似文献   

18.
Invasive animals can facilitate the success of invasive plant populations through disturbance. We examined the relationship between the repeated foraging disturbance of an invasive animal and the population maintenance of an invasive plant in a coastal dune ecosystem. We hypothesized that feral wild hog (Sus scrofa) populations repeatedly utilized tubers of the clonal perennial, yellow nutsedge (Cyperus esculentus) as a food source and evaluated whether hog activity promoted the long‐term maintenance of yellow nutsedge populations on St. Catherine's Island, Georgia, United States. Using generalized linear mixed models, we tested the effect of wild hog disturbance on permanent sites for yellow nutsedge culm density, tuber density, and percent cover of native plant species over a 12‐year period. We found that disturbance plots had a higher number of culms and tubers and a lower percentage of native live plant cover than undisturbed control plots. Wild hogs redisturbed the disturbed plots approximately every 5 years. Our research provides demographic evidence that repeated foraging disturbances by an invasive animal promote the long‐term population maintenance of an invasive clonal plant. Opportunistic facultative interactions such as we demonstrate in this study are likely to become more commonplace as greater numbers of introduced species are integrated into ecological communities around the world.  相似文献   

19.
The host range of Leurocephala schinusae Davis & Mc Kay (Lepidoptera: Gracillariidae) was studied to assess its suitability as a biological control agent of Schinus terebinthifolius Raddi (Anacardiaceae), a serious environmental weed in the USA and elsewhere in the world. The host range was determined in the laboratory with adult no-choice oviposition (Argentina and USA) and larval development tests (USA). Seventeen plant species in ten genera were selected based on taxonomic relatedness to S. terebinthifolius, economic importance, and availability. Additional information was obtained by sampling foliage of S. terebinthifolius and six other South American native Anacardiaceae species in north-eastern Argentina. In the laboratory, except for Lithrea molleoides and Spondias mombin, all of the tested species were accepted for oviposition with a marked preference for Rhus aromatica. Incipient mines successfully developed into complete mines, pupae and adults on R. aromatica, Rhus copallinum, Schinus molle, Schinus lentiscifolius and S. terebinthifolius. In the field, although L. schinusae showed a clear preference for S. terebinthifolius, the host range, as determined by samples of host use in the native range, included three other Schinus species (S. lentiscifolius, Schinus longifolius, Schinus weinmannifolius) and one Astronium species (Astronium balansae). In conclusion, L. schinusae will not be considered for the biological control of S. terebinthifolius in continental US. However, the utilisation of this species in other infested areas such as Hawaii and Australia should be further discussed.  相似文献   

20.
Sand dune ecosystems have a high conservation value worldwide, but they are highly threatened by exotic plant invasion. We investigated the impacts of the exotic invasive species Carpobrotus edulis on the composition and structure (spatial pattern, total cover, species diversity and species co-occurrence) of native sand dune communities in the western coast of Portugal. We studied eight sites following a north-south gradient; in each site we established 8–10 transects of 25 contiguous quadrats of one square meter. C. edulis had a significantly clumped pattern in five of the study sites, which, however, was not related to the spatial pattern of native species. The effects of climate on the community structure variables were on average three times stronger than those of C. edulis. This species also had small effects on the floristic composition of native species. Our results indicate that the success and impacts of C. edulis are habitat-dependent and context-specific. They also provide evidence of a strong resilience to the impacts of invasion in the studied sand dune ecosystems: C. edulis did not reach large abundances or exert negative impacts on native communities to the extent expected. These ecosystems provide a unique opportunity to increase our understanding on the origin of impacts by invasive species, and on how particular communities resist the impacts of an invader.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号