首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A survey of 93 wetlands in six catchments across the Maloti-Drakensberg is used to assess the distribution of plant functional types across altitudinal and wetness gradients. Altitudes range from 1,000 to 3,200 m a.s.l. Within each catchment, the wetlands were selected to cover the complete range in altitude and wetland types. In each of the selected wetlands, vegetation was sampled in 3 by 3 m quadrats covering the entire range of wetness represented in the wetland, from temporarily wet to permanently inundated soils. Plant species were allocated to one of 11 different functional types (examples are C3 grasses, C4 sedges, rosette plants, and shrubs), and the proportion of the vegetation in each sample occupied by each functional type was calculated from the species’ abundances. Canonical Correspondence Analysis shows that “wetness” clearly has the highest impact on the distribution of functional types, followed by altitude. The most important plant functional types in wetlands are grasses and sedges, however, at higher altitudes, forbs (especially rosette plants) and bulbous plants become a more prominent feature in the wetlands. The total amount of graminoids gradually decreases with altitude. The general trend is that sedges tend to increase with increasing wetness and C3 plants (grasses and sedges) increase with increasing altitude, but these effects are not independent. The distributions of C4 sedges and C4 grasses along an altitudinal gradient are quite different, and C4 grasses grow abundantly at much higher altitudes than C4 sedges. C4 sedges are very scarce at the altitudes represented in the Maloti-Drakensberg area, whereas C3 grasses occur in the permanently wet parts of the wetlands, especially at higher altitudes (normally mostly occupied by sedges). Shrubs are rare in wetlands and tend to be an indication of disturbance. This study complements previous studies on the distribution of grasses and sedges at the lower altitudes within KwaZulu-Natal, which found that at altitudes below 1,000 m a.s.l. C4 sedges were much more prominent, while forbs and rosette plants were largely absent. This confirms that C4 as an adaptation to hotter and warmer climates is sometimes a less favorable metabolism in wet high altitude areas. At high altitudes, rosette plants and bulbous plants become more competitive in wetlands, probably because grasses and sedges present at these altitudes generally grow smaller than they do in low altitude wetlands.  相似文献   

2.
通过模拟增温和功能群去除试验,研究不同功能群的草本植物在岷江冷杉幼苗更新定植过程的作用,分析其在温度升高条件下生理指标的变化.结果表明:增温提高了岷江冷杉幼苗的存活率和植物体内非结构性碳水化合物含量,但抑制了幼苗的生长和根冠比.岷江冷杉幼苗的非结构性碳水化合物含量,尤其是可溶性糖含量与存活率呈显著正相关.不增温处理中,草本植物降低了幼苗的存活率,促进幼苗的株高生长和地上生物量积累,禾本科植物和杂类草抑制了幼苗根系生长和地下生物量的积累;增温处理中,杂类草的存在提高了幼苗的存活率,莎草科则显著抑制了幼苗根系生长和地下生物量的积累,禾本科植物和杂类草抑制了幼苗的高生长和地上生物量积累.模拟增温提高了林线树种岷江冷杉幼苗的存活率,但使其面临来自草本植物更剧烈的竞争,抑制其生长.  相似文献   

3.
Cai L  Liu XL  He F  Fan H  Pan HL  Pan YZ 《应用生态学报》2011,22(11):2822-2828
采用野外调查方法,研究卧龙巴郎山高山及亚高山草甸不同海拔梯度下花卉植物生物量的变化格局,并进行土壤因子分析,结果表明:花卉植物地上生物量随海拔的升高呈单峰曲线变化,在3500 m处达到峰值,花-果、茎、叶生物量的变化趋势与地上生物量一致;地下生物量随海拔的升高呈U型曲线变化.随海拔的升高,土壤酸性增强,水解氮和全钾含量显著升高,土壤有机质、全氮和有效磷的含量显著降低,花卉植物地上生物量随土壤pH值及全氮、速效钾含量的升高显著增大;地下生物量随土壤有机质、有效磷含量的升高显著增大,随全钾、水解氮含量的升高显著减小.  相似文献   

4.
矮嵩草草甸生长季节生产者亚系统分室模型   总被引:3,自引:0,他引:3       下载免费PDF全文
本文报道了高寒矮嵩草草甸生产者亚系统六分室模型(GCS 01模型)。六分室包括地上部分的禾草类(V1)、莎草类(V2)、杂类草(V3)、枯枝落叶(V4)四个分室以及地下部分的活根(V5)、死根(V6)两个分室。并建造了相应的微分方程组数学模型,用含有龙格库塔法的BASIC程序可求其数值解。本模型可供高寒草甸生态系统研究人员研究系统行为、探索系统内部规律使用。  相似文献   

5.
Summary Tundra plant growth forms can generally be characterized as consisting predominantly of low-growing perennial grasses and sedges, perennial herbaceous forbs, dwarf deciduous shrubs, and dwarf evergreen shrubs. Gross aboveground carbon allocation, leaf growth, and photosynthesis pattern studies were initiated to develop a quantitative understanding of the functional importance of these particular tundra growth forms. Photosynthetic capacities of 13 species were determined under standardized exposure conditions using a14CO2 field system and ranged between 5 and 47 mg CO2·g dry wt-1·h-1. These results, in conjunction with detailed leaf growth determinations, support the generalization that species with an evergreen growth form have lower photosynthetic capacities than species with a perennial graminoid, forb, or deciduous shrub growth form. However, these low photosynthetic capacities in evergreen shrubs are associated with relatively extended leaf longevities. Conversely, deciduous shrub forms exhibited high photosynthetic capacities, but were offset by relatively short leaf longevity periods. The perennial grasses, sedges, and forbs showed patterns intermediate to these. As a result, it appears that among tundra species of different growth form, photosynthetic capacity is inversely related to leaf longevity.  相似文献   

6.
Although many empirical experiments have shown that increasing degradation results in lower aboveground biomass (AGB), our knowledge of the magnitude of belowground biomass (BGB) for individual plants is a prerequisite for accurately revealing the biomass trade‐off in degraded grasslands. Here, by linking the AGB and BGB of individual plants, species in the community, and soil properties, we explored the biomass partitioning patterns in different plant functional groups (grasses of Stipa capillacea and forbs of Anaphalis xylorhiza). Our results indicated that 81% and 60% of the biomass trade‐off variations could be explained by environmental factors affecting grasses and forbs, respectively. The change in community species diversity dominated the biomass trade‐off via either direct or indirect effects on soil properties and biomass. However, the community species diversity imparted divergent effects on the biomass trade‐off for grasses (scored at −0.72) and forbs (scored at 0.59). Our findings suggest that plant communities have evolved two contrasting strategies of biomass allocation patterns in degraded grasslands. These are the “conservative” strategy in grasses, in which plants with larger BGB trade‐off depends on gigantic roots for soil resources, and the “opportunistic” strategy in forbs, in which plants can adapt to degraded lands using high variation and optimal biomass allocation.  相似文献   

7.
In temperate alpine environments, the short growing season, low temperature and a slow nutrient cycle may restrict plant growth more than carbon (C) assimilation does. To test whether C is a limiting resource, we applied a shade gradient from ambient light to 44% (maximum shade) of incident photon flux density (PFD) in late successional, Carex curvula‐dominated alpine grassland at 2,580 m elevation in the Swiss central Alps for 3 years (2014–2016). Total aboveground biomass did not significantly decrease under reduced PFD, with a confidence interval ranging from +4% to ?15% biomass in maximum shade. Belowground biomass, of which more than 80% were fine roots, was significantly reduced by a mean of 17.9 ± 4.6% (±SE), corresponding to 228 g/m2, in maximum shade in 2015 and 2016. This suggests reduced investments into water and nutrient acquisition according to the functional equilibrium concept. Specific leaf area (SLA) and maximum leaf length of the most abundant species increased with decreasing PFD. Foliar concentration of nonstructural carbohydrates (NSC) was reduced by 12.5 ± 4.3% under maximum shade (mean of eight tested species), while NSC concentration of belowground storage organs were unchanged in the four most abundant forbs. Furthermore, maximum shade lowered foliar δ13C by 1.56 ± 0.35‰ and increased foliar nitrogen concentrations per unit dry mass by 18.8 ± 4.1% across six species in 2015. However, based on unit leaf area, N concentrations were lower in shade (effect of higher SLA). Thus, while we found typical morphological and physiological plant responses to lower light, shading did not considerably affect seasonal aboveground biomass production of this alpine plant community within a broad range of PFD. This suggests that C is not a growth‐limiting resource, matching the unresponsiveness to in situ CO2 enrichment previously reported for this type of grassland.  相似文献   

8.
宗宁  石培礼 《生态学报》2020,40(12):4000-4010
大气氮沉降增加被认为是目前重要的环境问题,会引起生物多样性的丧失和生态系统稳定性的降低。但作为草地改良的管理措施,养分添加被广泛应用于退化草地的恢复。但由于不同类型草地所处气候与群落组成的差异,对氮输入的响应可能不同。通过在藏北高原高寒草甸与高寒草甸草原设定长期氮添加梯度试验(对照, 25, 50, 100, 200 kg N hm~(-2) a~(-1)),来探讨氮输入对生物多样性与生产的影响,并估算不同类型高寒草地的氮饱和阈值。施氮对高寒草甸物种多样性指数无影响,而随着施氮量的提高高寒草甸草原植物物种数和多样性指数均逐渐降低。开始施肥前两年,随着施氮量提高高寒草甸地上生物量呈现逐渐增加趋势,随着施肥时间的延长地上生物量呈现先增加后降低的趋势。在高寒草甸草原随着施氮量提高地上生物量均呈现先增加后降低的趋势。随着施氮量提高,开始施氮前三年高寒草甸禾草植物地上生物量逐渐提高;随着施氮时间的延长,禾草和豆科植物地上生物量呈现先增加后降低的趋势。高寒草甸莎草植物地上生物量由施氮开始时的逐渐增加转变为先增加后降低趋势,最后变为逐渐降低的趋势,这说明施氮不利于莎草植物的生长。施氮只在施肥第四年显著提高杂草植物地上生物量。高寒草甸草原呈现不同的规律,开始施氮前三年随着施氮量提高,禾草植物地上生物量呈现先增加后降低的趋势;随着施氮时间的延长,禾草地上生物量逐渐提高。莎草和杂草植物地上生物量呈现先增加后降低趋势。利用对氮输入响应最敏感的植物功能群禾草生物量估算的高寒草甸和高寒草甸草原的氮饱和阈值分别是109.5、125.8 kg N hm~(-2) a~(-1),这说明高寒草甸氮敏感性显著高于高寒草甸草原。由此可见,未来氮沉降增加会对不同类型高寒草地产生不同的影响,在不同类型高寒草地进行施肥恢复时也应将氮饱和阈值的差异考虑在内。  相似文献   

9.
为探究高山植物生殖分配策略以及分析唐古特雪莲花部特征对海拔梯度的响应机制,该研究利用采样调查法和烘干称重法,对分布在青藏高原东缘不同海拔14个居群的唐古特雪莲花部特征和生殖分配进行了研究。结果表明:(1)繁殖分配随个体大小(地上生物量和株高)的增大呈线性递减趋势。(2)花期植株地上生物量、株高、管状小花数目、繁殖器官及营养器官生物量均随海拔升高呈线性递减趋势,管状小花生物量随海拔升高呈线性递增趋势。(3)花期管状小花数量及大小、繁殖器官生物量与营养器官生物量、雄蕊重量和雌蕊重量以及花粉数目与花丝长度之间均存在权衡现象。由此推论:(1)海拔作为外界因子对唐古特雪莲花部特征具有显著的影响,个体大小对其繁殖分配也存在潜在调控作用。(2)在不同海拔梯度上,唐古特雪莲有效地整合了有限的资源,其适应性特征之一就是通过减小个体大小来削弱营养生长以达到促进生殖生长的目的。  相似文献   

10.
Abstract. We examined spatial relationships among species in the subnival zone of the central Caucasus. The species composition of 300 vegetation patches was analysed. 144 of them contained only one species, whereas the other 156 contained 2.36 ± 1.31 species, with species numbers distributed as follows: 59 patches with two species, 41 with three, 39 with four and 17 with five species. In the multi-species patches, the 22 most frequent species were examined and 46 statistically significant species associations, 36 positive and 10 negative, were found. Ten of these 22 species were typical subnival plants very rarely occurring at lower altitudes. The other 12 species are ‘invaders’ as they have broader altitudinal ranges of occurrence and are common in alpine and even in subalpine belts. Contrary to the typical subnival species the invaders were found exclusively in the patches with more than one species. Invader species were significantly more associated with subnival species while they were significantly less associated with other species than expected by chance. Our interpretation is that typical subnival species nurse plants from lower altitudes and facilitate their invasion to more adverse subnival environments.  相似文献   

11.
海拔对高山峡谷区土壤微生物生物量和酶活性的影响   总被引:2,自引:1,他引:1  
为了解土壤微生物生物量和酶活性随海拔的变化特征,以川西海拔1563 m到3994 m的高山峡谷区的干旱河谷、干旱河谷-山地森林交错带、亚高山针叶林、高山森林和高山草甸土壤为研究对象,采用原位培养法研究了5种不同海拔生态系统中有机层(0~15 cm)和矿质层(15~30 cm)土壤微生物生物量碳氮、土壤蔗糖酶、脲酶及酸性磷酸酶活性的变化.结果表明:有机层土壤中微生物生物量碳氮和3种土壤酶活性呈现出先增加后减少再增加的变化特征,从2158 m开始不断增加,到3028 m左右达到峰值后减少,在3593 m出现最小值后,逆势增加直到3994 m后再次减少;矿质层土壤的微生物生物量碳氮和3种土壤酶活性表现为亚高山针叶林(3028 m)>高山草甸(3994 m)>干旱河谷-山地森林交错带(2158 m)>高山森林(3593 m)>干旱河谷(1563 m).各海拔梯度土壤有机层的微生物生物量和酶活性显著高于矿质层.高山峡谷区土壤微生物生物量与土壤酶活性呈极显著正相关.土壤微生物生物量和土壤酶与土壤含水量、有机碳和全氮呈极显著正相关,土壤蔗糖酶与土壤全磷含量呈极显著正相关,土壤酸性磷酸酶与土壤全磷和土壤温度呈极显著正相关.可见,高山峡谷区海拔变化引起的植被和其他环境因子的变化显著影响了土壤生化特性.  相似文献   

12.
生物量分配模式影响着植物个体生长和繁殖到整个群落的质量和能量流动等所有层次的功能, 揭示高寒灌丛的生物量分配模式不仅可以掌握植物的生活史策略, 而且对理解灌丛碳汇不确定性具有重要意义。该研究以甘肃南部高山-亚高山区的常绿灌丛——杜鹃(Rhododendron spp.)灌丛的7个典型种为对象, 采用全株收获法研究了不同物种个体水平上各器官生物量的分配比例和异速生长关系。结果表明: 7种高寒杜鹃根、茎、叶生物量的分配平均比例为35.57%、45.61%和18.83%, 各器官生物量分配比例的物种差异显著; 7种高寒杜鹃的叶与茎、叶与根、茎与根以及地上生物量与地下生物量之间既有异速生长关系, 也有等速生长关系, 异速生长指数不完全支持生态代谢理论和小个体等速生长理论的参考值; 各器官异速生长关系的物种差异显著。结合最优分配理论和异速生长理论能更好地解释陇南山地7种高寒杜鹃生物量的变异及适应机制。  相似文献   

13.
掌握树木根部碳存储规律对于准确估算碳在地上器官与地下器官间的分配非常必要。本研究以栓皮栎(Quercus variabilis Blume)为对象,在2016年5月—2017年6月,通过周期性采样方法(共计采样14次),测定了高、低海拔(970和650 m)栓皮栎粗根非结构性碳水化合物(non-structural carbohydrates,NSC)及其组分(可溶性糖和淀粉)含量的年内动态变化。结果表明:除高海拔淀粉外,栓皮栎粗根NSC及其组分含量均随季节变化差异显著(P<0.05)。粗根NSC含量呈现生长季初期(3月)下降,非生长季(2月)达到最高值的变化趋势;栓皮栎粗根NSC组成以淀粉为主,高、低海拔淀粉含量占比分别为61%和71%,这可能与栓皮栎适应区域环境特征有关。不同海拔间,栓皮栎粗根NSC及其组分含量的差异出现在生长季初期(3月,P<0.05)。高海拔(10.26%)栓皮栎粗根NSC含量小于低海拔(13.96%)。栓皮栎粗根NSC含量存在明显的季节波动,粗根在生长季末及非生长季积累的NSC对下一年树木生长启动非常重要,研究结果有助于理解树木地下器官对树木生长的碳供应机制。  相似文献   

14.
高寒矮嵩草草甸植物类群对模拟降水和施氮的响应   总被引:13,自引:1,他引:12       下载免费PDF全文
 研究了青藏高原高寒矮嵩草(Kobresia humilis)草甸植物类群对模拟夏季增减雨量、冬春增雪以及增施氮肥下的响应。结果表明:1999年模拟减少降雨20%~40%和增加雨量20%~40%下禾草类、杂类草和莎草类的综合优势比(SDR)和地上生物量变化均不显著。冬春增雪100%有利于禾草类夏季的生长,冬春增雪对植物类群的影响大于夏季雨量的增加。夏季增施氮150 kg·hm-2和增施氮300 kg·hm-2禾草类的盖度比、高度比、SDR和地上生物量明显增大,而杂类草的盖度比和高度比、SDR及地上生物量在施氮300 kg·hm-2下显著减低,在施氮150 kg·hm-2水平上禾草类的生物量的增加与杂类草生物量的降低存在相互补偿的作用机制。在水分资源不利的(如减少雨量)的干扰下,其敏感性表现为杂类草大于禾草类,莎草类最小。莎草类植物对各种处理下响应不敏感,也说明它对资源环境的波动有很强的适应性。缺水年(1999年)模拟增加雨量20%~40%的条件下,可缓解降水量减少的影响,相反模拟减少雨量20%~40%会增强干旱的影响程度。  相似文献   

15.
Ladd B  Facelli JM 《Oecologia》2008,157(4):687-696
Litter may indirectly affect competitive interactions. It is not clear whether these changes are additive or non-additive indirect effects. Non-additivity could result from: (1) changes in biomass allocation patterns by competitors towards organs not directly involved in resource acquisition (e.g., longer hypocotyls); (2) changes in the proportion of different functional groups (e.g., grasses and forbs) that possess different competitive abilities; or (3) through priority effects caused by subtle changes in timing of emergence. We used a combination of field and glasshouse experiments in which Eucalyptus obliqua seedlings were grown either with or without leaf litter (grass litter/eucalypt litter), and with or without competitors. Eucalypt species growing in the field and in pots attained more biomass with litter than without when competitors were absent. Competition substantially decreased the biomass of eucalypt seedlings. Competitive intensity was heavily influenced by litter type and was most intense in the presence of grass litter. Litter produced a small change in patterns of biomass allocation in the competing herbaceous vegetation, and there was a slight (marginally non-significant) indication of a change in the proportion of grasses relative to forbs when litter was present. However, when the integral of competitor biomass over time was used to calculate competitive intensity, the combined effects of the experimental factors (litter and competition) became additive, suggesting that the effect of leaf litter on the timing of germination and establishment in the grasses and forbs, relative to that of Eucalyptus seedlings, was the principal mechanism by which leaf litter altered the interaction strength of the species studied.  相似文献   

16.
对青藏高原东缘玛曲高寒沼泽湿地分属于15科的47种主要植物进行光合测定, 结合对不同退化类型植物群落的样方调查, 分析了各种植物之间以及不同功能群之间的净光合速率、气孔导度、蒸腾速率和水分利用效率等光合参数的差异。结果表明: 1)玛曲高寒湿地的主要物种在净光合速率、气孔导度、蒸腾速率和水分利用效率4个光合特性参数上的差异显著, 表明各植物种以各自独特的方式适应高寒湿地环境; 在功能群水平上, 各功能群之间的差异亦显著。光合速率从大到小依次为禾草>莎草>豆科和其他双子叶类杂草, 水分利用效率则是莎草>禾草>豆科和其他双子叶类杂草; 2)湿地退化导致其群落组成发生明显改变, 其中最明显的特点是双子叶类杂草的比例大大增加; 而双子叶类杂草普遍较低的水分利用效率将会增大土壤水分通过光合作用的蒸腾散失, 在大气降水对水分补充变化不大的条件下, 这将会进一步加剧群落生境的干旱化, 不利于退化湿地的恢复和附近湿地的保护。研究结果表明, 在湿地保护和退化湿地恢复过程中, 典型湿地土著物种的保存和补充具有重要意义。  相似文献   

17.
Proposed mechanisms for explaining biodiversity loss due to fertilization include interspecific competition and assemblage-level thinning. The interspecific competition hypothesis (ICH) assumes a link between population changes and species competitive ability, which is related to functional traits such as biomass allocation patterns. Based on a 2-year fertilization experiment in an alpine meadow on the Tibetan Plateau, we attempted to explore the relationships between individual and population responses. Individual response was measured by changes in plant biomass and biomass allocation, and population response was estimated by changes in species abundance. The results suggested that following fertilization (1) changes in individual biomass differ among species and functional groups, (2) reproductive allocation tends to decrease for all species whereas leaf allocation generally increases for grasses but decreases for forbs, (3) a strong positive correlation exists between species relative abundance change and individual biomass response, and (4) species relative abundance change has a positive correlation with leaf allocation response, a negative correlation with stem allocation response, and no significant correlation with reproductive allocation response. We conclude that the individual biomass responses and biomass allocation strategy can partly explain diversity loss due to fertilization, a result consistent with the ICH.  相似文献   

18.
青海海北地区矮嵩草草甸生物量和能量的分配   总被引:15,自引:0,他引:15       下载免费PDF全文
 此项研究工作于1980年在海北高寒草甸生态系统定位站进行。本文研究了青藏高原地区分布面积广、草质优良,在畜牧业生产中有重要意义的矮嵩草草甸的生物量和它的能量分配关系,测定了地上,地下生物量和不同物候期主要植物类群的热值含量。研究结果表明:矮嵩草草甸生物量的季节动态较为明显,地上生物量随生长季节的水热条件和植物的生长发育阶段而变化,9月初地上生物量达到峰值(296.66g/m2),此后生物量逐渐减少,到枯黄前而停止;地下根系生物量在返青期较高,生长旺盛期最低,枯黄期最高,这同植物生长发育阶段的物质运转有关。矮嵩草草甸主要植物类群的热值以生长旺盛期最高,枯黄期次之,返青期较低;各类草的热值,以莎草类最高,禾草类次之,杂类草最低。矮嵩草草甸总初级生产量为909.49g/m2·年,其中地上为296.66g/m2·年,地下为596.67g/m2·年,枯枝落叶为16.16g/m2·年。群落在不同生长期所固定的太阳能数值不一,以枯黄前所固定的太阳能为最多,生长期整个群落的光能利用率为0.295%。  相似文献   

19.
《植物生态学报》2017,41(1):105
Aims Biomass is the most fundamental quantitative character of an ecosystem. Biomass allocation patterns reflect the strategies of plants to adapt various habitat conditions and play a vital role in evolution, biodiversity conservation and global carbon cycle. Loropetalum chinense shrub is one of the most dominant shrub types in subtropical China. The objectives of this study were to quantify the allometric relationships and the biomass allocation pattern among organs, and to investigate the effects of body size, shrub regeneration origin and site factors on allometry and biomass allocation.
Methods Individual samples of L. chinense were harvested from shrublands in subtropical China and were further divided into leaves, stems and roots. The allometric relationships between different organs were modeled with standard major axis (SMA) regression and the biomass allocation to different organs was quantified. The effects of body size, shrub regeneration origin and other habitat factors on allometry and allocation were examined using Pearson’s correlation analysis and multiple linear regressions.
Important findings The isometric scaling relationships between shoot and root changed to allometric relationships with increasing basal diameter. The scaling relationships between leaf and stem and between leaf and root were isometric for smaller diameter classes, while for larger diameter classes they were allometric. These relationships were significantly different among shrub regeneration origin types. The scaling relationships between different organs were not affected by habitat factors; while the coverage of shrub layer and slope affected biomass allocation due to their influences on the allometric relationships between different organs at the initial stage of growth. The mean dry mass ratios of leaf, stem, root and the mean root to shoot ratio were 0.11, 0.55, 0.34 and 0.65, respectively. With the increase of basal diameter class, stem mass ratio (0.50-0.64) increased, while leaf mass ratio (0.12-0.08) and root mass ratio (0.38-0.28) decreased, and consequently root to shoot ratio (0.91-0.43) also decreased. In secondary shrublands, the leaf mass ratio was 0.12 and the root mass ratio was 0.33, while these values were 0.07 and 0.36 respectively in natural shrublands. The ratio of aboveground allocation was significantly correlated to shrub layer coverage (r = 0.44, p < 0.05). Leaf mass ratio was significantly correlated to slope (r = -0.36, p < 0.05) and root mass ratio was significantly correlated to mean annual temperature (r = 0.34, p < 0.05). Results showed that with the increase of body size, the scaling relationships between different organs of L. chinense changed from isometric to allometric, and more biomass was allocated to aboveground part, and concretely, to stems. Human disturbance affected biomass allocation by its influences on the allometric relationships between different organs, and by increasing biomass allocation to leaves and decreasing allocation to roots. Reduced light resource promoted the biomass allocation to aboveground part, and higher slope resulted in decreased biomass allocation to leaves, while higher mean annual temperature promoted biomass allocation to roots. The variation in annual precipitation had no significant influences on biomass allocation. The biomass allocation strategies of L. chinense partially support the optimal partitioning theory.  相似文献   

20.
叶片和细根是植物对环境变化响应的主要功能器官,在气候变化趋势下,研究其随环境梯度的变化,对理解植物对环境的适应策略具有重要意义。本文是在色季拉山急尖长苞冷杉分布区,按海拔梯度(3800、3900、4000、4100、4200、4300、4400m)选择7个典型样地,在样地内对其叶片基本特征、叶绿素含量、比叶重和细根特征(0—60cm)等参数进行了测量。结果表明:(1)随海拔梯度升高,急尖长苞冷杉叶片叶面积减小、叶片厚度增加、叶绿素含量逐渐降低、比叶重显著增大。3900m处急尖长苞冷杉的叶片形态特征表现最好,叶片长度、宽度和面积均显著优于其他海拔,海拔4200m叶片厚度达到最大值,叶片面积、叶绿素含量随海拔升高呈下降趋势,但在4200m处出现第二峰值。(2)随海拔梯度增加,细根各性状与海拔表现出非线性关系,其中细根生物量和细根体积在3900m和4200m处出现两次峰值,3900m处细根生物量达到最大值,4200m处细根体积达到最大值,4400m处细根生物量和细根体积均显著少于其他海拔。细根根长密度在海拔3900、4200、4300m较高,三者之间差异不显著,但显著高于其余海拔,4400m海拔细根根长密度最小。细根表面积在3900m海拔处达到最大值,显著高于其他海拔,4200和4300m次之,3800、4000和4400m海拔下细根表面积相对较小。4400m处细根比根长达到最大值。各海拔上细根均主要分布在0—20cm土层。随土层厚度增加,各海拔细根生物量和根系体积在0—60cm土层范围内均逐渐减小;细根根长密度、表面积在20—40cm和40—60cm显著提高;同一海拔细根比根长随土层深度增加呈明显的增加趋势。各海拔40—60cm土层细根比根长显著高于20—40和0—20cm土层。(3)综合叶片及细根特征,海拔3900m为急尖长苞冷杉的最适宜生长区域;随海拔升高,环境因子逐渐恶劣,环境胁迫加剧,急尖长苞冷杉最终形成在4400m处为其分布上限的海拔梯度格局。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号