首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Land use intensification drives biodiversity loss worldwide. In heterogeneous landscape mosaics, both overall forest area and anthropogenic matrix structure induce changes in biological communities in primary habitat remnants. However, community changes via cross‐habitat spillover processes along forest–matrix interfaces remain poorly understood. Moreover, information on how landscape attributes affect spillover processes across habitat boundaries are embryonic. Here, we quantify avian α‐ and β‐diversity (as proxies of spillover rates) across two dominant types of forest–matrix interfaces (forest–pasture and forest–eucalyptus plantation) within the Atlantic Forest biodiversity hotspot in southeast Brazil. We also assess the effects of anthropogenic matrix type and landscape attributes (forest cover, edge density and land‐use diversity) on bird taxonomic and functional β‐diversity across forest–matrix boundaries. Alpha taxonomic richness was higher in forest edges than within both matrix types, but between matrix types, it was higher in pastures than in eucalyptus plantations. Although significantly higher in forests edges than in the adjacent eucalyptus, bird functional richness did not differ between forest edges and adjacent pastures. Community changes (β‐diversity) related to species and functional replacements (turnover component) were higher across forest–pasture boundaries, whereas changes related to species and functional loss (nested component) were higher across forest–eucalyptus boundaries. Forest edges adjacent to eucalyptus had significant higher species and functional replacements than forest edges adjacent to pastures. Forest cover negatively influenced functional β‐diversity across both forest–pasture and forest–eucalyptus interfaces. We show the importance of matrix type and the structure of surrounding landscapes (mainly forest cover) on rates of bird assemblage spillover across forest‐matrix boundaries, which has profound implications to biological fluxes, ecosystem functioning and land‐use management in human‐modified landscapes.  相似文献   

2.
Numerous studies indicate that environmental changes during the late Quaternary have elicited long‐term disequilibria between species diversity and environment. Despite its importance for ecosystem functioning, the importance of historical environmental conditions as determinants of FD (functional diversity) remains largely unstudied. We quantified the geographic distributions of plant FD (richness and dispersion) across Europe using distribution and functional trait information for 2702 plant species. We then compared the importance of historical and contemporary factors to determine the relevance of past conditions as predictors of current plant FD in Europe. For this, we compared the strength of the relationships between FD with temperature and precipitation stability since the LGM (Last Glacial Maximum), accessibility to LGM refugia, and contemporary environmental conditions (climate, productivity, soil, topography, and land use). Functional richness and dispersion exhibited geographic patterns with strong associations to the environmental history of the region. The effect size of accessibility to LGM refugia and climate stability since the LGM was comparable to that of the contemporary predictors. Both functional richness and dispersion increased with temperature stability since the LGM and accessibility to LGM refugia. Functional richness' geographic pattern was primarily associated with accessibility to LGM refugia growing degree‐days, land use heterogeneity, diversity of soil types, and absolute minimum winter temperature. Functional dispersion's geographic pattern was primarily associated with accessibility to LGM refugia growing degree‐days and absolute minimum winter temperature. The high explained variance and model support of historical predictors are consistent with the idea that long‐term variability in environmental conditions supplements contemporary factors in shaping FD patterns at continental scales. Given the importance of FD for ecosystem functioning, future climate change may elicit not just short‐term shifts in ecosystem functioning, but also long‐term functional disequilibria.  相似文献   

3.
Functional diversity (FD), species richness and community composition   总被引:15,自引:0,他引:15  
Functional diversity is an important component of biodiversity, yet in comparison to taxonomic diversity, methods of quantifying functional diversity are less well developed. Here, we propose a means for quantifying functional diversity that may be particularly useful for determining how functional diversity is related to ecosystem functioning. This measure of functional diversity “FD” is defined as the total branch length of a functional dendrogram. Various characteristics of FD make it preferable to other measures of functional diversity, such as the number of functional groups in a community. Simulating species' trait values illustrates how the relative importance of richness and composition for FD depends on the effective dimensionality of the trait space in which species separate. Fewer dimensions increase the importance of community composition and functional redundancy. More dimensions increase the importance of species richness and decreases functional redundancy. Clumping of species in trait space increases the relative importance of community composition. Five natural communities show remarkably similar relationships between FD and species richness.  相似文献   

4.
Land‐use intensification has consequences for biodiversity and ecosystem functioning, with various taxonomic groups differing widely in their sensitivity. As land‐use intensification alters habitat structure and resource availability, both factors may contribute to explaining differences in animal species diversity. Within the local animal assemblages the flying vertebrates, bats and birds, provide important and partly complementary ecosystem functions. We tested how bats and birds respond to land‐use intensification and compared abundance, species richness, and community composition across a land‐use gradient including forest, traditional agroforests (home garden), coffee plantations and grasslands on Mount Kilimanjaro, Tanzania. Furthermore, we asked how sensitive different habitat and feeding guilds of bats and birds react to land‐use intensification and the associated alterations in vegetation structure and food resource availability. In contrast to our expectations, land‐use intensification had no negative effect on species richness and abundance of all birds and bats. However, some habitat and feeding guilds, in particular forest specialist and frugivorous birds, were highly sensitive to land‐use intensification. Although the habitat guilds of both, birds and bats, depended on a certain degree of vegetation structure, total bat and bird abundance was mediated primarily by the availability of the respective food resources. Even though the highly structured southern slopes of Mount Kilimanjaro are able to maintain diverse bat and bird assemblages, the sensitivity of avian forest specialists against land‐use intensification and the dependence of the bat and bird habitat guilds on a certain vegetation structure demonstrate that conservation plans should place special emphasis on these guilds.  相似文献   

5.
Intensive agriculture reduces soil biodiversity across Europe   总被引:3,自引:0,他引:3       下载免费PDF全文
Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land‐use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community‐weighted mean body mass of soil fauna. We also elucidate land‐use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land‐use intensity caused highly consistent responses. In particular, land‐use intensification reduced the complexity in the soil food webs, as well as the community‐weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land‐use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land‐use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land‐use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land‐use intensification may threaten the functioning of soil in agricultural production systems.  相似文献   

6.
The earth is facing a worldwide decline in biodiversity, with land-use change identified as one of the most important drivers. There is evidence that the loss of diversity has a significant impact on ecosystem functioning. Earlier research focused on species richness, but more recent, functional and phylogenetic diversity came into the picture as the stronger determinants of ecosystem processes. The effects of increasing land-use intensity on functional (FD) and phylogenetic diversity (PD), however, are still poorly understood. We studied how FD and PD are affected by land-use intensity in temperate plant communities. Our results show that land-use intensity has a clear impact on species richness, but also affects functional and phylogenetic diversity. Intensive agricultural areas fail to support high and sustainable levels of functional and phylogenetic diversity. These results highlight the need for the protection of biodiversity in nature reserves and the conservation of areas with extensive agricultural practices. Because species richness may influence the measures of functional and phylogenetic diversity, we compared the observed FD and PD values with random values generated with a matrix-swap null model. The observed discrepancy between species loss and the loss of FD and PD calls for an integrated approach to biodiversity conservation, in which the different components of biodiversity are considered together.  相似文献   

7.
Cacao agroforestry have been considered as biodiversity‐friendly farming practices by maintaining habitats for a high diversity of species in tropical landscapes. However, little information is available to evaluate whether this agrosystem can maintain functional diversity, given that agricultural changes can affect the functional components, but not the taxonomic one (e.g., species richness). Thus, considering functional traits improve the understanding of the agricultural impacts on biodiversity. Here, we measured functional diversity (functional richness‐FD, functional evenness‐FEve, and functional divergence‐Rao) and taxonomic diversity (species richness and Simpson index) to evaluate changes of bird diversity in cacao agroforestry in comparison with nearby mature forests (old‐growth forests) in the Brazilian Atlantic Forest. We used data from two landscapes with constraining areas of mature forest (49% Una and 4.8% Ilhéus) and cacao agroforestry cover (6% and 82%, respectively). To remove any bias of species richness and to evaluate assembly processes (functional overdispersion or clustering), all functional indices were adjusted using null models. Our analyses considered the entire community, as well as separately for forest specialists, habitat generalists, and birds that contribute to seed dispersal (frugivores/granivores) or invertebrate removal (insectivores). Our findings showed that small cacao agroforestry in the forested landscape sustains functional diversity (FD and FEve) as diverse as nearby forests when considering the entire community, forest specialist, and habitat generalists. However, we observed declines for frugivores/granivores and insectivores (FD and Rao). These responses of bird communities differed from those observed by taxonomic diversity, suggesting that even species‐rich communities in agroforestry may capture lower functional diversity. Furthermore, communities in both landscapes showed either functional clustering or neutral processes as the main driver of functional assembly. Functional clustering may indicate that local conditions and resources were changed or lost, while neutral assemblies may reveal high functional redundancy at the landscape scale. In Ilhéus, the neutral assembly predominance suggests an effect of functional homogenization between habitats. Thus, the conservation value of cacao agroforestry to harbor species‐rich communities and ecosystem functions relies on smallholder production with reduced farm management in a forested landscape. Finally, we emphasize that seed dispersers and insectivores should be the priority conservation targets in cacao systems.  相似文献   

8.
Measures of functional diversity are expected to predict community responses to land use and environmental change because, in contrast to taxonomic diversity, it is based on species traits rather than their identity. Here, we investigated the impact of landscape homogenisation on plants, butterflies and birds in terms of the proportion of arable field cover in southern Finland at local (0.25 km2) and regional (> 10 000 km2) scales using four functional diversity indices: functional richness, functional evenness, functional divergence and functional dispersion. No uniform response in functional diversity across taxa or scales was found. However, in all cases where we found a relationship between increasing arable field cover and any index of functional diversity, this relationship was negative. Butterfly functional richness decreased with increasing arable field cover, as did butterfly and bird functional evenness. For butterfly functional evenness, this was only evident in the most homogeneous regions. Butterfly and bird functional dispersion decreased in homogeneous regions regardless of the proportion of arable field cover locally. No effect of landscape heterogeneity on plant functional diversity was found at any spatial scale, but plant species richness decreased locally with increasing arable field cover. Overall, species richness responded more consistently to landscape homogenisation than did the functional diversity indices, with both positive and negative effects across species groups. Functional diversity indices are in theory valuable instruments for assessing effects of land use scenarios on ecosystem functioning. However, the applicability of empirical data requires deeper understanding of which traits reliably capture species’ vulnerability to environmental factors and of the ecological interpretation of the functional diversity indices. Our study provides novel insights into how the functional diversity of communities changes in response to agriculturally derived landscape homogenisation; however, the low explanatory power of the functional diversity indices hampers the ability to reliably anticipate impacts on ecosystem functioning.  相似文献   

9.
Land use and climate change alter biodiversity patterns and ecosystem functioning worldwide. Land abandonment with consequent shrub encroachment and changes in precipitation gradients are known factors in global change. Yet, the consequences of interactions between these factors on the functional diversity of belowground communities remain insufficiently explored. Here, we investigated the dominant shrub effects on the functional diversity of soil nematode communities along a precipitation gradient on the Qinghai–Tibet Plateau. We collected three functional traits (life-history CP value, body mass, and diet) and calculated the functional alpha and beta diversity of nematode communities using kernel density n-dimensional hypervolumes. We found that shrubs did not significantly alter the functional richness and dispersion, but significantly decreased the functional beta diversity of nematode communities in a pattern of functional homogenization. Shrubs benefited nematodes with longer life-history, larger body mass, and higher trophic levels. Moreover, the shrub effects on the functional diversity of nematodes depended strongly on precipitation. Increasing precipitation reversed the effects shrubs have on the functional richness and dispersion from negative to positive but amplified the negative effects shrubs have on functional beta diversity of nematodes. Benefactor shrubs had stronger effects on the functional alpha and beta diversity of nematodes than allelopathic shrubs along a precipitation gradient. A piecewise structural equation model showed that shrubs and its interactions with precipitation indirectly increased the functional richness and dispersion through plant biomass and soil total nitrogen, whereas it directly decreased the functional beta diversity. Our study reveals the expected changes in soil nematode functional diversity following shrub encroachment and precipitation, advancing our understanding of global climate change on nematode communities on the Qinghai–Tibet Plateau.  相似文献   

10.
1. Recent work has emphasised the benefit of using functional measures when relating biodiversity to ecosystem functioning. In this study, we investigated the extent to which functional and taxonomic diversity might be related to summed biovolume in community assemblages of 212 species of diatoms collected from 65 temperate lakes in western and central Quebec, Canada. 2. We quantified functional diversity as both the total path‐length of a functional dendrogram (FD) and the variance in species traits (TV) for a given community. Selected traits included both size and responses to a set of environmental variables known to be influential for diatom communities. 3. Species richness, as well as both FD and TV, was positively associated with total diatom biovolume at the level of the entire diatom community, suggesting that diversity in response types (particularly to total phosphorus and pH) is important for diatom community production. 4. Although functional measures of diversity did not provide enhanced explanatory power over species richness, we argue that an exploration of functional traits potentially allows greater insight into the mechanisms underlying biodiversity–ecosystem functioning relations, indicating which traits might be most influential in driving community biomass production.  相似文献   

11.
Functional diversity changes during tropical forest succession   总被引:1,自引:0,他引:1  
Functional diversity (FD) ‘those components of biodiversity that influence how an ecosystem operates or functions’ is a promising tool to assess the effect of biodiversity loss on ecosystem functioning. FD has received ample theoretical attention, but empirical studies are limited. We evaluate changes in species richness and FD during tropical secondary forest succession after shifting cultivation in Mexico. We also test whether species richness is a good predictor of FD. FD was calculated based on a combination of nine functional traits, and based on two individual traits important for primary production (specific leaf area) and carbon sequestration (wood density). Stand basal area was a good predictor of successional changes in diversity and FD, in contrast to fallow age. Incidence-based FD indices increased logarithmically with stand basal area, but FD weighted by species’ importance values lacked pattern with succession. Species richness and diversity are strong predictors of FD when all traits were considered; linear relationships indicate that all species are equally functionally complementary, suggesting there is little functional redundancy. In contrast, when FD was calculated for individual traits and weighted for abundances, species richness may underestimate FD.Selection of functional trait(s) critically determines FD, with large consequences for studies relating biodiversity to ecosystem functioning. Careful consideration of the traits required to capture the ecosystem process of interest is thus essential.  相似文献   

12.
Land‐use change may alter both species diversity and species functional diversity patterns. To test the idea that species diversity and functional diversity changes respond in differing ways to land‐use changes, we characterize the form of the change in bird assemblages and species functional traits along an intensifying gradient of land use in the savanna biome in a historically homogeneous vegetation type in Phalaborwa, South Africa. A section of this vegetation type has been untransformed, and the remainder is now mainly characterized by urban and subsistence agricultural areas. Using morphometric, foraging and breeding functional traits of birds, we estimate functional diversity changes. Bird species richness and abundance are generally higher in urban and subsistence agricultural land uses, as well as in the habitat matrix connecting these regions, than in the untransformed area, a pattern mainly driven through species replacement. Functionally unique species, particularly ground nesters of large body size, were, however, less abundant in more utilized land uses. For a previously homogenous vegetation type, declines in the seasonality of energy availability under land‐use change have led to an increase in local avian diversity, promoting the turnover of species, but reduced the abundance of functionally unique species. Although there is no simple relationship between land‐use and diversity change, land‐use change may suit some species, but such change may also involve functional homogenization.  相似文献   

13.
Land‐use change is a major driver of the global loss of biodiversity, but it is unclear to what extent this also results in a loss of ecological traits. Therefore, a better understanding of how land‐use change affects ecological traits is crucial for efforts to sustain functional diversity. To this end we tested whether higher species richness or taxonomic distinctness generally leads to increased functional distinctness and whether intensive land use leads to functionally more narrow arthropod communities. We compiled species composition and trait data for 350 species of terrestrial arthropods (Araneae, Carabidae and Heteroptera) in different land‐use types (forests, grasslands and arable fields) of low and high land‐use intensity. We calculated the average functional and taxonomic distinctness and the rarified trait richness for each community. These measures reflect the range of traits, taxonomic relatedness and number of traits that are observed in local communities. Average functional distinctness only increased significantly with species richness in Carabidae communities. Functional distinctness increased significantly with taxonomic distinctness in communities of all analyzed taxa suggesting a high functional redundancy of taxonomically closely related species. Araneae and Heteroptera communities had the expected lower functional distinctness at sites with higher land‐use intensity. More frequently disturbed land‐use types such as managed grasslands or arable fields were characterized by species with smaller body sizes and higher dispersal abilities and communities with lower functional distinctness or trait richness. Simple recommendations about the conservation of functional distinctness of arthropod communities in the face of future land‐use intensification and species loss are not possible. Our study shows that these relationships depend on the studied taxa and land‐use type. However, for some arthropod groups functional distinctness is threatened by intensification and conversion from less to more frequently disturbed land‐uses.  相似文献   

14.
Land‐use change is considered a major driver of biodiversity loss. In the western part of the Tarangire–Manyara ecosystem, we assessed large mammal species richness along a land‐use gradient (national park, uninhabited pastoral area and settled pastoral‐ and farmland). We found the highest species richness in the national park and in the pastoral area and lowest species richness in the settled and farmed area. There was little evidence of seasonal changes in species diversity. Except for top‐order carnivores, all functional feeding guilds were still represented in pastoral and settled areas. Although we did not find significant differences in body mass distributions and species’ representation of feeding guilds between the study sites, there was a trend that omnivores, mesopredators and top‐order carnivores tended to occur at lower species richness in agricultural areas than in the pastoral and fully protected areas. These results indicate that areas used for livestock keeping can maintain high wildlife species richness and that direct and indirect effects of agricultural and settlement expansions are the main drivers of species richness loss in the Tarangire–Manyara ecosystem and possibly other African savannah ecosystems. These results are useful for informed land‐use planning that aims to maintain species diversity and ecological connectivity between protected areas.  相似文献   

15.
Ecological restoration is increasingly applied in tropical forests to mitigate biodiversity loss and recover ecosystem functions. In restoration ecology, functional richness, rather than species richness, often determines community assembly, and measures of functional diversity provide a mechanistic link between diversity and ecological functioning of restored habitat. Vertebrate animals are important for ecosystem functioning. Here, we examine the functional diversity of small‐to‐medium sized mammals to evaluate the diversity and functional recovery of tropical rainforest. We assess how mammal species diversity and composition and functional diversity and composition, vary along a restoration chronosequence from degraded pasture to “old‐growth” tropical rainforest in the Wet Tropics of Australia. Species richness, diversity, evenness, and abundance did not vary, but total mammal biomass and mean species body mass increased with restoration age. Species composition in restoration forests converged on the composition of old‐growth rainforest and diverged from pasture with increasing restoration age. Functional metrics provided a clearer pattern of recovery than traditional species metrics, with most functional metrics significantly increasing with restoration age when taxonomic‐based metrics did not. Functional evenness and dispersion increased significantly with restoration age, suggesting that niche complementarity enhances species' abundances in restored sites. The change in community composition represented a functional shift from invasive, herbivorous, terrestrial habitat generalists and open environment specialists in pasture and young restoration sites, to predominantly endemic, folivorous, arboreal, and fossorial forest species in older restoration sites. This shift has positive implications for conservation and demonstrates the potential of tropical forest restoration to recover rainforest‐like, diverse faunal communities.  相似文献   

16.
The effects of species loss on ecosystems depend on the community’s functional diversity (FD). However, how FD responds to environmental changes is poorly understood. This applies particularly to higher trophic levels, which regulate many ecosystem processes and are strongly affected by human-induced environmental changes. We analyzed how functional richness (FRic), evenness (FEve), and divergence (FDiv) of important generalist predators—epigeic spiders—are affected by changes in woody plant species richness, plant phylogenetic diversity, and stand age in highly diverse subtropical forests in China. FEve and FDiv of spiders increased with plant richness and stand age. FRic remained on a constant level despite decreasing spider species richness with increasing plant species richness. Plant phylogenetic diversity had no consistent effect on spider FD. The results contrast with the negative effect of diversity on spider species richness and suggest that functional redundancy among spiders decreased with increasing plant richness through non-random species loss. Moreover, increasing functional dissimilarity within spider assemblages with increasing plant richness indicates that the abundance distribution of predators in functional trait space affects ecological functions independent of predator species richness or the available trait space. While plant diversity is generally hypothesized to positively affect predators, our results only support this hypothesis for FD—and here particularly for trait distributions within the overall functional trait space—and not for patterns in species richness. Understanding the way predator assemblages affect ecosystem functions in such highly diverse, natural ecosystems thus requires explicit consideration of FD and its relationship with species richness.  相似文献   

17.
Changes to primary producer diversity can cascade up to consumers and affect ecosystem processes. Although the effect of producer diversity on higher trophic groups have been studied, these studies often quantify taxonomy‐based measures of biodiversity, like species richness, which do not necessarily reflect the functioning of these communities. In this study, we assess how plant species richness affects the functional composition and diversity of higher trophic levels and discuss how this might affect ecosystem processes, such as herbivory, predation and decomposition. Based on six different consumer traits, we examined the functional composition of arthropod communities sampled in experimental plots that differed in plant species richness. The two components we focused on were functional variation in the consumer community structure (functional structure) and functional diversity, expressed as functional richness, evenness and divergence. We found a consistent positive effect of plant species richness on the functional richness of herbivores, carnivores, and omnivores, but not decomposers, and contrasting patterns for functional evenness and divergence. Increasing plant species richness shifted the omnivore community to more predatory and less mobile species, and the herbivore community to more specialized and smaller species. This was accompanied by a shift towards more species occurring in the vegetation than in the ground layer. Our study shows that plant species richness strongly affects the functional structure and diversity of aboveground arthropod communities. The observed shifts in body size (herbivores), specialization (herbivores), and feeding mode (omnivores) together with changes in the functional diversity may underlie previously observed increases in herbivory and predation in plant communities of higher diversity.  相似文献   

18.
Functional trait composition of plant communities has been proposed as a helpful key for understanding the mechanisms of biodiversity effects on ecosystem functioning. In this study, we applied a step‐wise modeling procedure to test the relative effects of taxonomic diversity, functional identity, and functional diversity on macrophytes community productivity along water depth gradient. We sampled 42 plots and 1513 individual plants and measured 16 functional traits and abundance of 17 macrophyte species. Results showed that there was a significant decrease in taxonomic diversity, functional identity (i.e., stem dry mass content, leaf [C] and leaf [N]), and functional diversity (i.e., floating leaf, mean Julian flowering date and rooting depth) with increasing water depth. For the multiple‐trait functional diversity (FD) indices, functional richness decreased, while functional divergence increased with water depth gradient. Macrophyte community productivity was strongly determined by functional trait composition within community, but not significantly affected by taxonomic diversity. Community‐weighted means (CWM) showed a two times higher explanatory power relative to FD indices in determining variations in community productivity. For nine of sixteen traits, CWM and FD showed significant correlations with community productivity, although the strength and direction of those relations depended on selected trait. Furthermore, functional composition in a community affected productivity through either additive or opposite effects of CWM and FD, depending on the particular traits being considered. Our results suggested both mechanisms of mass ratio and niche complementarity can operate simultaneously on variations in community productivity, and considering both CWM and FD would lead to a more profound understanding of traits–productivity relationships.  相似文献   

19.
Commercial selective logging and the conversion of primary and degraded forests to agriculture are the biggest threats to tropical biodiversity. Our understanding of the impacts of these disturbances and the resulting local extinctions on the functional roles performed by the remaining species is limited. We address this issue by examining functional diversity (FD), which quantifies a range of traits that affect a species' ecological role in a community as a single continuous metric. We calculated FD for birds across a gradient of disturbance from primary forest through intensively logged forest to oil palm plantations on previously forested land in Borneo, Southeast Asia, a hotspot of imperilled biodiversity. Logged rainforest retained similar levels of FD to unlogged rainforest, even after two logging rotations, but the conversion of logged forest to oil palm resulted in dramatic reductions in FD. The few remaining species in oil palm filled a disproportionately wide range of functional roles but showed very little clustering in terms of functional traits, suggesting that any further extinctions from oil palm would reduce FD even further. Determining the extent to which the changes we recorded were due to under‐utilization of resources within oil palm or a reduction in the resources present is an important next step. Nonetheless our study improves our understanding of the stability and resilience of functional diversity in these ecosystems and of the implications of land‐use changes for ecosystem functioning.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号