首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
BackgroundRespiratory gated CT simulation (4D-simulation) has been evolved to estimate the internal body motion. This study aimed to evaluate the impact of tumor volume and location on the planning target volume (PTV) for primary lung tumor when 4D simulation is used.MethodsPatients who underwent CT simulation for primary lung cancer radiotherapy between 2012 and 2016 using a 3D- (free breathing) and 4D- (respiratory gated) technique were reviewed. For each patient, gross tumor volume (GTV) was contoured in a free breathing scan (3D-GTV), and 4D-simulation scans (4D-GTV). Margins were added to account for the clinical target volume (CTV) and internal target motion (ITV) in 3D and 4D simulation scans. Additional margins were added to account for planned target volume (PTV). Univariate and multivariate analyses were performed to test the impact of the volume of the GTV and location of the tumor (relative to the bronchial tree and lung lobes) on PTV changes by more than 10% between the 3D and 4D scans.ResultsA total of 10 patients were identified. 3D-PTV was significantly larger than the 4D-PTV; median volumes were 182.79 vs. 158.21 cc, p = 0.0068). On multivariate analysis, neither the volume of the GTV (p = 0.5027) nor the location of the tumor (peripheral, p = 0.5027 or lower location, p = 0.5802) had an impact on PTV differences between 3D-simulation and 4D-simluation.ConclusionThe use of 4D-simulation reduces the PTV for the primary tumor in lung cancer cases. Further studies with larger samples are required to confirm the benefit of 4D-simulation in decreasing PTV in lung cancer.  相似文献   

2.
BackgroundA purpose of the study was to investigate the dosimetric impact of contrast media on dose calculation using average 4D contrast-enhanced computed tomography (4D-CECT) and delayed 4D-CT (d4D-CT) images caused by CT simulation contrast agents for stereotactic body radiation therapy (SBRT) of liver cases.Materials and methodsFifteen patients of liver SBRT treated using the volumetric modulated arc therapy (VMAT) technique were selected retrospectively. 4D-CECT, and d4D-CT were acquired with the Anzai gating system and GE CT. For all patients, gross target volume (GTV) was contoured on the ten phases after rigid registration of both the contrast and delayed scans and merged to generate internal target volume (ITV) on average CT images. Region of interest (ROI) was drawn on contrast images and then copied to the delayed images after rigid registration of two average CT datasets. The treatment plans were generated for contrast enhanced average CT, delayed average CT and contrast enhanced average CT with electron density of the heart overridden.ResultsNo significant dosimetric difference was observed in plans parameters (mean HU value of the liver, total monitor units, total control points, degree of modulation and average segment area) except mean HU value of the aorta amongst the three arms. All the OARs were evaluated and resulted in statistically insignificant variation (p > 0.05) using one way ANOVA analysis.ConclusionsContrast enhanced 4D-CT is advantageous in accurate delineation of tumors and assessing accurate ITV. The treatment plans generated on average 4D-CECT and average d4D-CT have a clinically insignificant effect on dosimetric parameters.  相似文献   

3.
The aim of our study was to detect the possible uncertainties arising from tumor movements in the daily routine treatment planning, in extreme breathing conditions. Ten patients with lung cancer were enrolled into the study. According to tumor location, five patients had peripheral and five had central tumor. After the normal planning CT scan, two more scans were made with the same CT parameters in maximal exhalation and in maximal inhalation. For planning, the normal breathing scans were used with the fusion of the maximal inhalation and maximal exhalation scans. After the fusion in all breathing phases the gross tumor volumes were contoured (GTV1, GTV2, GTV3). Around the GTV1 (normal breathing phase GTV) 3 planning target volumes (PTV) were generated with the margin of 0.5 cm, 1.5 cm and 2.5 cm (PTV1, PTV2, PTV3). Individual plans were generated to all PTVs. All GTV volumes were registered. In all cases volume deviations were registered in different breathing phases (min: 1.5%, max: 35.6%). For GTV coverage comparison the coverage index (CI) was used. In case of extreme breathing conditions, using 0.5 cm margin was sufficient to reach good coverage for central tumors. For peripheral tumors 1.5 cm margin had to be used for the acceptable coverage (CI: 0.85-1.00). In our study, extreme breathing conditions were analyzed. According to our results, CT scans used in the daily routine do not exactly represent the tumor midposition and the true tumor volume. Due to breathing synchronous tumor movements, 0.5 cm margin must be used for planning in central location. In peripheral tumors wider margin should be used.  相似文献   

4.
PurposeAccurate localization is crucial in delivering safe and effective stereotactic body radiation therapy (SBRT). The aim of this study was to analyse the accuracy of image-guidance using the cone-beam computed tomography (CBCT) of the VERO system in 57 patients treated for lung SBRT and to calculate the treatment margins.Materials and methodsThe internal target volume (ITV) was obtained by contouring the tumor on maximum and mean intensity projection CT images reconstructed from a respiration correlated 4D-CT. Translational and rotational tumor localization errors were identified by comparing the manual registration of the ITV to the motion-blurred tumor on the CBCT and they were corrected by means of the robotic couch and the ring rotation. A verification CBCT was acquired after correction in order to evaluate residual errors.ResultsThe mean 3D vector at initial set-up was 6.6 ± 2.3 mm, which was significantly reduced to 1.6 ± 0.8 mm after 6D automatic correction. 94% of the rotational errors were within 3°. The PTV margins used to compensate for residual tumor localization errors were 3.1, 3.5 and 3.3 mm in the LR, SI and AP directions, respectively.ConclusionsOn-line image guidance with the ITV–CBCT matching technique and automatic 6D correction of the VERO system allowed a very accurate tumor localization in lung SBRT.  相似文献   

5.
PurposeEvaluating performance of modern dose calculation algorithms in SBRT and locally advanced lung cancer radiotherapy in free breathing (FB) and deep inspiration breath hold (DIBH).MethodsFor 17 patients with early stage and 17 with locally advanced lung cancer, a plan in FB and in DIBH were generated with Anisotropic Analytical Algorithm (AAA). Plans for early stage were 3D-conformal SBRT, 45 Gy in 3 fractions, prescribed to 95% isodose covering 95% of PTV and aiming for 140% dose centrally in the tumour. Locally advanced plans were volumetric modulated arc therapy, 66 Gy in 33 fractions, prescribed to mean PTV dose. Calculation grid size was 1 mm for SBRT and 2.5 mm for locally advanced plans. All plans were recalculated with AcurosXB with same MU as in AAA, for comparison on target coverage and dose to risk organs.ResultsLung volume increased in DIBH, resulting in decreased lung density (6% for early and 13% for locally-advanced group).In SBRT, AAA overestimated mean and near-minimum PTV dose (p-values < 0.01) compared to AcurosXB, with largest impact in DIBH (differences of up to 11 Gy). These clinically relevant differences may be a combination of small targets and large dose gradients within the PTV.In locally advanced group, AAA overestimated mean GTV, CTV and PTV doses by median less than 0.8 Gy and near-minimum doses by median 0.4–2.7 Gy.No clinically meaningful difference was observed for lung and heart dose metrics between the algorithms, for both FB and DIBH.ConclusionsAAA overestimated target coverage compared to AcurosXB, especially in DIBH for SBRT.  相似文献   

6.
AimTo evaluate the target dose coverage for lung stereotactic body radiotherapy (SBRT) using helical tomotherapy (HT) with the internal tumor volume (ITV) margin settings adjusted according to the degree of tumor motion.BackgroundLung SBRT with HT may cause a dosimetric error when the target motion is large.Materials and methodsTwo lung SBRT plans were created using a tomotherapy planning station. Using these original plans, five plans with different ITV margins (4.0–20.0 mm for superior-inferior [SI] dimension) were generated. To evaluate the effects of respiratory motion on HT, an original dynamic motion phantom was developed. The respiratory wave of a healthy volunteer was used for dynamic motion as the typical tumor respiratory motion. Five patterns of motion amplitude that corresponded to five ITV margin sizes and three breathing cycles of 7, 14, and 28 breaths per minute were used. We evaluated the target dose change between a static delivery and a dynamic delivery with each motion pattern.ResultsThe target dose difference increased as the tumor size decreased and as the tumor motion increased. Although a target dose difference of <5 % was observed at ≤10 mm of tumor motion for each condition, a maximum difference of -9.94 % ± 7.10 % was observed in cases of small tumors with 20 mm of tumor motion under slow respiration.ConclusionsMinimizing respiratory movement is recommended as much as possible for lung SBRT with HT, especially for cases involving small tumors.  相似文献   

7.
Background and purposeTo assess anatomic changes during intensity modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC) and to determine its dosimetric impact.Patients and methodsTwenty patients treated with IMRT for NPC were enrolled in this study. A second CT was performed at 38 Gy. Manual contouring of the macroscopic tumor volumes (GTV) and the planning target volumes (PTV) were done on the second CT. We recorded the volumes of the different structures, D98 %, the conformity, and the homogeneity indexes for each PTV. Volume percent changes were calculated.ResultsWe observed a significant reduction in tumor volumes (58.56 % for the GTV N and 29.52 % for the GTV T). It was accompanied by a significant decrease in the D98 % for the 3 PTV (1.4 Gy for PTV H, p = 0.007; 0.3 Gy for PTV I, p = 0.03 and 1.15 Gy for PTV L, p = 0 0.0066). In addition, we observed a significant reduction in the conformity index in the order of 0.02 (p = 0.001) and 0.01 (p = 0.007) for PTV H and PTV I, respectively. The conformity variation was not significant for PTV L. Moreover, results showed a significant increase of the homogeneity index for PTV H (+ 0.03, p = 0.04) and PTV L (+ 0.04, p = 0.01).ConclusionTumor volume reduction during the IMRT of NPC was accompanied by deterioration of the dosimetric coverage for the different target volumes. It is essential that a careful adaptation of the treatment plan be considered during therapy for selected patients.  相似文献   

8.
9.
OBJECTIVES: The full potential of stereotactic body radiation therapy (SBRT), in the treatment of unresectable intrahepatic malignancies, has yet to be realized as our experience is still limited. Thus, we evaluated SBRT outcomes for primary and metastatic liver tumors, with the goal of identifying factors that may aid in optimization of therapy. METHODS: From2005 to 2010, 62 patients with 106 primary and metastatic liver tumors were treated with SBRT to a median biologic effective dose (BED) of 100 Gy (42.6-180). The majority of patients received either three (47%) or five fractions (48%). Median gross tumor volume (GTV) was 8.8 cm3 (0.2-222.4). RESULTS: With a median followup of 18 months (0.46-46.8), freedom from local progression (FFLP) was observed in 97 of 106 treated tumors, with 1- and 2-year FFLP rates of 93% and 82%. Median overall survival (OS) for all patients was 25.2 months, with 1- and 2-year OS of 81%and 52%. Neither BED nor GTV significantly predicted for FFLP. Local failure was associated with a higher risk of death [hazard ratio (HR) = 5.1, P = .0007]. One Child-Pugh Class B patient developed radiationinduced liver disease. There were no other significant toxicities. CONCLUSIONS: SBRT provides excellent local control for both primary and metastatic liver lesions with minimal toxicity. Future studies should focus on appropriate selection of patients and on careful assessment of liver function to maximize both the safety and efficacy of treatment.  相似文献   

10.
PurposeTo propose a geometrical margin for definition of the vaginal cuff PTV using only CT images of the full bladder (CTfull) in postoperative cervical cancer patients.MethodsTwenty-nine operated cervical cancer patients underwent volumetric arc therapy with a bladder filling protocol. This study assessed bladder filling using a portable bladder scanner and cone-beam computed tomography (CBCT) during the entire treatment period. The measured bladder volumes with a BladderScan® were compared with the delineated volume on CBCT. Titanium clips in the vaginal cuff were analysed to assess geometrical uncertainty and the influence of rectal and bladder volume changes.ResultsBladderScan® showed good agreement with the delineated volume (R = 0.80). The volume changes in the bladder have a greater influence on the clip displacements than in the rectum. The 95th percentile of uncertainty of the clips in reference to CTfull in the right-left (RL), the superoinferior (SI), and the anteroposterior (AP) was 0.32, 0.65, and 1.15 cm, respectively. From this result and intra-fractional movements of the vaginal cuff reported by Haripotepornkul, a new geometrical margin was proposed for definition of the vaginal cuff planning target volume (PTV): 0.5, 0.9, and 1.4 cm in the RL, SI, and AP directions, respectively.ConclusionsA new geometrical margin was proposed for definition of the vaginal cuff PTV based on CTfull, which will be needless of empty bladder at the planning CT scan. This method allows patients to reduce the burden and efficient routine CT scans can be improved.  相似文献   

11.
PurposePancreatic tumor treatment dose distribution variations associated with supine and prone patient positioning were evaluated.MethodsA total of 33 patients with pancreatic tumors who underwent CT in the supine and prone positions were analyzed retrospectively. Gross tumor volume (GTV), planning target volume (PTV), and organs at risk (OARs) (duodenum and stomach) were contoured. The prescribed dose of 55.2 Gy (RBE) was planned from four beam angles (0°, 90°, 180°, and 270°). Patient collimator and compensating boli were designed for each field. Dose distributions were calculated for each field in the supine and prone positions. To improve dose distribution, patient positioning was selected from supine or prone for each beam field.ResultsCompared with conventional beam angle and patient positioning, D2cc of 1st-2nd portion of duodenum (D1-D2), 3rd-4th portion of duodenum (D3-D4), and stomach could be reduced to a maximum of 6.4 Gy (RBE), 3.5 Gy (RBE), and 4.5 Gy (RBE) by selection of patient positioning. V10 of D1-D2, D3-D4, and stomach could be reduced to a maximum of 7.2 cc, 11.3 cc, and 11.5 cc, respectively. D95 of GTV and PTV were improved to a maximum of 6.9% and 3.7% of the prescribed dose, respectively.ConclusionsOptimization of patient positioning for each beam angle in treatment planning has the potential to reduce OARs dose maintaining tumor dose in pancreatic treatment.  相似文献   

12.
AimThis study reports a single-institutional experience treating liver metastases with stereotactic body radiation therapy (SBRT).Materials and methods107 patients with 169 lesions were assessed to determine factors predictive for local control, radiographic response, and overall survival (OS). Machine learning techniques, univariate analysis, and the Kaplan-Meier method were utilized.ResultsPatients were treated with a relatively low median dose of 30 Gy in 3 fractions. Fractions were generally delivered once weekly. Median biologically effective dose (BED) was 60 Gy, and the median gross tumor volume (GTV) was 12.16 cc. Median follow-up was 7.36 months. 1-year local control was 75% via the Kaplan-Meier method. On follow-up imaging, 43%, 40%, and 17% of lesions were decreased, stable, and increased in size, respectively. 1-year OS was 46% and varied by primary tumor, with median OS of 34.3, 25.1, 12.5, and 4.6 months for ovarian, breast, colorectal, and lung primary tumors, respectively. Breast and ovarian primary patients had better OS (p < 0.0001), and lung primary patients had worse OS (p = 0.032). Higher BED values, the number of hepatic lesions, and larger GTV were not predictive of local control, radiographic response, or OS. 21% of patients suffered from treatment toxicity, but no grade ≥3 toxicity was reported.ConclusionRelatively low-dose SBRT for liver metastases demonstrated efficacy and minimal toxicity, even for patients with large tumors or multiple lesions. This approach may be useful for patients in whom higher-dose therapy is contraindicated or associated with high risk for toxicity. OS depends largely on the primary tumor.  相似文献   

13.
Background and purposeThis study aims to evaluate whether dosimetric parameters affect the intrahepatic out-field recurrence or distant metastasis-free survival following the stereotactic body radiation therapy (SBRT) in patients with hepatocellular carcinoma (HCC).Materials and methodsA total of 76 patients with HCC who were treated with SBRT from January 2015 to May 2020 were included in this retrospective study. The main clinical endpoints considered were intrahepatic out-field free survival (OutFFS) and distant metastasis-free survival (DMFS). The target parameters and the liver were documented including tumor diameters, gross tumor volume (GTV), Liver minus GTV volume (LGV), and Liver minus GTV mean dose (LGD). Multivariable Cox regression with forward stepwise selection was performed to identify independent risk factors for OutFFS and DMFS. Maximally selected rank statistics were used to determine the most informative cut-off value for age and LGD.ResultsThe median follow-up was 28.2 months (range, 7.7–74.5 months). LGD higher than 12.54 Gy [HR, 0.861(0.747–0.993); p = 0.040] and age greater than 67-year-old [HR, 0.966(0.937–0.997); p = 0.030] are two independent predictors of OutFFS, previous TACE treatment [HR, 0.117(0.015–0.891); p = 0.038] was an independent predictor of DMFS.ConclusionsThe results of this study suggested that the higher the dose received by the normal liver (greater than 12.54 Gy) the better the intrahepatic out-field recurrence-free survival (RFS) rate. Further study is warranted to confirm and to better understand this phenomenon.  相似文献   

14.
PurposeTo compare helical Tomotherapy (HT), two volumetric-modulated arc techniques and conventional fixed-field intensity modulated techniques (S-IMRT) for head-neck (HN) cancers.Methods and materialsEighteen HN patients were considered. Four treatment plans were generated for each patient: HT, S-IMRT optimised with Eclipse treatment planning system and two volumetric techniques using Elekta–Oncentra approach (VMAT) and Varian-RapidArc (RA), using two full arcs. All techniques were optimised to simultaneously deliver 66Gy to PTV1 (GTV and enlarged nodes) and 54Gy to PTV2 (subclinical and electively treated nodes). Comparisons were assessed on several dosimetric parameters and, secondarily, on planned MUs and delivery time.ResultsConcerning PTV coverage, significantly better results were found for HT and RA. HT significantly improved the target coverage both compared to S-IMRT and VMAT. No significant differences were found between S-IMRT and volumetric techniques in terms of dose homogeneity. For OARs, all the techniques were able to satisfy all hard constraints; significantly better results were found for HT, especially in the intermediate dose range (15–30 Gy). S-IMRT reached a significantly better OARs sparing with respect to VMAT and RA. No significant differences were found for body mean dose, excepting higher values of V5–V10 for HT. A reduction of planned MUs and delivery treatment time was found with volumetric techniques.ConclusionsThe objectives of satisfying target coverage and sparing of critical structures were reached with all techniques. S-IMRT techniques were found more advantageous compared to RA and VMAT for OARs sparing. HT reached the best overall treatment plan quality.  相似文献   

15.
PurposeTo assess the interplay effect amplitude between different planned MU distributions and respiratory patterns in the CyberKnife system when treating moving targets with static tracking technique.MethodsSmall- and Large-Respiratory Motions (SRM and LRM) differing in amplitude and frequency were simulated in a semi-anthropomorphic dynamic thorax phantom. The interplay effect was evaluated for both respiration motions in terms of GTV coverage and conformity for three plans designed with an increasing range of MU per beam (small, medium and large). Each plan was delivered three times changing the initial beam-on phase to assess the inter-fraction variation. Dose distributions were measured using radiochromic films placed in the GTV axial and sagittal planes.ResultsGenerally, SRM plans gave higher GTV coverage and were less dependent on beam-on phases than LRM plans. For SRM (LRM) plans, the GTV coverage ranged from 95.2% to 99.7% (85.9% to 99.8%). Maximum GTV coverage was found for large MU plans in SRM and for small MU plans in LRM. Minimum GTV coverage was found for medium MU plans for both SRM and LRM. For SRM plans, dose conformity decreased with increasing MU range while the variation was reduced for LRM plans. Large MU plans reduced the inter-fraction variation for SRM and LRM.ConclusionsWe confirmed the interplay effect between target motion and beam irradiation time for CyberKnife static tracking. Plans with large MU per beam improved the GTV coverage for small motion amplitude and the inter-fraction dose variation for large motion amplitude.  相似文献   

16.
PurposeWe investigated the feasibility of robust optimization for volumetric modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) for liver cancer in comparison with planning target volume (PTV)-based optimized plans. Treatment plan quality, robustness, complexity, and accuracy of dose delivery were assessed.MethodsTen liver cancer patients were selected for this study. PTV-based optimized plans with an 8-mm PTV margin and robust optimized plans with an 8-mm setup uncertainty were generated. Plan perturbed doses were evaluated using a setup error of 8 mm in all directions from the isocenter. The dosimetric comparison parameters were clinical target volume (CTV) doses (D98%, D50%, and D2%), liver doses, and monitor unit (MU). Plan complexity was evaluated using the modulation complexity score for VMAT (MCSv).ResultsThere was no significant difference between the two optimizations with respect to CTV doses and MUs. Robust optimized plans had a higher liver dose than did PTV-based optimized plans. Plan perturbed dose evaluations showed that doses to the CTV for the robust optimized plans had small variations. Robust optimized plans were less complex than PTV-based optimized plans. Robust optimized plans had statistically significant fewer leaf position errors than did PTV-based optimized plans.ConclusionsComparison of treatment plan quality, robustness, and plan complexity of both optimizations showed that robust optimization could be feasibile for VMAT of liver cancer.  相似文献   

17.
PurposeIn image-guided particle radiotherapy of abdominal lesions, respiratory motion hinders treatment accuracy. In this study, 2D cineMRI data were used to quantify the tumor (GTV) motion and to evaluate the clinical approach based on deriving an internal target volume (ITV) from a planning 4DCT for gating treatments.MethodsSeven patients with abdominal lesions were treated with carbon-ion therapy at the National Centre of Oncological Hadron-therapy (Italy). The MR scan was performed on the same day of the 4DCT acquisition. For four patients, an additional MR was acquired approximately after 1 week. The cineMRI combined with deformable image registration algorithm was used to quantify tumor motion. Afterwards, two ITVs were defined considering (1) all phases (ITVFB) and (2) only phases within the gating window (ITVG), and then compared with the clinical (4DCT-derived) ITVs (ITVCG and ITVCFB).ResultsTumor residual motion estimated by cineMRI data in the two MRI sessions resulted not significantly different from 4DCT, although cineMRI accounted for cycle-to-cycle variations. The ITV normalized for the GTV median values were higher for ITVFB with respect to ITVG, ITVCFB and ITVCG. The Hausdorff distances with respect to the GTV were up to 10.55 mm, 3.13 mm, 5.56 mm and 2.51 mm, for ITVFB, ITVG, ITVCFB and ITVCG, respectively. According to both metrics, ITVCG and ITVG were not found significantly different.ConclusionsCineMRI acquisitions allowed to quantify organ motion without delivering additional dose to the patient and to verify treatment margins in gated carbon-ion therapy of abdominal lesions.  相似文献   

18.
AimThe aim is a dosimetric comparison of dynamic conformal arc integrated with the segment shape optimization and variable dose rate (DCA_SSO_VDR) versus VMAT for liver SBRT and interaction of various treatment plan quality indices with PTV and degree of modulation (DoM) for both techniques.BackgroundThe DCA is the state-of-the-art technique but overall inferior to VMAT, and the DCA_SSO_VDR technique was not studied for liver SBRT.Materials and methodsTwenty-five patients of liver SBRT treated using the VMAT technique were selected. DCA_SSO_VDR treatment plans were also generated for all patients in Monaco TPS using the same objective constraint template and treatment planning parameters as used for the VMAT technique. For comparison purpose, organs at risk (OARs) doses and treatment plans quality indices, such as maximum dose of PTV (Dmax%), mean dose of PTV (Dmean%), maximum dose at 2 cm in any direction from the PTV (D2cm%), total monitor units (MU’s), gradient index R50%, degree of modulation (DoM), conformity index (CI), homogeneity index (HI), and healthy tissue mean dose (HTMD) were compared.ResultsSignificant dosimetric differences were observed in several OARs doses and lowered in VMAT plans. The D2cm%, R50%, CI, HI and HTMD are dosimetrically inferior in DCA_SSO_VDR plans. The higher DoM results in poor dose gradient and better dose gradient for DCA_SSO_VDR and VMAT treatment plans, respectively.ConclusionsFor liver SBRT, DCA_SSO_VDR treatment plans are neither dosimetrically superior nor better alternative to the VMAT delivery technique. A reduction of 69.75% MU was observed in DCA_SSO_VDR treatment plans. For the large size of PTV and high DoM, DCA_SSO_VDR treatment plans result in poorer quality.  相似文献   

19.
Purpose/objectiveThe objective of this study was to verify the accuracy of treatment plans of stereotactic body radiation therapy (SBRT) and to verify the feasibility of the use of Monte Carlo (MC) as quality control (QC) on a daily basis.Material/methodsUsing EGSnrc, a MC model of Agility™ linear accelerator was created. Various measurements (Percentage depth dose (PDD), Profiles and Output factors) were done for different fields sizes from 1x1 up to 40x40 (cm2). An iterative model optimization was performed to achieve adequate parameters of MC simulation. 40 SBRT patient’s dosimetry plans were calculated by Monaco™ 3.1.1. CT images, RT-STRUCT and RT-PLAN files from Monaco™ being used as input for Moderato MC code. Finally, dose volume histogram (DVH) and paired t-tests for each contour were used for dosimetry comparison of the Monaco™ and MC.ResultsValidation of MC model was successful, as <2% difference comparing to measurements for all field’s sizes. The main energy of electron source incident on the target was 5.8 MeV, and the full width at half maximum (FWHM) of Gaussian electron source were 0.09 and 0.2 (cm) in X and Y directions, respectively. For 40 treatment plan comparisons, the minimum absolute difference of mean dose of planning treatment planning (PTV) was 0.1% while the maximum was 6.3%. The minimum absolute difference of Max dose of PTV was 0.2% while the maximum was 8.1%.ConclusionSBRT treatment plans of Monaco agreed with MC results. It possible to use MC for treatment plans verifications as independent QC tool.  相似文献   

20.
AimTo evaluate the performance of volumetric arc modulation with RapidArc against conventional IMRT for head and neck cancers.BackgroundRapidArc is a novel technique that has recently been made available for clinical use. Planning study was done for volumetric arc modulation with RapidArc against conventional IMRT for head and neck cancers.Materials and methodsTen patients with advanced tumors of the nasopharynx, oropharynx, and hypopharynx were selected for the planning comparison study. PTV was delineated for two different dose levels and planning was done by means of simultaneously integrated boost technique. A total dose of 70 Gy was delivered to the boost volume (PTV boost) and 57.7 Gy to the elective PTV (PTV elective) in 35 equal treatment fractions. PTV boost consisted of the gross tumor volume and lymph nodes containing visible macroscopic tumor or biopsy-proven positive lymph nodes, whereas the PTV elective consisted of elective nodal regions. Planning was done for IMRT using 9 fields and RapidArc with single arc, double arc. Beam was equally placed for IMRT plans. Single arc RapidArc plan utilizes full 360° gantry rotation and double arc consists of 2 co-planar arcs of 360° in clockwise and counter clockwise direction. Collimator was rotated from 35 to 45° to cover the entire tumor, which reduced the tongue and groove effect during gantry rotation. All plans were generated with 6 MV X-rays for CLINAC 2100 Linear Accelerator. Calculations were done in the Eclipse treatment planning system (version 8.6) using the AAA algorithm.ResultsDouble arc plans show superior dose homogeneity in PTV compared to a single arc and IMRT 9 field technique. Target coverage was almost similar in all the techniques. The sparing of spinal cord in terms of the maximum dose was better in the double arc technique by 4.5% when compared to the IMRT 9 field and single arc techniques. For healthy tissue, no significant changes were observed between the plans in terms of the mean dose and integral dose. But RapidArc plans showed a reduction in the volume of the healthy tissue irradiated at V15 Gy (5.81% for single arc and 4.69% for double arc) and V20 Gy (7.55% for single arc and 5.89% for double arc) dose levels when compared to the 9-Field IMRT technique. For brain stem, maximum dose was similar in all the techniques. The average MU (±SD) needed to deliver the dose of 200 cGy per fraction was 474 ± 80 MU and 447 ± 45 MU for double arc and single arc as against 948 ± 162 MU for the 9-Field IMRT plan. A considerable reduction in maximum dose to the mandible by 6.05% was observed with double arc plan. Double arc shows a reduction in the parotid mean dose when compared with single arc and IMRT plans.ConclusionRapidArc using double arc provided a significant sparing of OARs and healthy tissue without compromising target coverage compared to IMRT. The main disadvantage with IMRT observed was higher monitor units and longer treatment time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号