首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information on spatial variability and distribution patterns of organisms in coral reef environments is necessary to evaluate the increasing anthropogenic disturbance of marine environments (Richmond 1993; Wilkinson 1993; Dayton 1994). Therefore different types of subtidal, reef-associated hard substrata (reef flats, reef slopes, coral carpets, coral patches, rock grounds), each with different coral associations, were investigated to determine the distribution pattern of molluscs and their life habits (feeding strategies and substrate relations). The molluscs were strongly dominated by taxa with distinct relations to corals, and five assemblages were differentiated. The Dendropoma maxima assemblage on reef flats is a discrete entity, strongly dominated by this encrusting and suspension-feeding gastropod. All other assemblages are arranged along a substrate gradient of changing coral associations and potential molluscan habitats. The Coralliophila neritoideaBarbatia foliata assemblage depends on the presence of Porites and shows a dominance of gastropods feeding on corals and of bivalves associated with living corals. The Chamoidea–Cerithium spp. assemblage on rock grounds is strongly dominated by encrusting bivalves. The Drupella cornus–Pteriidae assemblage occurs on MilleporaAcropora reef slopes and is strongly dominated by bivalves associated with living corals. The Barbatia setigeraCtenoides annulata assemblage includes a broad variety of taxa, molluscan life habits and bottom types, but occurs mainly on faviid carpets and is transitional among the other three assemblages. A predicted degradation of coral coverage to rock bottoms due to increasing eutrophication and physical damage in the study area (Riegl and Piller 2000) will result in a loss of coral-associated molluscs in favor of bivalve crevice dwellers in dead coral heads and of encrusters on dead hard substrata.  相似文献   

2.
Microbial communities of four acidic thermal pools in the Uzon Caldera, Kamchatka, Russia, were studied using amplification and pyrosequencing of 16S rRNA gene fragments. The sites differed in temperature and pH: 1805 (60 °C, pH 3.7), 1810 (90 °C, pH 4.1), 1818 (80 °C, pH 3.5), and 1807 (86 °C, pH 5.6). Archaea of the order Sulfolobales were present among the dominant groups in all four pools. Acidilobales dominated in pool 1818 but were a minor fraction at the higher temperature in pool 1810. Uncultivated Archaea of the Hot Thaumarchaeota-related clade were present in significant quantities in pools 1805 and 1807, but they were not abundant in pools 1810 and 1818, where high temperatures were combined with low pH. Nanoarchaeota were present in all pools, but were more abundant in pools 1810 and 1818. A similar abundance pattern was observed for Halobacteriales. Thermophilic Bacteria were less diverse and were mostly represented by aerobic hydrogen- and sulfur-oxidizers of the phylum Aquificae and sulfur-oxidising Proteobacteria of the genus Acidithiobacillus. Thus we showed that extremely acidic hot pools contain diverse microbial communities comprising different metabolic groups of prokaryotes, including putative lithoautotrophs using energy sources of volcanic origin, and various facultative and obligate heterotrophs.  相似文献   

3.
Dynamics in reef cover, mortality and recruitment success of a high-latitude coral community in South Africa were studied over 20 yr with the aim to detect the effects of climate change. Coral communities at this locality are the southernmost on the African continent, non-accretive, attain high biodiversity and are dominated by soft corals. Long-term monitoring within fixed transects on representative reef was initiated in 1993 and has entailed annual photo-quadrat surveys and hourly temperature logging. Although sea temperatures rose by 0.15 °C p.a. at the site up to 2000, they have subsequently been decreasing, and the overall trend based on monthly means has been a significant decrease of 0.03 °C p.a. Despite this, minor bleaching was encountered in the region during the 1998 El Niño–Southern Oscillation event, again in the summer of 2000/2001 and in 2005. A significant decreasing trend of 0.95% p.a. in soft coral cover has been evident throughout the monitoring period, attributable to significant decreases in Sinularia and Lobophytum spp. cover. In contrast, hard coral cover gradually and significantly increased up to 2005, this being largely attributable to increases in cover by Acropora spp. Recruitment success and mortality of both soft and hard corals has displayed high inter-annual variability with increasing but non-significant trends in the last 5 yr. The reduction in soft coral cover has been more consistent and greater than that of hard corals, but it is difficult at this stage to attribute this to changes in water quality, acidification-linked accretion or temperature.  相似文献   

4.
Fourteen species of echinoderms and their relationships to the benthic structure of the coral reefs were assessed at 27 sites—with different levels of human disturbances—along the coast of the Mexican Central Pacific. Diadema mexicanum and Phataria unifascialis were the most abundant species. The spatial variation of the echinoderm assemblages showed that D. mexicanum, Eucidaris thouarsii, P. unifascialis, Centrostephanus coronatus, Toxopneustes roseus, Holothuria fuscocinerea, Cucumaria flamma, and Echinometra vanbrunti accounted for the dissimilarities among the sites. The spatial variation among the sites was mainly explained by the cover of the hard corals (Porites, Pocillopora, Pavona, Psammocora), different macroalgae species (turf, encrusting calcareous algae, articulated calcareous algae, fleshy macroalgae), sponges, bryozoans, rocky, coral rubble, sand, soft corals (hydrocorals and octocorals), Tubastrea coccinea coral, Balanus spp., and water depth. The coverage of Porites, Pavona, and Pocillopora corals, soft coral, rock, and Balanos shows a positive relationship with the sampling sites included within the natural protected area with low human disturbances. Contrary, fleshy macroalgae, sponges, and soft coral show a positive relationship with higher disturbance sites. The results presented here show the importance of protecting the structural heterogeneity of coral reef habitats because it is a significant factor for the distribution of echinoderm species and can contribute to the design of conservation programs for the coral reef ecosystem.  相似文献   

5.
Studies on the population and community dynamics of scleractinian corals typically focus on catastrophic mortality associated with acute disturbances (e.g., coral bleaching and outbreaks of crown-of-thorns starfish), though corals are subject to high levels of background mortality and injuries caused by routine and chronic processes. This study quantified prevalence (proportion of colonies with injuries) and severity (areal extent of injuries on individual colonies) of background mortality and injuries for four common coral taxa (massive Porites, encrusting Montipora, Acropora hyacinthus and branching Pocillopora) on the Great Barrier Reef, Australia. Sampling was conducted over three consecutive years during which there were no major acute disturbances. A total of 2276 adult colonies were surveyed across 27 sites, within nine reefs and three distinct latitudinal sectors. The prevalence of injuries was very high (>83%) across all four taxa, but highest for Porites (91%) and Montipora (85%). For these taxa (Montipora and Pocillopora), there was also significant temporal and spatial variation in prevalence of partial mortality. The severity of injuries ranged from 3% to more than 80% and varied among coral taxa, but was fairly constant spatially and temporally. This shows that some injuries have considerable longevity and that corals may invest relatively little in regenerating tissue over sites of previous injuries. Inter-colony variation in the severity of injury also had no apparent effect on the realized growth of individual colonies, suggesting that energy diverted to regeneration has a limited bearing on overall energetic allocation, or impacts on other life-history processes (e.g., reproduction) rather than growth. Establishing background levels of injury and regeneration is important for understanding energy investment and life-history consequences for reef-building corals as well as for predicting susceptibility to, and capacity to recover from, acute disturbances.  相似文献   

6.
Dispersal connects patches within metapopulations and is crucial to the persistence of many species, particularly those living in discontinuous habitat. Rock pools are excellent habitats in which to study dispersal in time as well as space, because many of the organisms that live within them make resistant long-lived dormant stages, they are often abundant, and they are easy to sample. The rock pools on Appledore Island, Gulf of Maine, USA, are home to several cladocerans, including Moina macrocopa and Daphnia pulex × pulicaria hybrids. Both taxa exist in extremely high abundances in some pools and make diapausing eggs enclosed in ephippia that are dispersed in time by hatching long after they are produced, and are also known to spatially disperse via pool overflows and by adhering to gulls. I hypothesized that ephippia of both taxa would also be spatially dispersed by wind. I found that while Moina are present in more pools, more abundant in those pools, and produce more ephippia, many more Daphnia ephippia dispersed into traps placed around the island. This may be explained, in part, by differences in the buoyancy of ephippia between the two species. A higher propensity to disperse may result in Daphnia relying more heavily on the spatial context of rock pools than Moina.  相似文献   

7.
Correlations between environmental parameters (depth temperature and solar radiation) and growth parameters (bulk skeletal density, linear extension rate and net calcification rate) of the solitary azooxanthellate coral, Caryophyllia inornata, were investigated along an 8° latitudinal gradient on the western Italian coasts. Net calcification rate correlated positively with both bulk skeletal density and linear extension rate, showing that C. inornata allocates calcification resources evenly to thickening the skeleton and increasing linear growth. Overall, the three growth parameters did not follow gradients in the two environmental parameters, showing a different trend compared to most studies on zooxanthellate corals. However, the results are in agreement with the only previous analysis of an azooxanthellate coral, Leptopsammia pruvoti, studied along the same latitudinal gradient. In a comparison of the response to temperature of all Mediterranean species whose growth has been investigated to date, azooxanthellate corals were more tolerant to temperature increases than zooxanthellate corals.  相似文献   

8.
Annual coral bleaching events due to increasing sea surface temperatures are predicted to occur globally by the mid-century and as early as 2025 in the Caribbean, and severely impact coral reefs. We hypothesize that heterotrophic carbon (C) in the form of zooplankton and dissolved organic carbon (DOC) is a significant source of C to bleached corals. Thus, the ability to utilize multiple pools of fixed carbon and/or increase the amount of fixed carbon acquired from one or more pools of fixed carbon (defined here as heterotrophic plasticity) could underlie coral acclimatization and persistence under future ocean-warming scenarios. Here, three species of Caribbean coral—Porites divaricata, P. astreoides, and Orbicella faveolata—were experimentally bleached for 2.5 weeks in two successive years and allowed to recover in the field. Zooplankton feeding was assessed after single and repeat bleaching, while DOC fluxes and the contribution of DOC to the total C budget were determined after single bleaching, 11 months on the reef, and repeat bleaching. Zooplankton was a large C source for P. astreoides, but only following single bleaching. DOC was a source of C for single-bleached corals and accounted for 11–36 % of daily metabolic demand (CHARDOC), but represented a net loss of C in repeat-bleached corals. In repeat-bleached corals, DOC loss exacerbated the negative C budgets in all three species. Thus, the capacity for heterotrophic plasticity in corals is compromised under annual bleaching, and heterotrophic uptake of DOC and zooplankton does not mitigate C budget deficits in annually bleached corals. Overall, these findings suggest that some Caribbean corals may be more susceptible to repeat bleaching than to single bleaching due to a lack of heterotrophic plasticity, and coral persistence under increasing bleaching frequency may ultimately depend on other factors such as energy reserves and symbiont shuffling.  相似文献   

9.
Cold-water corals of the Late Pleistocene (21,400–22,500 BP) are recorded from the sea-bottom of two inter-atoll channels (Kardiva Channel at 457-m depth and Malé Vaadhoo Channel at 443-m depth) of the eastern row of the Maldives archipelago. Coral assemblages are composed mainly by Lophelia pertusa and secondarily by Madrepora oculata and Enallopsammia rostrata. These cold-water coral patches are places where the benthic life, mainly sessile, is concentrated, which is clearly absent off-rubble patches. The main epibionts are tube-dwelling polychaetes (mainly Spirorbis and Serpula), bryozoans, siliceous sponges, barnacles, gorgonids, solitary corals, encrusting foraminifera, and microbial mats. The analysis of epibionts assemblages shows different biocoenoses between both studied sites as well as a dependency of the epibiont coverage with regard to the coral genus. Some living benthic organisms such as brachiopods, bivalves, gastropods, barnacles, and ophiuroids find refuge among coral branches. The common record of juvenile specimens of vagile organisms such as small ophiuroids, is probably related to the nursery function of the cold-water corals in spite they are fossils. Environmental requirements of Recent cold-water corals (Lophelia, Madrepora and Enallopsammia) differ of conditions at both sampling sites with sensibly lower oxygenation degree and density of waters than needed for cold-water corals. Therefore, it is proposed that the present-day oxygen and density conditions are the factors which inhibit modern cold-water coral growth in the inter-atoll channels.  相似文献   

10.
The ecology of scleractinian corals may be understood through comparisons between population demographic data and environmental parameters. Growth (growth constant and maximum size) and demographic parameters (population structure stability, instantaneous mortality rate, average age of individuals, percentage of immature individuals, age at maximum biomass, and average age of biomass) of the solitary, non-zooxanthellate, and temperate coral Caryophyllia inornata were investigated at six sites along an 8° latitudinal gradient of temperature and solar radiation (SR) on the western Italian coasts. Growth parameters were homogeneous among populations across the investigated latitudinal range. While demographic parameters were not correlated with depth temperature, populations were progressively less stable and showed a deficiency of young individuals with increasing SR, likely as a result of the lowered energetic resources due to reduced zooplankton availability. These results contrast with data from another Mediterranean non-zooxanthellate solitary coral, Leptopsammia pruvoti, investigated along the same gradient, which shows no correlation between population demography and temperature or SR.  相似文献   

11.
The symbiotic dinoflagellates of corals and other marine invertebrates (Symbiodinium) are essential to the development of shallow-water coral reefs. This genus contains considerable genetic diversity and a corresponding range of physiological and ecological traits. Most genetic variation arises through the accumulation of somatic mutations that arise during asexual reproduction. Yet growing evidence suggests that occasional sexual reproductive events also occur within, and perhaps between, Symbiodinium lineages, further contributing to the pool of genetic variation available for evolutionary adaptation. Intra-genomic variation can therefore arise from both sexual and asexual reproductive processes, making it difficult to discern its underlying causes and consequences. We used quantitative PCR targeting the ITS2 locus to estimate proportions of genetically homogeneous symbionts and intra-genomically variable Symbiodinium (IGV Symbiodinium) in the reef-building coral Pocillopora damicornis at Lord Howe Island, Australia. We then sampled colonies through time and at a variety of spatial scales to find out whether the distribution of these symbionts followed patterns consistent with niche partitioning. Estimated ratios of homogeneous to IGV Symbiodinium varied between colonies within sites (metres to tens of metres) and between sites separated by hundreds to thousands of metres, but remained stable within colonies through time. Symbiont ratios followed a temperature gradient, with the local thermal maximum emerging as a negative predictor for the estimated proportional abundance of IGV Symbiodinium. While this pattern may result from fine-scale spatial population structure, it is consistent with an increased susceptibility to thermal stress, suggesting that the evolutionary processes that generate IGV (such as inter-lineage recombination and the accumulation of somatic mutations at the ITS2 locus) may have important implications for the fitness of the symbiont and that of the coral host.  相似文献   

12.
Ocean warming is a major threat for coral reefs causing widespread coral bleaching and mortality. Potential refugia are thus crucial for coral survival. Exposure to large-amplitude internal waves (LAIW) mitigated heat stress and ensured coral survival and recovery during and after an extreme heat anomaly. The physiological status of two common corals, Porites lutea and Pocillopora meandrina, was monitored in host and symbiont traits, in response to LAIW-exposure throughout the unprecedented 2010 heat anomaly in the Andaman Sea. LAIW-exposed corals of both species survived and recovered, while LAIW-sheltered corals suffered partial and total mortality in P. lutea and P. meandrina, respectively. LAIW are ubiquitous in the tropics and potentially generate coral refuge areas. As thermal stress to corals is expected to increase in a warming ocean, the mechanisms linking coral bleaching to ocean dynamics will be crucial to predict coral survival on a warming planet.  相似文献   

13.
Stegastes adustus and Stegastes planifrons are two species of damselfishes commonly found in the Caribbean. These territorial fishes have been widely studied due to their major ecological role on coral reef in controlling the growth of macroalgae that compete with corals for space and, inversely, on their deleterious role in destroying coral tissues to impulse the development of algae. However, few studies were conducted on the biotic and abiotic components of their territories. In the present study, territory size and surfaces of benthic components (macroalgae, algal turf, massive corals, branching corals, Milleporidae, sponges, sand and rubbles) were estimated for the two species at two contrasted sites. At Ilet Pigeon site (IP), the two damselfishes were found at different depth and exhibited different territory sizes. S. adustus defended a larger territory characterized by massive corals, sand and Milleporidae, while S. planifrons territories were smaller, deeper and characterized by branching corals, sponges and rubble. At Passe-à-Colas site (PC), the two fish species coexisted in the same depth range and defended territories of similar size. Their territories presented higher proportions of macroalgae, but smaller surfaces of Milleporidae than at IP. At PC, the main difference between the two species was a higher surface of massive corals inside S. planifrons territories than S. adustus territories. Differences in microhabitat characteristics between the two Stegastes seemed mostly site related. This resulted from the high plasticity of two species, allowing them to persist on Caribbean coral reefs after the decline of most branching acroporids, their former favorite habitats.  相似文献   

14.
Lobophora variegata occurs in the eulittoral zone and in deep water on coral reefs in Curaçao. An analysis of the long-term (1979–2006) changes in the vertical distribution of the macroalga in permanent quadrats indicated a significant increase in cover of the deepwater community. In 1998, Lobophora covered 1 and 5% of the quadrats at 20 and 30 m, respectively. By 2006, these values had risen to 25 and 18%, precipitating a shift in abundance of corals and macroalgae at both depths. This increase coincided with losses in coral cover, possibly linked to bleaching, disease and storm-related mortality in deep water plating Agaricia corals. In contrast, macroalgae remained relatively rare (<6% cover) on shallower (10 m) and deeper (40 m) reefs despite declines in coral cover also occurring at these depths, illustrating the depth-dependent dynamics of coral reefs. Several hypotheses are suggested to explain these changes.  相似文献   

15.
Optimal temperature and light are both necessary conditions for coral survival. Light enhances calcification, and thermal stress disrupts Ca2+ homeostasis. As calcium is involved in many important metabolic activities, in this study, we cloned the calmodulin-like protein (CaLP) gene of one of the scleractinian corals, Galaxea astreata. We also detected the relative mRNA expression levels of gaCaLP using the calcium channel blocker verapamil and CaCl2 treatment under conditions of light and dark, and compared expression levels under controlled temperature conditions. Full-length gaCaLP cDNA comprised 1290 nucleotides and contained 498 bp open reading frame that encoded a protein with 165 amino acids. With CaCl2, expression levels of gaCaLP only increased in the presence of light, suggesting that light may be a restrictive factor in CaLP expression when sufficient calcium is available in the environment. In addition, after verapami treatment, we noted that a down regulation of gaCaLP, suggesting that the expression of CaLP is closely related to extracellular Ca2+ influx. Under temperature stress at both high (30 °C) and low (20 °C) temperatures, expression levels of gaCaLP showed an initial increase, followed by a decreasing trend as treatment progressed. Expression levels reached their maximum value at 24 h. This result showed that CaLP participated in a temperature stress response, and Ca2+ homeostasis was disrupted during stress. The findings of the present study will help determine the function and regulatory mechanisms of gaCaLP.  相似文献   

16.
17.
Mesophotic coral ecosystems (below 30–40 m depth) host a large diversity of zooxanthellate coral communities and may play an important role in the ecology and conservation of coral reefs. Investigating the reproductive biology of mesophotic corals is important to understand their life history traits. Despite an increase in research on mesophotic corals in the last decade, their reproductive biology is still poorly understood. Here, gametogenesis and fecundity of the Indo-Pacific mesophotic coral, Acropora tenella, were examined in an upper mesophotic reef (40 m depth) in Okinawa, Japan for the first time. Acropora tenella is a hermaphrodite with a single annual gametogenic cycle, and both oogenesis and spermatogenesis occurring for 11–12 and 5–6 months, respectively. Timing of spawning of this species was similar to other shallow Acropora spp. in the region. However, colonies had longer gametogenic cycles and less synchronous gamete maturation compared to shallow acroporids with spawning extended over consecutive months. Both the polyp fecundity (number of eggs per polyp) and gonad index (defined as the number of eggs per square centimeter) of A. tenella were lower than most acroporids. Our findings contribute to understanding of the life history of corals on mesophotic reefs and suggest that the reproductive biology of upper mesophotic corals is similar to that of shallow-water corals.  相似文献   

18.
Bleaching response of coral species in the context of assemblage response   总被引:1,自引:0,他引:1  
Caribbean coral reefs are declining due to a mosaic of local and global stresses, including climate change-induced thermal stress. Species and assemblage responses differ due to factors that are not easily identifiable or quantifiable. We calculated a novel species-specific metric of coral bleaching response, taxon-α and -β, which relates the response of a species to that of its assemblages for 16 species over 18 assemblages. By contextualizing species responses within the response of their assemblages, the effects of environmental factors are removed and intrinsic differences among taxa are revealed. Most corals experience either a saturation response, overly sensitive to weak stress (α > 0) but under-responsive compared to assemblage bleaching (β < 1), or a threshold response, insensitive to weak stress (α < 0) but over-responsive compared to assemblage bleaching (β > 1). This metric may help reveal key factors of bleaching susceptibility and identify species as targets for conservation.  相似文献   

19.
The comparison of temperature responses of two mytilids from the high (Brachidontes purpuratus) and low (Semimytilus algosus) intertidal zone of the Peruvian coast was carried out focusing on the production of micronucleus and nuclear abnormalities in gill tissue. Two temperatures (23 and 11°C) were evaluated, in presence of three mitomycin C concentrations as a stressor (0.02, 0.04 and 0.06 × 10?6), simulating hypothetical El Niño and La Niña conditions. Responses to extreme temperatures between both species were significantly different (P = 0.008). Frequency of micronuclei and nuclear abnormalities in S. algosus did not differ statistically among the temperature treatments, whereas in B. purpuratus there was an observed significant decrease in nuclear abnormalities (P = 0.012) and micronuclei frequencies (P = 0.002) between both temperature treatments. The low frequency of micronuclei observed at high temperature and mitomycin C suggests a better efficiency to stress resistance, as occurs during El Niño events, of the species from the higher intertidal zone of B. purpuratus compared to S. algosus from the lower intertidal zone.  相似文献   

20.
Population outbreaks of the corallivorous crown-of-thorns starfish, Acanthaster planci, are a major contributor to the decline in coral reef across the Indo-Pacific. The success of A. planci and other reef species in a changing ocean will be influenced by juvenile performance because the naturally high mortality experienced at this sensitive life history stage maybe exacerbated by ocean warming and acidification. We investigated the effects of increased temperature and acidification on growth of newly metamorphosed juvenile A. planci and their feeding rates on crustose coralline algae (CCA) during the initial herbivorous phase of their life history. The juveniles were exposed to three temperature (26, 28, 30 °C) and three pH (NIST scale: 8.1, 7.8, 7.6) levels in a flow-through cross-factorial experiment. There were positive but independent effects of warming and acidification on juvenile growth and feeding. Early juveniles were highly tolerant to moderate increases in temperature (+2 °C above ambient) with the highest growth at 30 °C. Growth and feeding rates of A. planci on CCA were highest at pH 7.6. Thus, ocean warming and acidification may enhance the success of A. planci juveniles. In contrast to its coral prey, at this vulnerable developmental stage, A. planci appears to be highly resilient to future ocean change. Success of juveniles in a future ocean may have carry-over effects into the coral-eating life stage, increasing the threat to coral reef systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号