首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The stress‐gradient hypothesis (SGH) posits that the relative importance of facilitative interactions versus negative interactions increases as levels of abiotic stress increase. Originally formulated in empirical studies of plant populations, in recent years the SGH has been found to describe how interactions change in response to stress in a wide range of species including algae, mussels and moths. However, there has been little theory attempting to predict patterns from first principles in relation to different types of interactions. Here, we use mathematical models of microbial populations to investigate whether patterns consistent with the SGH arise when species interact through resource use and allelopathy. Evolution alters the degree to which competition for resource use versus facilitation (cross‐feeding) occurs. Our results are consistent with the SGH; species interactions evolve to be more facilitative as average stress intensifies. This occurs because at greater stress the species evolve to become specialists on either of the two resources thereby decreasing overlap in resource use and increasing facilitation through cross‐feeding. In addition, the production of toxic allelopathic compounds decreases as stress intensifies due to density‐dependent effects. Our results suggest that the SGH could arise through fundamental interactions that are common to many organisms and therefore that the SGH could be a more widespread phenomenon than previously recognised.  相似文献   

2.
The stress gradient hypothesis (SGH) predicts that the importance or intensity of competition and facilitation will change inversely along abiotic stress gradients. It was originally postulated that increasing environmental stress can induce a monotonic increase in facilitation. However, more recent models predicted that the relationship between severity and interaction exhibits a hump‐shaped pattern, in which positive interactions prevail under moderate stress but decline at the extreme ends of stress gradients. In the present study, we conducted a field experiment along a temporal rainfall gradient for five consecutive years, in order to investigate interactions in a shrub‐herbaceous plant community at the southern edge of the Badain Jaran Desert, and, more specifically, investigated the effects of Calligonum mongolicum, a dominant shrub species, on both abiotic environmental variables and the performance of sub‐canopy plant species. We found that shrubs can improve sub‐canopy water regimes, soil properties, plant biomass, density, cover, and richness and, more importantly, that the positive effect of shrubs on sub‐canopy soil moisture during the summer diminishes as rainfall decreases, a pattern that partly explains the collapse of the positive interaction between shrubs and their understory plants. These results provide empirical evidence that the positive effect of shrubs on understory plant communities in extreme arid environments may decline and become neutral with increasing drought stress.  相似文献   

3.
Olivier Dangles 《Oikos》2019,128(8):1206-1214
Theories based on competition for resources in animals and other non‐sessile organisms rarely consider the role of facilitative interactions. Yet these interactions are important for community assembly, especially under stressful environments (e.g. the stress‐gradient hypothesis, SGH). To make an explicit link between species interaction theory and SGH patterns, I used a classic resource competition model promoting coexistence between a beneficiary and its facilitator sharing a common resource along a stress gradient. I compared model outcomes for two fundamentally different mechanisms of facilitation (alleviation of resource versus non‐resource stress), and also tested the effect of a reciprocal cost of facilitation from the beneficiary. I then tested model's biological relevance using experimental data from two tuber moth species (Lepidoptera, Gelechiidae) for which facilitation in resource access was previously established. Simulation outcomes revealed that both the mode of facilitation and the incorporation of facilitation costs affected the shape of the facilitation–stress relationship. These predictions are in line with current SGH observations and experiments on both plants and animals and reconcile the frequently reported variability of this relationship in nature. Moreover, a sensitivity analysis of model's parameters confirmed the robustness of the modelling framework to uncover the mechanisms responsible for observed species interaction–stress patterns. Finally, when parameterized with tuber moth demographic data, model's results corresponded to observed interaction outcomes along resource stress gradients. Overall, having a common model for plants and animals may simplify assumptions in SGH studies, allow contrasting the shapes of different consumer–resource relationships and specifying the conditions that favour one type of interaction outcome over another.  相似文献   

4.
The study of positive species interactions is a rapidly evolving field in ecology. Despite decades of research, controversy has emerged as to whether positive and negative interactions predictably shift with increasing environmental stress as hypothesised by the stress‐gradient hypothesis (SGH). Here, we provide a synthesis of 727 tests of the SGH in plant communities across the globe to examine its generality across a variety of ecological factors. Our results show that plant interactions change with stress through an outright shift to facilitation (survival) or a reduction in competition (growth and reproduction). In a limited number of cases, plant interactions do not respond to stress, but they never shift towards competition with stress. These findings are consistent across stress types, plant growth forms, life histories, origins (invasive vs. native), climates, ecosystems and methodologies, though the magnitude of the shifts towards facilitation with stress is dependent on these factors. We suggest that future studies should employ standardised definitions and protocols to test the SGH, take a multi‐factorial approach that considers variables such as plant traits in addition to stress, and apply the SGH to better understand how species and communities will respond to environmental change.  相似文献   

5.
Nurse plant facilitation in stressful environments can produce an environment with relatively low stress under its canopy. These nurse plants may produce the conditions promoting intense competition between coexisting species under the canopy, and canopies may establish stress gradients, where stress increases toward the edge of the canopy. Competition and facilitation on these stress gradients may control species distributions in the communities under canopies. We tested the following predictions: (1) interactions between understory species shift from competition to facilitation in habitats experiencing increasing stress from the center to the edge of canopy of a nurse plant, and (2) species distributions in understory communities are controlled by competitive interactions at the center of canopy, and facilitation at the edge of the canopy. We tested these predictions using a neighbor removal experiment under nurse trees growing in arid environments. Established individuals of each of four of the most common herbaceous species in the understory were used in the experiment. Two species were more frequent in the center of the canopy, and two species were more frequent at the edge of the canopy. Established individuals of each species were subjected to neighbor removal or control treatments in both canopy center and edge habitats. We found a shift from competitive to facilitative interactions from the center to the edge of the canopy. The shift in the effect of neighbors on the target species can help to explain species distributions in these canopies. Canopy‐dominant species only perform well in the presence of neighbors in the edge microhabitat. Competition from canopy‐dominant species can also limit the performance of edge‐dominant species in the canopy microhabitat. The shift from competition to facilitation under nurse plant canopies can structure the understory communities in extremely stressful environments.  相似文献   

6.
The stress‐gradient hypothesis predicts a higher frequency of facilitative interactions as resource limitation increases. Under severe resource limitation, it has been suggested that facilitation may revert to competition, and identifying the presence as well as determining the magnitude of this shift is important for predicting the effect of climate change on biodiversity and plant community dynamics. In this study, we perform a meta‐analysis to compare temporal differences of species diversity and productivity under a nurse plant (Retama sphaerocarpa) with varying annual rainfall quantity to test the effect of water limitation on facilitation. Furthermore, we assess spatial differences in the herbaceous community under nurse plants in situ during a year with below‐average rainfall. We found evidence that severe rainfall deficit reduced species diversity and plant productivity under nurse plants relative to open areas. Our results indicate that the switch from facilitation to competition in response to rainfall quantity is nonlinear. The magnitude of this switch depended on the aspect around the nurse plant. Hotter south aspects under nurse plants resulted in negative effects on beneficiary species, while the north aspect still showed facilitation. Combined, these results emphasize the importance of spatial heterogeneity under nurse plants for mediating species loss under reduced precipitation, as predicted by future climate change scenarios. However, the decreased water availability expected under climate change will likely reduce overall facilitation and limit the role of nurse plants as refugia, amplifying biodiversity loss.  相似文献   

7.
植物邻体间的正相互作用   总被引:1,自引:0,他引:1  
张炜平  王根轩 《生态学报》2010,30(19):5371-5380
植物间的正负相互作用是构建植被群落的重要因素,也是群落生态学研究的中心内容之一。近20a来,植物间正相互作用的研究得到快速发展。综述了正相互作用的定义,不同植物群落中的直接、间接正相互作用及其发生机制,正相互作用研究的实验和模型方法,正负相互作用随胁迫梯度的变化及正相互作用对群落构建的影响。探讨了正相互作用研究前景:(1)进一步理解正负相互作用的平衡及其对群落构建的影响;(2)加深对全球变暖背景下的正相互作用的认识;(3)需把正相互作用研究同进化联系起来;(4)充分发挥正相互作用在生态系统中的推动力作用,把正相互作用应用到生态恢复中,为恢复退化生态系统服务。  相似文献   

8.
Background and Aims There is still debate regarding the direction and strength of plant interactions under intermediate to high levels of stress. Furthermore, little is known on how disturbance may interact with physical stress in unproductive environments, although recent theory and models have shown that this interplay may induce a collapse of plant interactions and diversity. The few studies assessing such questions have considered the intensity of biotic interactions but not their importance, although this latter concept has been shown to be very useful for understanding the role of interactions in plant communities. The objective of this study was to assess the interplay between stress and disturbance for plant interactions in dry calcareous grasslands. Methods A field experiment was set up in the Dordogne, southern France, where the importance and intensity of biotic interactions undergone by four species were measured along a water stress gradient, and with and without mowing disturbance. Key Results The importance and intensity of interactions varied in a very similar way along treatments. Under undisturbed conditions, plant interactions switched from competition to neutral with increasing water stress for three of the four species, whereas the fourth species was not subject to any significant biotic interaction along the gradient. Responses to disturbance were more species-specific; for two species, competition disappeared with mowing in the wettest conditions, whereas for the two other species, competition switched to facilitation with mowing. Finally, there were no significant interactions for any species in the disturbed and driest conditions. Conclusions At very high levels of stress, plant performances become too weak to allow either competition or facilitation and disturbance may accelerate the collapse of interactions in dry conditions. The results suggest that the importance and direction of interactions are more likely to be positively related in stressful environments.  相似文献   

9.
Disentangling the different processes structuring ecological communities is a long‐standing challenge. In species‐rich ecosystems, most emphasis has so far been given to environmental filtering and competition processes, while facilitative interactions between species remain insufficiently studied. Here, we propose an analysis framework that not only allows for identifying pairs of facilitating and facilitated species, but also estimates the strength of facilitation and its variation along environmental gradients. Our framework combines the analysis of both co‐occurrence and co‐abundance patterns using a moving window approach along environmental gradients to control for potentially confounding effects of environmental filtering in the co‐abundance analysis. We first validate our new approach against community assembly simulations, and exemplify its potential on a large 1,134 plant community plots dataset. Our results generally show that facilitation intensity was strongest under cold stress, whereas the proportion of facilitating and facilitated species was higher under drought stress. Moreover, the functional distance between individual facilitated species and their facilitating species significantly changed along the temperature–moisture gradient, and seemed to influence facilitation intensity, although no general positive or general negative trend was discernible among species. The main advantages of our robust framework are as follows: It enables detecting facilitating and facilitated species in species‐rich systems, and it allows identifying the directionality and intensity of facilitation in species pairs as well as its variation across long environmental gradients. It thus opens numerous opportunities for incorporating functional (and phylogenetic) information in the analysis of facilitation patterns. Our case study indicated high complexity in facilitative interactions across the stress gradient and revealed new evidence that facilitation, similarly to competition, can operate between functionally similar and dissimilar species. Extending the analyses to other taxa and ecosystems will foster our understanding how complex interspecific interactions promote biodiversity.  相似文献   

10.
Frithjof Lutscher  Tzvia Iljon 《Oikos》2013,122(4):621-631
Individuals of different species may interact in many different ways, such as competition, mutualism, or predation, to name but a few. Recent theory and experiments reveal that whether an interaction is beneficial or detrimental to the dynamics of a population often depends on species densities and other environmental factors. Here, we explore how, for suitable densities, facilitation may arise between two competing species with an Allee effect. We consider two different mechanisms for the Allee effect: 1) plant species with obligate insect pollination, and 2) generalist predation. In the first case, a second plant species, competing for nutrients, may have a facilitative effect by attracting more pollinators. In the second case, another potentially competing species may serve to satiate the same generalist predator and thereby have a facilitative effect. We explore three aspects of facilitation in each of the two systems. The focal species may benefit from the presence of a ‘competitor’ if it experiences 1) the removal of the Allee threshold, 2) a lowering of the Allee threshold, or 3) an increase in carrying capacity. We find that the latter two effects occur in both study systems whereas the first only occurs for the generalist predation system but not for the plant‐pollination system. We give precise conditions on when such a facilitative effect can be expected. We also demonstrate several unexpected outcomes of these two‐species interactions with multiple steady states, such as obligate co‐occurence; we draw parallels to the dynamics of species known as ‘ecosystem engineers’, and we discuss implications for conservation and management.  相似文献   

11.
Pamela Graff  Martín R. Aguiar 《Oikos》2011,120(7):1023-1030
Since many arid ecosystems are overstocked with domestic herbivores, biotic stress could have a stronger influence in modulating the balance of species interactions than expected from the stress gradient hypothesis (SGH). Here we tested a priori predictions about the effect of grazing on species interactions and fine scale spatial structure of grasses in water‐limited ecosystems. We used detailed vegetation mapping and spatial analysis, and performed a field experiment where the direct and indirect components of positive interactions were disentangled to provide evidence of links between process and pattern. We found associational resistance (biotic refuge) to be the dominant process in grazing situations, while competition, instead of direct facilitation, seemed to govern grass spatial patterns when herbivore pressure was relaxed. These results suggest that facilitation between grasses in arid communities may be related to herbivory rather than nurse plant effects. Associational resistance tends to have the strongest effect on spatial aggregation of species at intermediate grazing pressure. Results suggest that contrary to SGH, this physical clustering of species decreased when grazing pressure reached their maximum levels. Positive associations remained significant only when palatability differences between neighbours is large, suggesting that managing stocking rate is a key factor determining the persistence of herbivory refuges. These refuges are potential foci to initiate population recovery of high quality forage species in arid degraded areas.  相似文献   

12.
13.
Question. Competitive and facilitative interactions among plant species in different abiotic environments potentially link productivity, vegetation structure, species composition and functional diversity. We investigated these interactions among four alpine communities along an environmental productivity gradient in a generally harsh climate. We hypothesised that the importance of competition would be higher in more productive sites. Location. Mt. M. Khatipara (43°27′N, 41°41′E, altitude 2750 m), NW Caucasus, Russia. Communities ranged from low‐productivity alpine lichen heath (ALH) and snowbed communities (SBC), to intermediate productivity Festuca grassland (FVG), and high‐productivity Geranium‐Hedysarum meadow (GHM). Methods. We quantified the relative influence of competition and facilitation on community structure by expressing biomass of target species within each natural community proportionally to biomass of the species in a “null community” with experimental release from interspecific competition by removing all other species (for 6 years). An overall index of change in community composition due to interspecific interactions was calculated as the sum of absolute or proportional differences of the component species. Results. Species responses to neighbour removal ranged from positive to neutral. There was no evidence of facilitation among the selected dominant species. As expected, competition was generally most important in the most productive alpine community (GHM). The intermediate position for low‐productivity communities of stressful environments (ALH, SBC) and the last position of intermediately productive FVG were unexpected. Conclusions. Our results appear to support the Fretwell‐Oksanen hypothesis in that competition in communities of intermediate productivity was less intense than in low‐ or high‐productive communities. However, the zero net effect of competition and facilitation in FVG might be the result of abiotic stress due to strong sun exposure and high soil temperatures after neighbour removal. Thus, non‐linear relationships between soil fertility, productivity and different abiotic stresses may also determine the balance between competition and facilitation.  相似文献   

14.
Aims: The stress‐gradient hypothesis (SGH) predicts how plant interactions change along environmental stress gradients. We tested the SGH in an aridity gradient, where support for the hypothesis and the specific shape of its response curve is controversial. Location: Almería, Cáceres and Coimbra, three sites in the Iberian Peninsula that encompass the most arid and wet habitats in the distribution range of a nurse shrub species –Retama sphaerocarpa L. (Boiss) – in Europe. Methods: We analysed the effect of Retama on its understorey plant community and measured the biomass and species richness beneath Retama and in gaps. We estimated the frequency (changes in species richness), importance and intensity of the Retama effects, and derived the severity–interaction relationship pattern, analysing how these interaction indices changed along this aridity gradient. Results and conclusions: The intensity and frequency of facilitation by Retama increased monotonically with increasing environmental severity, and the importance tended to have a similar pattern, overall supporting the SGH. Our data did not support predictions from recent revisions of the SGH, which may not apply to whole plant communities like those studied here or when interactions are highly asymmetrical. Facilitation by Retama influenced community composition and species richness to the point that a significant fraction of species found at the most arid end of the gradient were only able to survive beneath the nurse shrub, whereas some of these species were able to thrive in gaps at more mesic sites, highlighting the ecological relevance of facilitation by nurse species in mediterranean environments, especially in the driest sites.  相似文献   

15.
The role of positive interactions has become widely accepted as a mechanism shaping community dynamics. Most empirical evidence comes from plant communities and sessile marine organisms. However, evidence for the relative role of positive interactions in organizing terrestrial animal communities is more limited, and a general framework that includes positive interactions among animals is lacking. The ‘stress gradient hypothesis’ (SGH) developed by plant ecologists predicts that the balance between positive and negative interactions will vary along gradients of biotic and abiotic stress, with positive interactions being more important in stressful environments. Paralleling the SGH, stress gradients for terrestrial herbivores could be equated to inverse primary productivity gradients, so we would expect positive interactions to prevail in more stressful, low productivity environments. However, this contradicts the typical view of terrestrial animal ecology that low primary productivity systems will foster intense competition for resources among consumers. Here we use alpine herbivores as a case study to test one of the predictions of the SGH in animal communities, namely the prevalence of positive interactions in low productivity environments. We identify potential mechanisms of facilitation and review the limited number of examples of interspecific interactions among alpine herbivores to assess the role of positive and negative interactions in structuring their communities. A meta‐analysis showed no clear trend in the strength and direction of interactions among alpine herbivores. Although studies were biased towards reporting significant negative inter actions, we found no evidence of competition dominating in harsh environments. Thus, our results only partially support the SGH, but directly challenge the dominant view among animal ecologists. Clearly, a sound theoretical framework is needed to include competition, positive and neutral interactions as potential mechanisms determining the structure of animal communities under differing environmental conditions, and the stress‐gradient hypothesis can provide a solid starting point.  相似文献   

16.
Climate change and intensified land‐use impose severe stress on arid ecosystems, resulting in relatively rapid degradation which is difficult to reverse. To prevent such critical transitions it is crucial to detect early warning signals. Increased ‘patchiness’– smaller and fewer vegetated patches – is thought to be such a signal, but the underlying mechanisms are still poorly understood. Facilitation between plants is known to be an important mechanism driving the patchiness of the vegetation, but we lack understanding of how interactions between plants change in response to combined effects of drought and consumer pressure – the main stressors in many arid ecosystems. Over the last decade numerous experimental studies have tested how intensity of facilitation between plants changes with increasing stress. The most recent synthesis predicts a decline in facilitation intensity at the severe end of a drought stress gradient. Adding consumer pressure may result in even earlier and faster declines in facilitation intensity. So far, studies on critical transitions and plant–plant interactions have developed separately. The relationship between stress and facilitation intensity has been overlooked in critical transition theory, while facilitation intensity may determine the position of a critical transition threshold. In this study, we incorporate experimental studies on the relation between stress and facilitation intensity into the critical transition framework, to improve our ability to predict critical transitions. Moreover, we propose that a decline in facilitation intensity at the severe end of a stress gradient may occur prior to a critical transition. Inclusion of consumer pressure will speed up this process, leading to earlier and faster degradation. In‐field monitoring of seedling–facilitator associations and declines in facilitator recruitment can indicate declines in facilitation intensity and may thus provide additional early warning signals for imminent critical transitions, besides increased patchiness.  相似文献   

17.
Biotic interactions are often ignored in assessments of climate change impacts. However, climate‐related changes in species interactions, often mediated through increased dominance of certain species or functional groups, may have important implications for how species respond to climate warming and altered precipitation patterns. We examined how a dominant plant functional group affected the population dynamics of four co‐occurring forb species by experimentally removing graminoids in seminatural grasslands. Specifically, we explored how the interaction between dominants and subordinates varied with climate by replicating the removal experiment across a climate grid consisting of 12 field sites spanning broad‐scale temperature and precipitation gradients in southern Norway. Biotic interactions affected population growth rates of all study species, and the net outcome of interactions between dominants and subordinates switched from facilitation to competition with increasing temperature along the temperature gradient. The impacts of competitive interactions on subordinates in the warmer sites could primarily be attributed to reduced plant survival. Whereas the response to dominant removal varied with temperature, there was no overall effect of precipitation on the balance between competition and facilitation. Our findings suggest that global warming may increase the relative importance of competitive interactions in seminatural grasslands across a wide range of precipitation levels, thereby favouring highly competitive dominant species over subordinate species. As a result, seminatural grasslands may become increasingly dependent on disturbance (i.e. traditional management such as grazing and mowing) to maintain viable populations of subordinate species and thereby biodiversity under future climates. Our study highlights the importance of population‐level studies replicated under different climatic conditions for understanding the underlying mechanisms of climate change impacts on plants.  相似文献   

18.
The speed and slope of plant self‐thinning are all affected by plant–plant interactions across environmental gradients. Possible mechanisms driving the self‐thinning dynamics include the relative strength of root versus shoot competition, and the interplay between competition and facilitation. Although these mechanisms often act in concert, their relative importance has not yet been fully explored. We used both a one‐layer and a two‐layer zone‐of‐influence (ZOI) model to examine how competition and facilitation drive self‐thinning across stress gradients. As a development of the traditional ZOI model, the two‐layer version explicitly models shoot and root growth and neighbor interactions, and thus the overall size‐symmetry of competition is regulated by the relative strength of root versus shoot competition. One‐layer model simulations revealed that increasingly asymmetric competition accelerated thinning, and steepened (slope ranged from about –1 to –4/3) and lowered self‐thinning lines. Stress slowed down density‐dependent mortality considerably when competition was not completely symmetric. Stress significantly decreased the self‐thinning intercept, while facilitation simply counteracted stress effects. Both stress and facilitation showed little effect on the slope. In the two‐layer model, both stress and facilitation affected mortality in the same way as in the one‐layer version when competition was not completely symmetric. Different from the one‐layer model, the two‐layer version showed that the effects of stress and facilitation on the self‐thinning slope were mediated by the asymmetry of competition. As stress increased, the overall asymmetry of competition shifted from asymmetric to symmetric due to increased relative strength of root competition. High stress thus dramatically flattened self‐thinning lines, whereas the inclusion of facilitation counteracted stress and led to steeper self‐thinning lines. Our two‐layer model is based on the current knowledge of plant–plant interactions, and better represents ecological realities. It can help elaborate experiments for testing the role of competition and facilitation in driving plant population dynamics.  相似文献   

19.
The stress‐gradient hypothesis (SGH) predicts a shift from predominant competition to facilitation as abiotic stress increases. Most empirical tests of the SGH have evaluated the interactions between a single or a few pairs of species, have not considered the effects of multiple stress factors, and have not explored these interactions at nested spatial scales. We sampled 63 0.25‐m2 plots, each subdivided into 100 5×5 cm and 25 10×10 cm sampling squares, in a semi‐arid Mediterranean environment to evaluate how co‐occurrence patterns among biological soil crusts (BSC)‐forming lichens changed along natural stress gradients driven by water and nutrient (N, P, K) availability. According to the SGH, we tested the hypothesis that the fine‐scale spatial arrangement of BSC‐forming lichens should shift from prevailing interspecific segregation to aggregation as abiotic stress increases. Co‐occurrence patterns ranged from significant species segregation to aggregation at the two spatial scales studied. When using the 5×5 cm grid, more plots showed significant species segregation than aggregation. At this sampling scale, co‐occurrence increased as water and nutrient availability decreased and increased, respectively. Small increases in soil pH promoted species co‐occurrence. Interspecific segregation was promoted as the cover of highly competitive species, such as Diploschistes diacapsis, increased. No significant relationships between co‐occurrence and the surrogates of abiotic stress were observed when data was arranged in a 10×10 cm grid. Our co‐occurrence analyses partially supported predictions from the SGH, albeit the results obtained were dependent on the type of abiotic stress and the spatial scale considered. They show the difficulties of predicting how co‐occurrence patterns change along complex stress gradients, and highlight the need of incorporating the effects of abiotic stress promoted by different resources, such as water and nutrients, into the conceptual framework of the SGH.  相似文献   

20.
Positive plant–plant interactions (i.e. facilitation) receive increasing attention as a potentially important driver of community assembly. We conducted a systematic literature review indicating broad support for positive effects of potential facilitator species. However, a large majority of the reviewed studies (83% for field studies, 57% for experiments) share a similar risk of misinterpretation as they assess facilitative effects by comparing plots inhabited by a potential facilitator with randomly placed control plots nearby (paired sampling). As the distribution of facilitator species may itself be environmentally driven, species co‐existence caused by facilitation cannot exclusively be separated from environmental effects (habitat sharing). Based on simulated plant communities and sampling protocols, we show how non‐random co‐existence can occur in the absence of facilitation. This is relevant because both the effect of spatial environmental heterogeneity and of facilitation (stress‐gradient hypothesis) are expected to increase with environmental harshness. Nevertheless, 58% of facilitation studies neither undertook measures to minimize potential biases in their sampling approaches nor did they acknowledge such limitations in the discussion. Attention to this problem has significantly decreased in recent years. We propose that facilitation studies could be improved by (1) using random sampling for association studies, (2) co‐analysing environmental factors, or (3) experimentally establishing presumed facilitators. Experimental approaches mimicking facilitative plant characteristics can help to identify facilitation mechanisms. Combining approaches and including functional traits of the involved species should further strengthen inference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号