首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Amplification of the dihydrofolate reductase gene (Dhfr) by methotrexate (Mtx) exposure is commonly used for recombinant protein expression in Chinese hamster ovary (CHO) cells. However, this method is both time- and labor-intensive, and the high-producing cells that are generated are frequently unstable in culture. Another gene amplification method is based on using a plasmid bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR), which result in the spontaneous initiation of gene amplification in transfected cells. The IR/MAR and Dhfr/Mtx methods of gene amplification are based on entirely different principles. In this study, we combine these two methods to yield a novel method, termed the IR/MAR-Dhfr fusion method, which was used to express three proteins, the Fc receptor, GFP, and recombinant antibody. The fusion method resulted in a dramatic increase in expression of all three proteins in two CHO sub-lines, DXB-11, and DG44. The IR/MAR-Dhfr fusion amplified the genes rapidly and efficiently, and produced larger amounts of antibody than the Dhfr/Mtx or IR/MAR methods alone. While the amplified structure produced by the Dhfr/Mtx method was highly unstable, and the antibody production rate rapidly decreased with the culture time of the cells, the IR/MAR-Dhfr fusion method resulted in stable amplification and generated clonal cells that produced large amounts of antibody protein over a long period of time. In summary, the novel IR/MAR-Dhfr fusion method enables isolation of stable cells that produce larger amounts of a target recombinant protein more rapidly and easily than either the Dhfr/Mtx or IR/MAR methods alone.  相似文献   

2.
Gene amplification plays a pivotal role in malignant transformation of human cells. A plasmid with both a mammalian replication-initiation region (IR)/origin/replicator and a nuclear matrix-attachment region (MAR) is spontaneously amplified in transfected cells by a mechanism that involves amplification at the extrachromosomal site, followed by amplification at the chromosomal arm, ultimately generating a long homogeneously staining region (HSR). Several observations suggest that replication initiation from IR sequences might mediate amplification. To test this idea, we previously dissected c-myc and DHFR IRs to identify the minimum sequence required to support amplification. In this study, we applied an improved analysis that discriminates between two amplification steps to the ß-globin RepP IR, which contains separate elements already known to be essential for initiation on the chromosome arm. The IR sequence was required at least for the extrachromosomal amplification step. In addition to the vector-encoded MAR, amplification also required an AT-rich region and a MAR-like element, consistent with the results regarding replicator activity on the chromosome. However, amplification did not require the AG-rich tract necessary for replicator activity, but instead required a novel sequence containing another AG-rich tract. The differential sequence requirement might be a consequence of extrachromosomal replication.  相似文献   

3.
4.
5.
We previously found that plasmids bearing a mammalian replication initiation region (IR) and a nuclear matrix attachment region (MAR) efficiently initiate gene amplification and spontaneously increase their copy numbers in animal cells. In this study, this novel method was applied to the establishment of cells with high recombinant antibody production. The level of recombinant antibody expression was tightly correlated with the efficiency of plasmid amplification and the cytogenetic appearance of the amplified genes, and was strongly dependent on cell type. By using a widely used cell line for industrial protein production, CHO DG44, clones expressing very high levels of antibody were easily obtained. High-producer clones stably expressed the antibody over several months without eliciting changes in both the protein expression level and the cytogenetic appearance of the amplified genes. The integrity and reactivity of the protein produced by this method was fine. In serum-free suspension culture, the specific protein production rate in high-density cultures was 29.4 pg/cell/day. In conclusion, the IR/MAR gene amplification method is a novel and efficient platform for recombinant antibody production in mammalian cells, which rapidly and easily enables the establishment of stable high-producer cell clone.  相似文献   

6.
We report the expression of a high level of human cyclooxygenase-1 (hCOX-1) in mammalian cells using a novel gene amplification method known as the IR/MAR gene amplification system. IR/MAR-plasmids contain a mammalian replication initiation region (IR) and a nuclear matrix attachment region (MAR) and amplify autonomously without a specific induction process. In this study, the IR/MAR-plasmid pΔBN.AR1 was cotransfected with pCAG-COX1, which expresses hCOX-1, into human HEK293T cells, and G418 and blasticidin S double-resistant cells were obtained in about 1month. Real-time PCR and Western blotting revealed that the expressions of hCOX-1 mRNA and protein in both polyclonal and monoclonal cells were remarkably higher than those in only pCAG-COX1-transfected control cells. Southern blotting demonstrated the amplification of the hCOX-1 gene, and the copy number of clone #43 obtained by the cotransfection of pΔBN.AR1 and pCAG-COX1 was more than 20 copies per cell, though that of clone #14 obtained without using the IR/MAR plasmid pΔBN.AR1 was only two copies. These results indicate that a high level of hCOX-1 expression was achieved as a result of hCOX-1 gene amplification. Furthermore, the crude extract from clone #43 showed a strong COX-1 activity, and the activity was inhibited by the representative COX-1 inhibitor indomethacin, with an IC(50) value of 36nM. These results demonstrate that the IR/MAR gene amplification system is a simple but useful method for generating highly productive mammalian cells.  相似文献   

7.
8.
Computer analyses of the DNA replication origin region in the amplified rRNA genes of Tetrahymena thermophila identified a potential initiation zone in the 5'NTS [Dobbs, Shaiu and Benbow (1994), Nucleic Acids Res. 22, 2479-2489]. This region consists of a putative DNA unwinding element (DUE) aligned with predicted bent DNA segments, nuclear matrix or scaffold associated region (MAR/SAR) consensus sequences, and other common modular sequence elements previously shown to be clustered in eukaryotic chromosomal origin regions. In this study, two mung bean nuclease-hypersensitive sites in super-coiled plasmid DNA were localized within the major DUE-like element predicted by thermodynamic analyses. Three restriction fragments of the 5'NTS region predicted to contain bent DNA segments exhibited anomalous migration characteristic of bent DNA during electrophoresis on polyacrylamide gels. Restriction fragments containing the 5'NTS region bound Tetrahymena nuclear matrices in an in vitro binding assay, consistent with an association of the replication origin region with the nuclear matrix in vivo. The direct demonstration in a protozoan origin region of elements previously identified in Drosophila, chick and mammalian origin regions suggests that clusters of modular structural elements may be a conserved feature of eukaryotic chromosomal origins of replication.  相似文献   

9.
Initiation of DNA synthesis occurs with high frequency at oriß, a region of DNA from the amplified dihydrofolate reductase (DHFR) domain of Chinese hamster CHOC 400 cells that contains an origin of bidirectional DNA replication (OBR). Recently, sequences from DHFR oriß/OBR were shown to stimulate amplification of cis-linked plasmid DNA when transfected into murine cells. To test the role of oriß/OBR in chromosomal gene amplification, linearized plasmids containing these sequences linked to a DHFR expression cassette were introduced into DHFR- CHO DUKX cells. After selection for expression of DHFR, cell lines that contain a single integrated, unrearranged copy of the linearized expression plasmid were identified and exposed to low levels of the folate analog, methotrexate (MTX). Of seven clonal cell lines containing the vector control, three gained resistance to MTX by 5 to 15-fold amplification of the integrated marker gene. Of 16 clonal cell lines that contained oriß/OBR linked to a DHFR mini-gene, only 6 gained resistance to MTX by gene amplification. Hence, sequences from the DHFR origin region that stimulate plasmid DNA amplification do not promote amplification of an integrated marker gene in all chromosomal contexts. In addition to showing that chromosomal position has a strong influence on the frequency of gene amplification, these studies suggest that the mechanism that mediates the experiment of episomal plasmid DNA does not contribute to the early steps of chromosomal gene amplification.  相似文献   

10.
The scaffold/matrix attachment regions (S/MARs) are chromosomal elements that participate in the formation of chromatin domains and have origin of replication support functions. Because of all these functions, in recent years, they have been used as part of episomal vectors for gene transfer. The S/MAR of the human β-interferon gene has been shown to support efficient episome retention and transgene expression in various mammalian cells. In Jurkat and other cells, DNA plasmid vectors containing Epstein-Barr virus origin of replication (EBV OriP) and the EBV nuclear antigen-1 gene mediate prolonged episome retention in the host cell nucleus, which, however, diminishes over time. In order to enhance retention, we combined this system with an S/MAR element. Unexpectedly, this completely eliminated the capacity of episomes to replicate. Calculation of the stress-induced DNA duplex destabilization profile of the vectors suggested that the S/MAR element had created an increase in molecular stability at the OriP site that may have disturbed replicative potential. In contrast, introduction of an alternative initiation of replication region from the β-globin gene locus, instead of EBV OriP and the EBV nuclear antigen-1 gene, restored replicative capacity and enhanced episome retention mediated by the S/MAR. These effects were associated with a destabilization profile at the initiation of replication region. These data demonstrate a correlation between S/MAR-mediated vector retention and the presence of an unstable duplex at a replication origin, in this particular setting. We consider that the calculation of stress-induced duplex destabilization may be an informative first step in the design of units that replicate extrachromosomally, particularly as the latter present a safer and, therefore, attractive alternative to integrating viral vectors for gene therapy applications.  相似文献   

11.
《Process Biochemistry》2010,45(12):1845-1851
Chinese hamster ovary (CHO) cells are widely used in producing therapeutic proteins. Gene amplification techniques are frequently used in improving protein production, and the dihydrofolate reductase (DHFR) gene amplification system is most widely used for the CHO cell line. We previously constructed a CHO genomic bacterial artificial chromosome (BAC) library from a mouse Dhfr-amplified CHO DR1000L-4N cell line and found one BAC clone (Cg0031N14) containing a CHO genomic DNA sequence adjacent to Dhfr. The BAC clone contained a large palindrome structure with a small inverted repeat in the junction region. To investigate the effect of the palindrome structure derived from the BAC clone Cg0031N14 on Dhfr amplification in CHO cells, we constructed plasmids that contain part or the whole junction region of the palindrome structure. The transfected CHO DG44 cells containing part or the whole junction region of the palindrome structure could adapt quickly to high methotrexate (MTX) concentrations. Moreover, the cells containing the whole junction region of the palindrome structure showed a high ratio of GFP-positive cells during gene amplification. On the basis of these results, we estimated that the junction region plays an important role in gene amplification in CHO cells.  相似文献   

12.
Studies on origins of DNA replication in mammalian cells have long been hampered by a lack of methods sensitive enough for the localization of such origins in chromosomal DNA. We have employed a new method for mapping origins, based on polymerase chain reaction amplification of nascent strand segments, to examine replication initiated in vivo near the c-myc gene in human cells. Nascent DNA, pulse-labeled in unsynchronized HeLa cells, was size fractionated and purified by immunoprecipitation with anti-bromodeoxyuridine antibodies. Lengths of the nascent strands that allow polymerase chain reaction amplification were determined by hybridization to probes homologous to amplified segments and used to calculate the position of the origin. We found that DNA replication through the c-myc gene initiates in a zone centered approximately 1.5 kilobases upstream of exon I. Replication proceeds bidirectionally from the origin, as indicated by comparison of hybridization patterns for three amplified segments. The initiation zone includes segments of the c-myc locus previously reported to drive autonomous replication of plasmids in human cells.  相似文献   

13.
The replication of the 11 kb conjugative multicopy Streptomyces plasmid pSN22 was analyzed. Mutation and complementation analyses indicated that the minimal region essential for plasmid replication was located on a 1.9 kb fragment of pSN22, containing a trans-acting element encoding a replication protein and a cis-acting sequence acting as a replication origin. Southern hybridization showed that minimal replicon plasmids accumulated much more single-stranded plasmid molecules than did wild-type pSN22. Only one strand was accumulated. A 500 by fragment from the pSN22 transfer region was identified which reduced the relative amount of single-stranded DNA, when added in the native orientation to minimal replicon plasmids. This 500 by DNA sequence may be an origin for second-strand synthesis. It had no effect on the efficiency of co-transformation, plasmid incompatibility, or stability. The results indicate that pSN22 replicates via single-stranded intermediates by a rolling circle mechanism.  相似文献   

14.
MuNTS2, a 423 bp sequence isolated from the non-transcribed spacer of murine rDNA stimulates the amplification of cis-linked plasmid DNA in mouse cells under selective conditions. Here we demonstrate that a 180 bp subdomain of muNTS2 is highly homologous (approximately 70%) to three domains of the first well-characterized origin of replication of mammalian chromosomes, i.e. the origin of bidirectional replication (OBR) of the dihydrofolate reductase (DHFR) locus in Chinese hamester ovary (CHO) cells. When subcloned, the 180 bp homology region of muNTS2 was revealed to be essential for the amplification promoting activity of muNTS2. Fragments of the initiation zone of DNA replication from the DHFR locus of hamster cells containing the domains of homology to the mouse muNTS2 element proved also to promote DNA amplification. Thus, the screening system for amplification promoting elements turned out to detect an origin of bidirectional replication.  相似文献   

15.
16.
Amplified genes in cancer cells reside on extrachromosomal double minutes (DMs) or chromosomal homogeneously staining regions (HSRs). We used a plasmid bearing a mammalian replication initiation region to model gene amplification. Recombination junctions in the amplified region were comprehensively identified and sequenced. The junctions consisted of truncated direct repeats (type 1) or inverted repeats (type 2) with or without spacing. All of these junctions were frequently detected in HSRs, whereas there were few type 1 or a unique type 2 flanked by a short inverted repeat in DMs. The junction sequences suggested a model in which the inverted repeats were generated by sister chromatid fusion. We were consistently able to detect anaphase chromatin bridges connected by the plasmid repeat, which were severed in the middle during mitosis. De novo HSR generation was observed in live cells, and each HSR was lengthened more rapidly than expected from the classical breakage/fusion/bridge model. Importantly, we found massive DNA synthesis at the broken anaphase bridge during the G1 to S phase, which could explain the rapid lengthening of the HSR. This mechanism may not operate in acentric DMs, where most of the junctions are eliminated and only those junctions produced through stable intermediates remain.  相似文献   

17.
Gene amplification is a phenotype-causing form of chromosome instability and is initiated by DNA double-strand breaks (DSBs). Cells with mutant p53 lose G1/S checkpoint and are permissive to gene amplification. In this study we show that mammalian cells become proficient for spontaneous gene amplification when the function of the DSB repair protein complex MRN (Mre11/Rad50/Nbs1) is impaired. Cells with impaired MRN complex experienced severe replication stress and gained substrates for gene amplification during replication, as evidenced by the increase of replication-associated single-stranded breaks that were converted to DSBs most likely through replication fork reversal. Impaired MRN complex directly compromised ATM/ATR-mediated checkpoints and allowed cells to progress through cell cycle in the presence of DSBs. Such compromised intra-S phase checkpoints promoted gene amplification independently from mutant p53. Finally, cells adapted to endogenous replication stress by globally suppressing genes for DNA replication and cell cycle progression. Our results indicate that the MRN complex suppresses gene amplification by stabilizing replication forks and by securing DNA damage response to replication-associated DSBs.  相似文献   

18.
Cells transformed by Polyoma virus (Py) can undergo a high rate of excision or amplification of integrated viral DNA sequences, and these phenomena require the presence of homology (i.e., repeats) within the viral insertion as well as a functional viral large T antigen (T-Ag). To determine whether the main role of large T-Ag in excision and amplification was replicative or recombination-promoting, we studied transformed rat cell lines containing tandem insertions of a ts-a Py molecule (encoding a thermolabile large T-Ag) with a deletion of the origin of viral DNA replication. Culturing of these cells at the temperature permissive for large T-Ag function did not result in any detectable excision or amplification of integrated Py sequences. We then introduced into origin-defective lines a recombinant plasmid containing the viral origin of replication and the gene coding for resistance to the antibiotic G418. All G418-resistant clones analyzed readily amplified the integrated plasmid molecules when grown under conditions permissive for large T-Ag function, showing that these cells produced viral large T-Ag capable of promoting amplification in trans of DNA sequences containing the Py origin. These observations strongly suggest that Polyoma large T antigen promotes excision or amplification of viral DNA by initiating replication at the integrated origin, providing a favorable substrate for subsequent recombination.  相似文献   

19.
Activity of the c-myc Replicator at an Ectopic Chromosomal Location   总被引:5,自引:0,他引:5       下载免费PDF全文
DNA replication starts at multiple discrete sites across the human chromosomal c-myc region, including two or more sites within 2.4 kb upstream of the c-myc gene. The corresponding 2.4-kb c-myc origin fragment confers autonomously replicating sequence (ARS) activity on plasmids, which specifically initiate replication in the origin fragment in vitro and in vivo. To test whether the region that displays plasmid replicator activity also acts as a chromosomal replicator, HeLa cell sublines that each contain a single copy of the Saccharomyces cerevisiae FLP recombinase target (FRT) sequence flanked by selectable markers were constructed. A clonal line containing a single unrearranged copy of the transduced c-myc origin was produced by cotransfecting a donor plasmid containing the 2.4-kb c-myc origin fragment and FRT, along with a plasmid expressing the yeast FLP recombinase, into cells containing a chromosomal FRT acceptor site. The amount of short nascent DNA strands at the chromosomal acceptor site was quantitated before and after targeted integration of the origin fragment. Competitive PCR quantitation showed that the c-myc origin construct substantially increased the amount of nascent DNA relative to that at the unoccupied acceptor site and to that after the insertion of non-myc DNA. The abundance of nascent strands was greatest close to the c-myc insert of the integrated donor plasmid, and significant increases in nascent strand abundance were observed at sites flanking the insertion. These results provide biochemical and genetic evidence for the existence of chromosomal replicators in metazoan cells and are consistent with the presence of chromosomal replicator activity in the 2.4-kb region of c-myc origin DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号