首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 861 毫秒
1.
2.
DCMU, in a sucrose supplemented medium, promoted short and longday flowering and inhibited long day frond production of wildtype Lemna perpusilla 6746, but not of mutant strain 1073. Resultssuggest a defect in the mutant that mimics DCMU poisoning. 1 This work was supported by National Science Foundation GrantGB-12955. (Received December 11, 1972; )  相似文献   

3.
Long-day flowering of wild-type Lemna perpusilla (strain 6746)on ammonium-free medium with sucrose occurred in continuouslight of low intensity (25 ft-c). In higher intensities of light,frond production was increased and flowering was reduced. Thephotosynthetic inhibitor DCMU inhibited frond production andpromoted flowering in the presence or absence of exogenous sucrose.In the photosynthetic mutant strain 1073, the higher intensitiesof light inhibited frond production, but did not reduce flowering.DCMU increased mutant frond production, thus leading to increasedflowering percents. The mechanism by which DCMU affects floweringand growth appears to differ from that of other flower-promotingsupplements reported by Takimoto and Tanaka. The results suggestthat inhibition of photosynthesis enhances flowering in longdays. (Received June 25, 1977; )  相似文献   

4.
Frond senescence in Lemna gibba G3 was characterized, and itscontrol by light, ABA and kinetin investigated. The plant exhibitsa determinate growth pattern with a frond producing a set numberof daughter fronds before undergoing senescence and death regardlessof whether or not it flowers. When a frond was cut in half,the distal half (half frond) which lacks any meristem underwentrapid senescence as compared with intact fronds. In both intactand half fronds, the onset of senescence was accelerated byABA and retarded by kinetin. Continuous white light acceleratedsenescence in both intact and half fronds over the dark controls.Under different photoperiodic light regime, the pace of daughterfrond production is accelerated in proportion to the lengthof light period. In half fronds, however, very short photoperiodiclight treatments (e.g. 1L: 23D or 3L: 21D) rather delayed senescenceover the dark controls. Two separate light control systems operatingin opposite directions in Lemana senescence appear to exist. 1Present address: Department of Biology, Yonsei University,Seoul 120-749, Korea 2Present address: U.S. Department of Agriculture, Aero SpaceBuilding, Rm. 323, 901 D Street, S.W., Washington, D.C. 20251-2200, U.S.A. (Received July 13, 1989; Accepted May 8, 1990)  相似文献   

5.
The duckweeds Lemna gibba L. and Lemna minor L. only grew wellin undisturbed culture under axenic conditions in low lightintensity when provided with a suitable energy source such asglucose. In media containing N03-N gibbosity (a convex ventralsurface) was induced in the presence of the chelating agentethylene-diamine-di-o-hydroxyphenylacetic acid (EDDHA). In nutrientsolutions containing NO3-N as the only N source, but withoutEDDHA, L. gibba occasionally exhibited gibbosity in culturesolutions of 40 cm3 volumes. More fronds were induced to exhibitgibbosity when the volume of the culture medium was increasedfrom 40 cm3 to 200 cm3. Gibbosity was never induced in L. minor,neither was it induced in L. gibba in media containing NH4-N,even in the presence of NO3-N. There was no direct correlationbetween the occurrence of gibbosity and frond growth rate, butgibbosity occurred only when there was good frond growth. In the absence of a sugar, frond growth was enhanced by bubblingair through the culture solution in the light. Increasing theCO2 concentration in the air up to 1% enhanced growth and inducedgibbosity. Carbon dioxide did not induce gibbosity in mediacontaining NH4-N. Key words: Ammonium-N, carbon dioxide, gibbosity, Lemna, nitrate-N  相似文献   

6.
The effects of light quality on the photoperiodic control inthe flowering of a SD duckweed, Lemna perpusilla strain 6746,and a LD duckweed, L. gibba strain G3, were investigated withspecial reference to the interaction between R and B or FR lights. In the diurnal alternation of R or G light and dark periods,L. perpusilla responded as a SDP, but in that of B or FR lightit was almost daylength-indifferent. On the other hand, L. gibbaresponded as a LDP under B, R or FR light, although the criticallight length was altered by the light quality. In the diurnal alternation of R and B or FR light periods containingno dark period, L. perpusilla flowered with the shortening ofthe optimal and critical R light lengths, compared with theplant exposed to that of R light and dark period. The floweringresponse of L. gibba to the R light length showed double peaks,that is, the first peak at the R duration less than 9 hours,and the second at the R duration longer than 9 hours. The firstpeak corresponds to the optimal R light length in L. perpusilla. Under the CL with a mixture of R and B or FR lights, the floweringand frond production were influenced by the intensity ratioof two light given. In both plants, the optimal ratio of B toR or FR to R for the flowering was always greater than thatfor the frond production. It is suggested that the B or FR light interacts with the Rlight in the photoperiodic process in the plants and this interactionbetween the R and B or FR lights should be of importance forobtaining a better understanding of photoperiodism. (Received August 28, 1965; )  相似文献   

7.
Allogibberic acid (I) has been identified as the compound responsible for the inhibition of flowering, increase in frond multiplication rate and decrease in frond size produced in Lemna perpusilla 6746 by autoclaved, unbuffered aqueous solutions of gibberellic acid (VII). 13-Deoxyallogibberic acid (IV), a product of autoclaving aq. GA7 (VIII) solutions, also inhibits flowering in L. perpusilla and is about 10 times more active than allogibberic acid.  相似文献   

8.
Effects of temperature on the subsequent development in continuouslight of floral buds formed after a single short-day cycle inLemna perpusilla 6746, a short-day plant, were studied usingfronds selected in relation to the order of emergence. The floralbuds developed to stage 1 regardless of the temperature duringthe following CL. The rate of development, however, was slowerat lower temperature. The minimum number of days in CL neededfor the abortion of once formed floral buds increased with adecrease in temperature, accompanied by an increase in the frondplastochron. Furthermore, when the frond plastochron was alteredby manipulation of the environmental conditions, i.e., lightintensity or medium strength, the minimum number of days inCL required for the abortion of the floral buds also changed.These results suggest that the development pattern of floralbuds in this plant is highly correlated with the frond plastochron. (Received September 20, 1977; )  相似文献   

9.
10.
Flowering response of Lemna perpusilla 6746 to a single dark period   总被引:1,自引:0,他引:1  
Lemna perpusilla 6746 is induced to flower by a single longdark period, but the floral buds once formed disappear afterseveral days under 5000 lux/25?C. Such regression of floralbuds is prevented by lowering the light intensity or temperature,but if the light intensity and/or temperature are lowered beyondcritical levels, new floral buds form. If the cultures are subjectedto 100 lux/20?C, neither regression nor new formation of floralbuds occurs. Under such conditions, the number of floral frondsreaches maximum about 6 days after the inductive dark periodand reamins unchanged for at least 10 days, while the percentageof floral fronds rapidly decreases thereafter, owing to thedilution by newly developed vegetative fronds. When the cultures are subjected to various lengths of a singledark period (25?C) followed by 100 lux/20?C, flowering responsesrepresented by the number of floral fronds per flask show rhythmicfluctuation with a cycle length of about 24 hr. Similar rhythmicresponse is observed when a brief light interruption is givenat different times during a single long dark period. (Received December 2, 1974; )  相似文献   

11.
Time courses of the flowering process in Lemna perpusilla 6746,a short-day plant, were studied using selected fronds in relationto the order of emergence. Various numbers of short-day cycleswere interposed during continuous light. The floral buds evokedby short-day cycles developed to a floral stage determined bythe number of short-day cycles 3 days after the transfer toconsecutive long-day cycles, but aborted on the next day, regardlessof the floral stages. At least 2 long-day cycles were requiredfor the abortion of the floral buds at any stage of development.These results suggest the importance of the number of short-daycycles not only for initiation but also for development of floralbuds. (Received February 4, 1977; )  相似文献   

12.
Hillman , William S. (Yale U., New Haven, Conn.) Experimental control of flowering in Lemna. I. General methods. Photoperiodism in L. perpusilla 6746. Amer. Jour. Bot. 46(6): 466–473. Illus. 1959.—Lemna perpusilla strain 6746 flowers as a typical short-day plant when grown aseptically in Hutner's medium (containing ethylenediaminetetraacetic acid, [EDTA]) at 26–28°C. A method is described for quantitatively assaying the degree of flowering in a culture. Maximal flowering takes place under photoperiods of 6–11 hr., and none under photoperiods exceeding 15 hr. The flower-promoting effects of long nights are inhibited by brief interruptions with red light, such interruptions being most effective in the middle of the dark period. A single long night will cause the subsequent production of flowering fronds, but vegetative growth in the culture is resumed after a time. Only frond primordia at a very early stage of development appear to be sensitive to induction. Quantitative flowering experiments lasting a week or less can easily be performed with this plant; it is ideally suited for studies of the effects of light, darkness, temperature, organic compounds and other factors under highly controlled conditions.  相似文献   

13.
Reversible floral responses of Lemna perpusilla to red and far-redlights appeared only at the beginning of the inductive darkperiod when the 8 hr photoperiod consisted of white or red light.When blue or far-red light was given during the 8 hr photoperiod,the far-red given at the beginning of the dark period scarcelyinhibited flowering; red/far-red reversibility newly appearedat the middle of the dark period. This indicates that the photoregulationsystem in the flowering of L. perpusilla can be converted fromthe Pharbitis type to the Xanthium type by changing the lightquality of the main photoperiod from white or red to blue orto far-red, which is known to be effective for the so-calledhigh-energy photoreaction of photomorphogenesis. (Received July 2, 1975; )  相似文献   

14.
Doss RP 《Plant physiology》1975,55(1):112-113
The inhibition of flowering of Lemna perpusilla Torr. strain 6746 caused by a light break can be partially reversed by treatment with actinomycin D or 2-thiouracil. Actinomycin D is most active in reversing the response to a light break if the inhibitor is present in the fronds at the time the light break is administered.  相似文献   

15.
The photosynthetic mutant, strain 1073, of Lemna paucicostataTorr. (L. perpusilla Hegelm.) which has a block in the electrontransport chain between plastoquinone and cytochrome f is capableof light-induced chloroplast displacement movements. At 8000–14000 lx, chloroplasts of the mutant move from their positionadjacent to the inner periclinal wall of the mesophyll cellsto the anticlinal walls, i.e. along those walls parallel tothe direction of the light. Light does not appear to enhancerespiration of the photosynthetic mutant or of the wild typestrain (6746). These and other results support the idea thatchloroplast displacement in light is not solely the result oflight effects on photosynthesis and respiration. Lemna paucicostata Torr., photosynthetic mutant, phototaxis, chloroplast displacement  相似文献   

16.
Robert J. Pryce 《Phytochemistry》1974,13(11):2377-2381
1,2,3,4,4a,9a-hexahydrofluorene-9-carboxylic acid isomers have been prepared by reduction of fluorene-9-carboxylic acid. Hexahydrofluorene-9-carboxylic acid (5) produce inhibition of flowering and vegetative frond development in Lemna perpusilla 6746 similar to that observed with allogibberic acid. The stereochemical requirements for this type of biological activity in allogibberic acids and hexahydrofluorene-9-carboxylic acids are considered.  相似文献   

17.
3′,5′-cAMP stimulates flowering of Lemna gibba G3 under inductive long-day conditions and enhances flower onset. 3′,5′-cAMP has no influence on frond production. 2′,3′-cGMP increases markedly the proliferation of fronds and inhibits flowering. The effect of 2′,3′-cGMP on frond multiplication is photoperiodically independent; under short-day conditions 2′,3′-cGMP replaces in fact the requirement for inductive long-day conditions. 2′,3′-cGMP increases the total amount of DNA per frond. This accumulation of DNA precedes by 2–3 days the 2′,3′-cGMP related increase in frond formation. The results are discussed in the light of the hypothesis that the active cyclic mononucleotides exert their effects on multiplication and flowering at the level of DNA.  相似文献   

18.
Flowering responses of Lemna perpusilla strain 6746, a short-dayplant, and L. gibba strain G3, a long-day plant, to nitrateconcentration in Hoagland's type medium with or without EDTA,were compared. Maximum flowering of L. perpusilla under SD occurredat higher nitrate concentrations than did colony proliferation.Even under CL, L. perpusilla grown at sub-optimal nitrate concentrationsfor colony proliferation, flowered irrespective of the presenceof EDTA which reduces flowering. Unlike L. perpusilla, L. gibba failed to flower under SD atany nitrate concentration whether or not EDTA was added. UnderCL, however, L. gibba flowered at almost any nitrate concentrationwith or without EDTA. Double optima for nitrate concentrationwas exhibited in the presence of EDTA; optimal concentrationfor colony proliferation came between the two optima for flowering. We concluded that the nitrogen level of the medium is importantin regulating flowering of duckweeds, and that the effect ofEDTA, if any, may primarily be on colony proliferation and onlysecondarily or antagonistically on flowering. 1 Present address: Institute for Agricultural Research, TohokuUniversity, Sendai 980, Japan. (Received September 25, 1971; )  相似文献   

19.
DIXON  PETER S. 《Annals of botany》1958,22(3):353-368
The apical structure and the development of the thalli of allthe British species of Gelidium and Pterocladia have been investigated;the development of G. pulchellum is described in detail. Eachaxis is terminated by one or more apical cells, which by theirsegmentation form the tissues of the thallus. An axial filamentis distinct for a short distance behind each apical cell, butsecondary pit-connexions develop rapidly so that in sectionthe mature axis has the appearance of a multi-axial structure. Lateral branches of the frond develop by the segmentation ofthe lateral branch apical cells, which are formed by the transformationof superficial cortical cells, either in the meristematic ormature parts of the axes. The extreme variability of externalappearance is due principally to the indeterminate origin ofall lateral branches. The thallus in the British species of Gelidium and Pterocladiaconsists of erect fronds borne on creeping axes. The relativeproportions of the frond and creeping axes in various speciesand their survival through adverse conditions are discussed.  相似文献   

20.
Plants adopt various strategies in response to increasing density. We tested that response in two populations of Lemna minor L. – a free floating aquatic plant that frequently experiences intraspecific competition for space. Surface area of fronds and colonies, colony size (the number of fronds per colony), the rate of reproduction (based on the number of produced fronds) and growth rate (enlargement of surface area of all colonies) were the analysed factors presumably affected by density. The study was performed in natural stands and in experimental conditions with the use of two contrasting plant densities. Plants growing in natural conditions produced fronds of smaller and less variable surface area as a response to overcrowding but the number of fronds per colony was unrelated to plant density. Stable experimental conditions facilitated formation of fronds and colonies larger than in the field but frond detachment decreasing colony size was more intensive at high than at low density. This strategy allowed plants to more efficiently occupy limited available space. No self-thinning was observed during experimental cultures. Due to increasing frond area in cultures, growth rate was always higher than the rate of plant reproduction. Both were strongly negatively affected by high density. Performed calculations indicate that density-dependent growth inhibition starts when L. minor colonies cover the available water surface with a mono-layer mat. Some types of responses were found to significantly differ between analysed populations, which was also shown by genetic differences tested with he ISSR-PCR technique. Possible causal relationship between plant strategies and their genomic structure needs, however, further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号