首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Aim There is increasing research attention being given to the role of interactions among natural disturbances in ecosystem processes. We studied the interactions between fire and spruce beetle (Dendroctonus rufipennis Kirkby) disturbances in a Colorado subalpine forest. The central questions of this research were: (1) How does fire history influence stand susceptibility to beetle outbreak? And conversely, (2) How does prior occurrence of a beetle outbreak influence stand susceptibility to subsequent fire? Methods We reconstructed the spatial disturbance history in a c. 4600 ha area by first identifying distinct patches in the landscape on aerial photographs. Then, in the field we determined the disturbance history of each patch by dating stand origin, fire scars, dates of mortality of dead trees, and releases on remnant trees. A geographical information system (GIS) was used to overlay disturbance by fire and spruce beetle. Results and main conclusions The majority of stands in the study area arose following large, infrequent, severe fires occurring in c. 1700, 1796 and 1880. The study area was also affected by a severe spruce beetle outbreak in the 1940s and a subsequent low‐severity fire. Stands that originated following stand‐replacing fire in the late nineteenth century were less affected by the beetle outbreak than older stands. Following the beetle outbreak, stands less affected by the outbreak were more affected by low‐severity fire than stands more severely affected by the outbreak. The reduced susceptibility to low‐severity fire possibly resulted from increased moisture on the forest floor following beetle outbreak. The landscape mosaic of this subalpine forest was strongly influenced by the interactions between fire and insect disturbances.  相似文献   

2.
Knowledge on how historical disturbances shaped the long-term development of forests is essential for understanding the present forest structure and for predicting the future forest ecosystem dynamics. In this study, dendroecological methods were used to reconstruct the disturbance history of an old-growth subalpine larch (Larix chinensis) forest in the Qinling Mountains of north-central China. Growth patterns of 690 and 582 increment cores extracted respectively from two climatically and topographically different larch stands in the northern and southern slope of the Qinling Mountains were examined for abrupt increases in radial growth indicating formation of past canopy gaps and for rapid early growth rates indicating recruitment in former canopy gaps. The findings demonstrated that there were no large-scale, stand-replacing disturbances during the past more than two centuries. Low- and medium-severity disturbance events predominated, which were probably caused by windthrows due to strong winds. The stand was unevenly aged, and the recruitment pulses associated with disturbance peaks could be distinguished. There were considerable spatio-temporal differences in disturbance dynamics of the subalpine larch stand between the topographically and climatically different sites, manifesting that the larch stand in the northern slope experienced frequent moderate but rare major disturbance events, contrasting with frequent major and moderate disturbance events in the southern slope. This study provided strong evidences that there were substantial variations in the intensity and frequency of disturbance dynamics, leading to considerable differences in the size and age structures of the subalpine larch forest.  相似文献   

3.
Stand dynamics and the gap initiation prior to gap formation are not well‐understood because of its long‐term nature and the scarcity of late‐successional stands. Reconstruction of such disturbance is normally based on historical records and dendroecological methods. We investigated gap initiation and formation at the fine‐scale stand level in the old‐growth reserve of Karlshaugen in Norway. Given its long‐term conservation history, and thorough mapping in permanent marked plots with spatially referenced trees, it provides an opportunity to present stand development before, during, and after gap formation. Late‐successional decline in biomass was recorded after more than 50 years of close to steady state. Gaps in the canopy were mainly created by large old trees that had been killed by spruce bark beetles. Snapping by wind was the main reason for treefall. Long‐term dominance of Norway spruce excluded downy birch and Scots pine from the stand. Comparisons of the forest floor soil properties between the gap and nongap area showed significantly higher concentrations of plant available Ca within the gap area. Plant root simulator (PRS?) probes showed significantly higher supply rates for Ca and Mg, but significantly lower K for the gap compared to the nongap area. Soil water from the gap area had significantly higher C:N ratios compared to the nongap area. Fine‐scale variation with increasing distance to logs indicated that CWD is important for leaking of DOC and Ca. Our long‐term study from Karlshaugen documents gap dynamics after more than 50 years of steady state and a multiscale disturbance regime in an old‐growth forest. The observed disturbance dynamic caused higher aboveground and belowground heterogeneity in plots, coarse woody debris, and nutrients. Our study of the nutrient levels of the forest floor suggest that natural gaps of old‐growth forest provide a long‐lasting biogeochemical feedback system particularly with respect to Ca and probably also N. Norway spruce trees near the gap edge responded with high plasticity to reduced competition, showing the importance of the edge zone as hot spots for establishing heterogeneity, but also the potential for carbon sequestration in old‐growth forest.  相似文献   

4.
Aim The historical variability of fire regimes must be understood in the context of drivers of the occurrence of fire operating at a range of spatial scales from local site conditions to broad‐scale climatic variation. In the present study we examine fire history and variations in the fire regime at multiple spatial and temporal scales for subalpine forests of Engelmann spruce–subalpine fir (Picea engelmannii, Abies lasiocarpa) and lodgepole pine (Pinus contorta) of the southern Rocky Mountains. Location The study area is the subalpine zone of spruce–fir and lodgepole pine forests in the southern sector of Rocky Mountain National Park (ROMO), Colorado, USA, which straddles the continental divide of the northern Colorado Front Range (40°20′ N and 105°40′ W). Methods We used a combination of dendroecological and Geographic Information System methods to reconstruct fire history, including fire year, severity and extent at the forest patch level, for c. 30,000 ha of subalpine forest. We aggregated fire history information at appropriate spatial scales to test for drivers of the fire regime at local, meso, and regional scales. Results The fire histories covered c. 30,000 ha of forest and were based on a total of 676 partial cross‐sections of fire‐scarred trees and 6152 tree‐core age samples. The subalpine forest fire regime of ROMO is dominated by infrequent, extensive, stand‐replacing fire events, whereas surface fires affected only 1–3% of the forested area. Main conclusions Local‐scale influences on fire regimes are reflected by differences in the relative proportions of stands of different ages between the lodgepole pine and spruce–fir forest types. Lodgepole pine stands all originated following fires in the last 400 years; in contrast, large areas of spruce–fir forests consisted of stands not affected by fire in the past 400 years. Meso‐scale influences on fire regimes are reflected by fewer but larger fires on the west vs. east side of the continental divide. These differences appear to be explained by less frequent and severe drought on the west side, and by the spread of fires from lower‐elevation mixed‐conifer montane forests on the east side. Regional‐scale climatic variation is the primary driver of infrequent, large fire events, but its effects are modulated by local‐ and meso‐scale abiotic and biotic factors. The low incidence of fire during the period of fire‐suppression policy in the twentieth century is not unique in comparison with the previous 300 years of fire history. There is no evidence that fire suppression has resulted in either the fire regime or current forest conditions being outside their historic ranges of variability during the past 400 years. Furthermore, in the context of fuel treatments to reduce fire hazard, regardless of restoration goals, the association of extremely large and severe fires with infrequent and exceptional drought calls into question the future effectiveness of tree thinning to mitigate fire hazard in the subalpine zone.  相似文献   

5.
6.
Land-use history and large-scale disturbances interact to shape secondary forest structure and composition. How introduced species respond to disturbances such as hurricanes in post-agriculture forest recovery is of particular interest. To examine the effects of hurricane disturbance and previous land use on forest dynamics and composition, we revisited 37 secondary forest stands in former cattle pastures across Puerto Rico representing a range of exposure to the winds of Hurricane Georges in 1998. Stands ranged from 21 to>80 yr since agricultural abandonment and were measured 9 yr posthurricane. Stem density decreased as stands aged, while basal area and species richness tended to increase. Hurricane disturbance exerted contrasting effects on stand structure, contingent on stand age. In older stands, the basal area of large trees fell, shifting to a stand structure characteristic of younger stands, while the basal area of large trees tended to rise in younger stands with increasing hurricane disturbance. These results demonstrate that large-scale natural disturbances can alter the successional trajectory of secondary forest stands recovering from human land use, but stand age, precipitation and soil series were better predictors of changes in stand structure across all study sites. Species composition changed substantially between census intervals, but neither age nor hurricane disturbance consistently predicted species composition change. However, exposure to hurricane winds tended to decrease the abundance of the introduced tree Spathodea campanulata, particularly in smaller size classes. In all sites the abundance of the introduced tree Syzygium jambos showed a declining trend, again most strongly in smaller size classes, suggesting natural thinning through succession.  相似文献   

7.
Abstract

The presence of a trade–off between growth and reproduction was tested in four sites in a subalpine Norway spruce (Picea abies (L.) Karst.) forest by measuring annual stem diameter increments at breast height and seed and cone productions during the periods 1962–1985 and 1983–1990, respectively. Trees growing in forest stands near the timber line (about 1900 m above sea level) had the greatest reduction in annual stem diameter increment during mast years; while trees growing at about 1300–1500 m above sea level did not show any reduction. Trees growing at about 1700 m showed only a limited reduction. At the same elevation, trees growing within closed forest stands suffered a greater reduction in stem growth when compared with trees growing at the edge of a cutting.  相似文献   

8.
Disturbance history of an old-growth subalpine fir (Abies fargesii) forest in the Shennongjia Mountains of central China was reconstructed using dendroecological methods. Increment cores were extracted from 468 trees within six 100 m × 50 m permanent transects distributed across the old-growth subalpine fir forest of 300 ha. Growth patterns of 299 fir cores were examined for abrupt increases in radial growth to indicate formation of past canopy gaps and for rapid early radial growth to indicate establishment in past canopy gaps. The results showed that 70.8 % of the canopy fir trees experienced an average of 0.78 (ranging from 0 to 2) major release event for an average of 15.8 (ranging from 10 to 24) years, and an average of 1.94 (ranging from 0 to 3) moderate release events for an average of 25.6 (ranging from 10 to 36) years before they reached canopy. Recruitment pulse of trees coincided temporally with the peak of disturbance rate from the 1900s to the 1910s, suggesting occurrence of intense disturbance events during the time period. Radial growth analyses indicated that a history with small-scale disturbance events has resulted in the formation of the old-growth subalpine fir forest, and stand-replacing disturbances might not be necessary for the development of the forest. This study provides strong evidence that there are substantial variations in the disturbance severity and frequency over time. Most disturbance events might rather cause treefall gaps than clear large areas of forest at once. Thus, the old-growth subalpine fir forest experienced frequent gap-scale disturbances and few large-scale disturbances in its development history.  相似文献   

9.
Questions: How to evaluate the mixture effect on basal area increment in two‐species forest stands? Is a mixed Norway spruce–silver fir stand more productive than pure adjacent stands of either species? How to develop generic modelling approaches to assess mixture effects in forest stands? Location: In addition to a case study on Norway spruce–silver fir stands in French mountain forests, the generic approach used goes beyond local applications. Methods: We took advantage of National Forest Inventory data to develop a unique stand basal‐area‐increment model for pure and mixed stands of Norway spruce and silver fir that responds to ecological site conditions. The database was made up of 284 pure Norway spruce stands, 196 pure silver fir stands, and 323 mixed stands of these species. Results: Pure silver fir basal area increment is strongly influenced by spring climatic conditions, whereas pure Norway spruce is more influenced by soil conditions. The mixture of these species has a positive effect on silver fir, which decreases as the proportion of fir increases. In contrast, the mixture has no noticeable effect on Norway spruce. Conclusion: We developed a stand basal‐area‐increment model evidencing an advantage of the mixture on silver fir basal area increment, but not on Norway spruce. The mathematical formulation of the model developed is generic and can be used in all two‐species mixture situations. It also makes it possible to compare different mixture situations with each other.  相似文献   

10.
Associations among the few tree species in the North American boreal landscape are the result of complex interactions between climate, biota, and historical disturbances during the Holocene. The closed-crown boreal forest of eastern North America is subdivided into two ecological regions having distinct tree species associations; the balsam fir zone and the black spruce zone, south and north of 49°N, respectively. Subalpine old-growth stands dominated by trees species typical of the balsam fir forest flora (either balsam fir or white spruce) are found on high plateaus, some of which are isolated within the black spruce zone. Here we identified the ecological processes responsible for the distinct forest associations in the subalpine belt across the eastern boreal landscape. Extensive radiocarbon dating, species composition, and size structure analyses indicated contrasted origin and dynamics of the subalpine forests between the two ecological regions. In the black spruce zone, the subalpine belt is a mosaic of post-fire white spruce or balsam fir stands coexisting at similar elevation on the high plateaus. With increasing time without wildfire, the subalpine forests become structurally similar to the balsam fir forest of the fir zone. These results concur with the hypothesis that the subalpine forests of this area are protected remnants of an historical northern expansion of the fir zone. Its replacement by the fire-prone black spruce forest flora was caused by recurrent fires. In the subalpine belt of the fir zone, no fire was recorded for several millennia. Harsh climate at high altitude is the primary factor explaining white spruce dominance over balsam fir forming a distinct subalpine white spruce belt above the balsam fir dominated forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号