首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 539 毫秒
1.
We have previously reported that carp (Cyprinus carpio) tissue mitochondria contain a novel form of monoamine oxidase (MAO), which belongs neither to MAO-A nor to MAO-B of the mammalian enzyme. This conclusion results from the findings that the carp MAO was equally sensitive to a selective MAO-A inhibitor clorgyline and to the MAO-B selective inhibitor l-deprenyl, when tyramine, a substrate for both forms, serotonin or beta-phenylethylamine, a substrate for either A or B-form of mammalian MAO, was used. In the present study, we tried to detect another amine oxidase, termed tissue-bound semicarbazide-sensitive amine oxidase (SSAO), activity in carp tissues. As definition of SSAO was used, such as insensitivity to inhibition of the kynuramine oxidizing activity by an MAO inhibitor pargyline and high sensitivity to the SSAO inhibitor semicarbazide. The results indicated that the oxidizing activity was selectively and almost completely inhibited by 0.1 mM pargyline alone or a combination of 0.1 mM pargyline plus 0.1 mM semicarbazide, but not by 0.1 mM semicarbazide alone. We also tried to detect any SSAO activity by changing experimental conditions, such as lower incubation temperature, higher enzyme protein concentration, a lower substrate concentration and different pH's in the reaction, as the enzyme source. However, still no SSAO activity could be detected in the tissues. These results conclusively indicate that carp tissues so far examined do not contain SSAO activity.  相似文献   

2.
A strong induction of semicarbazide-sensitive amine oxidase (SSAO) has previously been reported during murine preadipocyte lineage differentiation but it remains unknown whether this emergence also occurs during adipogenesis in man. Our aim was to compare SSAO and monoamine oxidase (MAO) expression during in vitro differentiation of human preadipocytes and in adipose and stroma-vascular fractions of human fat depots. A human preadipocyte cell strain from a patient with Simpson-Golabi-Behmel syndrome was first used to follow amine oxidase expression during in vitro differentiation. Then, human preadipocytes isolated from subcutaneous adipose tissues were cultured under conditions promoting ex vivo adipose differentiation and tested for MAO and SSAO expression. Lastly, human adipose tissue was separated into mature adipocyte and stroma-vascular fractions for analyses of MAO and SSAO at mRNA, protein and activity levels. Both SSAO and MAO were increased from undifferentiated preadipocytes to lipid-laden cells in all the models: 3T3-F442A and 3T3-L1 murine lineages, human SGBS cell strain or human preadipocytes in primary culture. In human subcutaneous adipose tissue, the adipocyte-enriched fraction exhibited seven-fold higher amine oxidase activity and contained three- to seven-fold higher levels of mRNAs encoded by MAO-A, MAO-B, AOC3 and AOC2 genes than the stroma-vascular fraction. MAO-A and AOC3 genes accounted for the majority of their respective MAO and SSAO activities in human adipose tissue. Most of the SSAO and MAO found in adipose tissue originated from mature adipocytes. Although the mechanism and role of adipogenesis-related increase in amine oxidase expression remain to be established, the resulting elevated levels of amine oxidase activities found in human adipocytes may be of potential interest for therapeutic intervention in obesity.  相似文献   

3.
M Naoi  T Nagatsu 《Life sciences》1987,40(11):1075-1082
Type A monoamine oxidase (MAO-A) in human placental mitochondria was competitively inhibited by naturally occurring substances, quinoline and quinaldine, using kynuramine as substrate. Quinoline had a higher affinity for MAO than kynuramine. MAO-A in human brain synaptosomal mitochondria was also competitively inhibited by quinoline, while type B MAO (MAO-B) was reversibly and non-competitively inhibited by quinoline. Quinoline inhibited MAO-A much more potently than MAO-B. Of several compounds structurally similar to quinoline, isoquinoline noncompetitively inhibited MAO-A and -B activity.  相似文献   

4.
Monoamine oxidase (MAO, type A and B) and semicarbazide-sensitive amine oxidase (SSAO) metabolize biogenic amines, however, the impact of these enzymes in arteries from patients with type 2 diabetes remains poorly understood. We investigated the kinetic parameters of the enzymes to establish putative correlations with noradrenaline (NA) content and patient age in human mesenteric arteries from type 2 diabetic patients. The kinetic parameters were evaluated by radiochemical assay and NA content by high-performance liquid chromatography (HPLC). The activity of MAO-A and SSAO in type 2 diabetic vascular tissues was significantly lower compared to the activity obtained in non-diabetic tissues. In the correlation between MAO-A (K(m)) and NA content, we found a positive correlation for both the diabetic and non-diabetic group, but no correlation was established for patient age. In both groups, MAO-B (V(max)) showed a negative correlation with age. The results show that MAO-A and SSAO activities and NA content of type 2 diabetic tissues are lower compared to the non-diabetic tissues, while MAO-B activity remained unchanged. These remarks suggest that MAO-A and SSAO may play an important role in vascular tissue as well as in the vascular pathophysiology of type 2 diabetes.  相似文献   

5.
Monoamine oxidase (MAO) activity was measured fluorometrically in liver, kidney, intestine and brain of adult male and female ring doves. Liver MAO was inhibited in a concentration-related fashion by clorgyline and harmaline (MAO type A inhibitors) where a plateau in the inhibition curve occurred with about 15% activity remaining, and also by the type B inhibitor deprenyl, which produced a plateau when about 85% activity remained. Kidney, intestine and brain MAO were inhibited in a biphasic manner by harmaline. Results with inhibitors suggest that 85% of liver MAO, 86% of kidney MAO, 88% of intestine and 75% of brain MAO is type A. Using 10(-6) M harmaline to differentiate between MAO-A and MAO-B type activities, the apparent maximal velocities (Vmax) and Michaelis constants (Km) were determined in different tissues. Most activity occurred in the intestine, with proportionally lesser amounts of kidney, liver and brain. The majority of MAO present was in the A form. Except for kidney, Km of MAO-B was higher than that of MAO-A. Both MAO-A and -B activities were higher in the intestines of male birds, although sex differences in content and type of MAO activity were not observed in other tissues of the ring dove.  相似文献   

6.
4-(O-Benzylphenoxy)-N-methylbutylamine (Bifemelane, BP-N-methylbutylamine), a new psychotropic drug, was found to inhibit monoamine oxidase (MAO) in human brain synaptosomes. It inhibited type A MAO (MAO-A) competitively and type B (MAO-B) noncompetitively. BP-N-methylbutylamine had a much higher affinity to MAO-A than an amine substrate, kynuramine, and it was a more potent inhibitor of MAO-A than of MAO-B. The Ki values of MAO-A and -B were determined to be 4.20 and 46.0 microM, respectively, while the Km values of MAO-A and -B with kynuramine were 44.1 and 90.0 microM, respectively. The inhibition of MAO-A and -B by BP-N-methylbutylamine was found to be reversible by dialysis of the incubation mixture. MAO-A in human placental and liver mitochondria and in a rat clonal pheochromocytoma cell line, PC12h, was inhibited competitively by BP-N-methylbutylamine, while MAO-B in human liver mitochondria was inhibited noncompetitively, as in human brain synaptosomes. BP-N-methylbutylamine was not oxidized by MAO-A and -B. The effects of other BP-N-methylalkylamines, such as BP-N-methylethylamine, -propylamine, and -pentanylamine, on MAO activity were examined. BP-N-methylbutylamine was the most potent inhibitor of MAO-A, and BP-N-methylethylamine and -propylamine inhibited MAO-B competitively, whereas BP-N-methylbutylamine and -pentanylamine inhibited it noncompetitively. Inhibition of these BP-N-methylalkylamines on MAO-A and -B is discussed in relation to their chemical structure.  相似文献   

7.
Monoamine oxidase (MAO) is a mitochondrial outer-membrane flavoenzyme involved in brain and peripheral oxidative catabolism of neurotransmitters and xenobiotic amines, including neurotoxic amines, and a well-known target for antidepressant and neuroprotective drugs. Recently, positron emission tomography imaging has shown that smokers have a much lower activity of peripheral and brain MAO-A (30%) and -B (40%) isozymes compared to non-smokers. This MAO inhibition results from a pharmacological effect of smoke, but little is known about its mechanism. Working with mainstream smoke collected from commercial cigarettes we confirmed that cigarette smoke is a potent inhibitor of human MAO-A and -B isozymes. MAO inhibition was partly reversible, competitive for MAO-A, and a mixed-type inhibition for MAO-B. Two beta-carboline alkaloids, norharman (beta-carboline) and harman (1-methyl-beta-carboline), were identified by GC-MS, quantified, and isolated from the mainstream smoke by solid phase extraction and HPLC. Kinetics analysis revealed that beta-carbolines from cigarette smoke were competitive, reversible, and potent inhibitors of MAO enzymes. Norharman was an inhibitor of MAO-A (K(i)=1.2+/-0.18 microM) and MAO-B (K(i)=1.12+/-0.19 microM), and harman of MAO-A (K(i)=55.54+/-5.3nM). Beta-carboline alkaloids are psychopharmacologically active compounds that may occur endogenously in human tissues, including the brain. These results suggest that beta-carboline alkaloids from cigarette smoke acting as potent reversible inhibitors of MAO enzymes may contribute to the MAO-reduced activity produced by tobacco smoke in smokers. The presence of MAO inhibitors in smoke like beta-carbolines and others may help us to understand some of the purported neuropharmacological effects associated with smoking.  相似文献   

8.
The rate of benzylamine utilization by monoamine oxidase (MAO)-B from human blood platelets was 2-4 times higher than that for octopamine. Both activities were inhibited 100% by 10(-7) M deprenyl (a specific MAO-B inhibitor) and were not affected by clorgyline (a specific MAO-A inhibitor) or by polyclonal antibodies to MAO-A. The preincubation of platelet MAO-B with purified MAO-A from mitochondrial membranes of human placenta resulted in appearance of excess octopamine activity. This additional activity was not precipitated by antibodies to MAO-A or inhibited by deprenyl but was inhibited by clorgyline. Incubation of the MAO-A preparation from placenta at 45 degrees C for 15 min before its preincubation with MAO-B caused 50% loss of both activities. Protease inhibitors had no effect on the modification of MAO. These data indicate that MAO-A or a factor tightly bound to it can modify MAO-B yielding a form of the enzyme with both MAO-A and MAO-B substrate and inhibitor affinities and MAO-B immunospecificity.  相似文献   

9.
The superior cervical ganglion (SCG), pineal body (PB), and liver (L) of the rat, rabbit and cat were stained for monoamine oxidase (MAO) A and B by the tetranitro blue tetrazolium (TNBT) and coupled peroxidase ( PerOx ) methods, using 5-hydroxytryptamine (5HT), tryptamine ( Tryp ), tyramine (Tyr), and benzylamine (Bz) as substrates, and clorgyline (Cl) and deprenyl (Dep), both at 10(-7) M, as selective inhibitors. The nodose ganglion (NG) and dorsal root ganglion (DRG) of the rabbit and cat were also studied. The results with rat tissues were consistent with published quantitative findings (SCG, MAO-A much greater than B; PB, MAO-A less than or equal to B; L, MAO-A = B). In the rabbit, the findings with the SCG were similar; the MAO activities of the PB were relatively resistant to both inhibitors; the MAO of the liver required 10(-4) M concentrations of both inhibitors to produce near total inhibition, suggesting that the liver contains an MAO distinct from MAO A and B. All cat tissues examined appeared to contain almost exclusively MAO-B. In this species 5HT, which is generally considered a selective substrate for MAO-A, was oxidized by MAO-B. The findings indicate that criteria for MAO-A, -B, and other subgroups must be defined for each species and tissue.  相似文献   

10.
Abstract: A series of methylquinolines (MQ) were found to inhibit markedly type A monoamine oxidase (MAO) in human brain synaptosomal mitochondria. 4-MQ and 6-MQ inhibited type A MAO (MAO-A) competitively and 7- and 8-MQ inhibited MAO-A noncompetitively. Among these four isomers of MQ, 6-MQ was the most potent inhibitor; the K i value toward MAO-A was 23.4 ± 1.8 μ M , which was smaller than the K m value toward kynuramine, ± amine substrate, 46.2 ± 2.8 μ M . On the other hand, MQ were very weak inhibitors of type B MAO (MAO-B) and 8-MQ did not inhibit MAO-B in brain synaptosomal mitochondria. The inhibition of MAO-A proved to be reversible; by dialysis the inhibition of MQ was completely reversible. The affinity of these isomers of MQ toward MAO-A or -B was confirmed further with human liver mitochondria as sources of MAO-A and -B and with human placental mitochondria and rat pheochromocytoma PC12h cell line as sources of MAO-A. The relationship of the chemical structure of structurally related quinoline and isoquinoline derivatives to inhibition of the activity of type A or B MAO was examined.  相似文献   

11.
Various mammalian tissues contain membrane-bound amine oxidase termed semicarbazide-sensitive amine oxidase (SSAO). A variety of compounds has been identified as relatively selective SSAO inhibitors, but those inhibitors currently available also inhibit monoamine oxidase (MAO). In the present study, inhibitory properties of 2-bromoethylamine (2-BEA) and 3-bromopropylamine (3-BPA) toward rat lung-bound SSAO have been studied. Regardless of preincubation, 2-BEA could not appreciably inhibit MAO-A and MAO-B activity, but 3-BPA at relatively high concentrations inhibited only MAO-B activity. 3-BPA was a competitive and reversible SSAO inhibitor with a Ki value of 17 microM regardless of preincubation. In contrast, without preincubation, 2-BEA competitively inhibited SSAO activity with the Ki value of 2.5 microM and after preincubation, the mode of inhibition changed to be noncompetitive, indicating irreversible inhibition after the preincubation. Dialysis experiments with 2-BEA-pretreated homogenate resulted in no recovery of SSAO activity even after overnight dialysis. A decreased rate of SSAO inhibition under N2 atmosphere to that obtained under O2 was produced upon preincubation of enzyme with 2-BEA, suggesting that oxidized intermediate was necessary for its inhibitory activity. Thus, 2-BEA first interacts with SSAO to form a reversible complex with a subsequent reaction, leading this complex to the covalently bound enzyme-inhibitor adduct. The data analyzed by the plot of 1/k' vs 1/2-BEA concentrations intersected on the y-axis indicate that the inhibition by 2-BEA is not mediated by a bimolecular reaction; thus it is not an affinity-labeling agent, but a suicide SSAO inhibitor. 2-BEA may be employed as a useful compound in the studying SSAO.  相似文献   

12.
The selective monoamine oxidase inhibitors clorgyline and (−)-deprenyl were used to study the distribution of monoamine oxidase-A and -B (MAO-A, MAO-B) activities towards (−)-noradrenaline and (+),(−)-adrenaline in homogenates from seven different regions of human brain. The activities towards 5-hydroxytryptamine and 2-phenethylamine, which are essentially specific substrates for the A- and B-forms, respectively, under the conditions used in this work, were also determined. Noradreanline and adrenaline were substrates for both forms of the enzyme in all regions studied. The total MAO activity was found to be highest in the hypothalamus and lowest in the cerebellar cortex. Use of the selective MAO inhibitors clorgyline and (−)-deprenyl also showed adrenaline and noradrenaline to be substrates for both forms of the enzyme in rat brain. In human cerebral cortex and rat brain the two forms were found to have similar Km-values and maximum velocities towards adrenaline. These values for the two forms were also found to be similar in human cerebral cortex when noradrenaline was used as the substrate. In contrast MAO-A showed a significantly lower Km and a higher maximum velocity towards noradrenaline in rat brain. These results suggest that the rat may not provide a close model of the human for studies on the effects of MAO inhibitors on brain noradrenaline metabolism.  相似文献   

13.
Literature reports that isatin as well as C5- and C6-substituted isatin analogues are reversible inhibitors of human monoamine oxidase (MAO) A and B. In general, C5- and C6-substitution of isatin leads to enhanced binding affinity to both MAO isozymes compared to isatin and in most instances result in selective binding to the MAO-B isoform. Crystallographic and modeling studies suggest that the isatin ring binds to the substrate cavities of MAO-A and -B and is stabilized by hydrogen bond interactions between the NH and the C2 carbonyl oxygen of the dioxoindolyl moiety and water molecules present in the substrate cavities of MAO-A and -B. Based on these observations and the close structural resemblances between isatin and its phthalimide isomer, a series of phthalimide analogues were synthesized and evaluated as MAO inhibitors. While phthalimide and N-aryl-substituted phthalimides were found to be weak MAO inhibitors, phthalimide homologues containing C5 substituents were potent reversible inhibitors of recombinant human MAO-B with IC(50) values ranging from 0.007 to 2.5 μM and moderately potent reversible inhibitors of recombinant human MAO-A with IC(50) values ranging from 0.22 to 9.0 μM. By employing molecular docking the importance of hydrogen bonding between the active sites of MAO-A and -B and the phthalimide inhibitors are highlighted.  相似文献   

14.
(R)-[(N-propargyl-(3R) aminoindan-5-yl) ethyl methyl carbamate] (TV3326) is a novel cholinesterase and brain-selective monoamine oxidase (MAO)-A/-B inhibitor. It was developed for the treatment of dementia co-morbid with extra pyramidal disorders (parkinsonism), and depression. On chronic treatment in mice it attenuated striatal dopamine depletion induced by MPTP and prevented the reduction in striatal tyrosine hydroxylase activity, like selective B and non-selective MAO inhibitors. TV3326 preferentially inhibits MAO-B in the striatum and hippocampus, and the degree of MAO-B inhibition correlates with the prevention of MPTP-induced dopamine depletion. Complete inhibition of MAO-B is not necessary for full protection from MPTP neurotoxicity. Unlike that seen after treatment with other MAO-A and -B inhibitors, recovery of striatal and hippocampal MAO-A and -B activities from inhibition by TV3326 did not show first-order kinetics. This has been attributed to the generation of a number of metabolites by TV3326 that cause differential inhibition of these enzymes. Inhibition of brain MAO-A and -B by TV3326 resulted in significant elevations of dopamine, noradrenaline and serotonin in the striatum and hippocampus. This may explain its antidepressant-like activity, resembling that of moclobemide in the forced-swim test in rats.  相似文献   

15.
Monoamine oxidase (MAO) and semicarbazide-sensitive amine oxidase (SSAO) activities are very high in white adipose tissue (WAT). SSAO, also known as Vascular Adhesion Protein-1 in vessels, is present at the surface of fat cells and independent approaches have evidenced its impressive increase during adipogenesis. However, the factors that might regulate the expression SSAO and MAO in adipose tissue are still poorly defined. Here, we report the influence of fasting on MAO and SSAO activities in adipose depots. A decrease of MAO activity occurred after three days of starvation in the intra-abdominal adipose tissue (INWAT) of male Wistar rats, regardless of their initial adiposity or fat loss. The reduced fat stores of seven-week old rats, loosing 59% of INWAT mass during fasting, contained only one half of the MAO activity found in fed control. The same reduction of MAO was observed after prolonged fasting in older rats which lose only 26% of their INWAT during the same starvation duration, leading to a fat mass comparable to that of younger fed control rats. It was therefore the endocrine and metabolic changes occurring during fasting that were responsible for the reduced MAO activity and not the amount of INWAT. Surprisingly, SSAO activity remained unchanged during starvation. In subcutaneous WAT, the changes in MAO and SSAO activities exhibited the same tendencies than those found in INWAT. Taken together, these data show that both MAO and SSAO activities increase in INWAT with age-dependent fattening, and indicate that only MAO diminishes during fasting.  相似文献   

16.
The effects of metal chelators on monoamine oxidase (MAO) isozymes, MAO-A and MAO-B, in monkey brain mitochondria were investigated in vitro. MAO-A activity increased to about 40% with 0.1 μM calcium disodium edetate (CaNa2EDTA) using serotonin as a substrate, and this activation was proportional to the concentration of CaNa2EDTA. On the other hand, MAO-A activities were decreased gradually with an increasing concentration of o-phenanthroline and diethyldithiocarbamic acid, but these metal chelators had no effect on MAO-B activity in monkey brain. The activation of MAO-A activity by CaNa2EDTA was reversible. CaNa2EDTA did not activate both MAO-A and MAO-B activities in rat brain mitochondria. Zn and Fe ions were found in the mitochondria of monkey brain. Zn ions potently inhibited MAO-A activity, but Fe ions did not inhibit either MAO-A or MAO-B activity in monkey brain mitochondria. These results indicate that the activating action of CaNa2EDTA on MAO-A was the result of the chelating of Zn ions contained in mitochondria by CaNa2EDTA. These results also indicate the possibility that Zn ions may regulate physiologically the level of serotonin and norepinephrine content in brain by inhibiting a MAO-A activity.  相似文献   

17.
Monoamine oxidase (MAO) activity in the liver and brain of the pacu, Piaractus mesopotamicus was determined using a fluorescence assay with kynuramine as substrate. Apparent Michaelis constant values (20·33 μM for liver and 25·85 μM for brain) were similar in these tissues, but in terms of tissue protein MAO activity from liver was 4·5 times higher than from brain. The greater inhibitory effects of clorgyline than of deprenyl on MAO activity from liver and brain of this species suggest that pacu's MAO is a type A-like enzyme.  相似文献   

18.
Adipocytes express two types of amine oxidases: the cell surface semicarbazide-sensitive amine oxidase (SSAO) and the mitochondrial monoamine oxidase (MAO). In human abdominal subcutaneous adipose tissue, it has been reported that SSAO substrates stimulate glucose transport and inhibit lipolysis while MAO activity is decreased in obese patients when compared to age-matched controls. However, no information has been reported on visceral WAT. To further investigate the obesity-induced regulations of MAO and SSAO in white adipose tissue (WAT) from different anatomical locations, enzyme activities and mRNA abundance have been determined on tissue biopsies from control and high-fat fed dogs, an obesity model already described to be associated with arterial hypertension and hyperinsulinemia. MAO activity was increased in the enlarged omental WAT of diet-induced obese dogs, but not in their mesenteric WAT, another intra-abdominal fat depot. Subcutaneous WAT did not exhibit any change in MAO activity, as did the richest MAO-containing tissue: liver. Similarly, SSAO was increased in omental WAT of diet-induced obese dogs, but was not modified in other WAT and in aorta. The increase in SSAO activity observed in omental WAT likely results from an increased expression of the AOC3 gene since mRNA abundance and maximal benzylamine oxidation velocity were increased. Finally, plasma SSAO was decreased in obese dogs. Although the observed regulations differ from those found in subcutaneous WAT of obese patients, this canine model shows a tissue- and site-specific regulation of peripheral MAO and SSAO in obesity.  相似文献   

19.
Decreased monoamine oxidase (MAO) activity has been observed in adipose tissue of obese patients. Since substrates of MAO and semicarbazide-sensitive amine oxidase (SSAO) can modify adipocyte metabolism, this work investigates whether changes in amine oxidase activity may occur during white adipose tissue (WAT) development. We evaluated MAO and SSAO activities in WAT of high-fat diet (HFD) and low-fat diet fed mice. To distinguish the effect of HFD on its own from the effect of fat mass enlargement, obesity-prone transgenic line of the FVBn strain lacking beta3-adrenergic receptors (AR) but expressing human beta3-AR and alpha2-AR (mbeta3-/-, hbeta3+/+, halpha2+/-) was compared to its obesity-resistant control (mbeta3-/-, hbeta3+/+). As already reported, the former mice became obese while the latter resisted to HFD. No significant change in SSAO or MAO activity was found in WAT of both strains after HFD when expressing oxidase activity per milligram of protein. However, when considering the overall capacity of the fat depots to oxidize tyramine or benzylamine, there was an increase in MAO and SSAO activity only in the enlarged WAT of HFD-induced obese mice. Therefore, the comparison of these models allowed to demonstrate that the higher amine oxidase capacity hold in enlarged fat stores of obese mice is more likely the consequence of increased fat cell number rather than the result of an increased expression of MAO or SSAO in the adipocyte.  相似文献   

20.
Monoamine oxidase in the vervet monkey showed greater variations in activity in six brain regions when tyramine or phenylethylamine was used as the substrate (3.8- to 4.1-fold differences) than when serotonin was the substrate (1.8-fold differences). With phenylethylamine and tyramine as substrates, the highest MAO specific activities were found in the hypothalamus and the lowest in the cerebellum and cortex. With serotonin as the substrate, the highest specific activities were in the mesencephalon and cortex. The inhibition of tyramine deamination by clorgyline and deprenyl yielded biphasic plots indicative of the presence of MAO-A and MAO-B enzyme forms in the vervet brain. On the basis of these inhibitor curves, the vervet brain could be estimated to contain approximately 85% MAO-B and 15% MAO-A, in contrast to rat brain which contains 45% MAO-B and 55% MAO-A. The inhibition of serotonin deamination by deprenyl in vervet brain yielded a biphasic plot, suggesting that some serotonin deamination in the vervet is accomplished by the MAO-B enzyme form. Estimations of the relative amounts of MAO-A and MAO-B based on inhibitor curves or based on substrate ratios yielded proportionate results which were in close agreement across the different brain regions, supporting the validity of these approaches to estimating MAO-A and MAO-B activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号