首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
The Oenothera mitochondrial genome contains only a gene fragment for ribosomal protein S12 (rps12), while other plants encode a functional gene in the mitochondrion. The complete Oenothera rps12 gene is located in the nucleus. The transit sequence necessary to target this protein to the mitochondrion is encoded by a 5'-extension of the open reading frame. Comparison of the amino acid sequence encoded by the nuclear gene with the polypeptides encoded by edited mitochondrial cDNA and genomic sequences of other plants suggests that gene transfer between mitochondrion and nucleus started from edited mitochondrial RNA molecules. Mechanisms and requirements of gene transfer and activation are discussed.  相似文献   

2.
3.
P S Covello  M W Gray 《The EMBO journal》1992,11(11):3815-3820
In most plants and other eukaryotes investigated, the mitochondrial genome carries the gene encoding subunit 2 of cytochrome c oxidase (cox2). In this paper, we show that the previously reported mitochondrial cox2 of soybean is actually silent, and that there is an expressed, single-copy, nucleus-encoded cox2. Molecular cloning and sequence analysis of cox2 cDNA and genomic clones show that the soybean nuclear gene encodes an N-terminal extension that resembles a signal sequence for mitochondrial import and whose coding sequence is separated by an intron from that corresponding to mtDNA-encoded cox2. Comparison of soybean mitochondrial and nuclear cox2 sequences clearly indicates that in an ancestor of soybean, cox2 was transferred from the mitochondrion to the nucleus via a C-to-U edited RNA intermediate.  相似文献   

4.
Mitochondrial genes are usually conserved in size in angiosperms. A notable exception is the rpl2 gene, which is considerably shorter in the eudicot Arabidopsis than in the monocot rice. Here, we show that a severely truncated mitochondrial rpl2 gene (termed 5' rpl2) was created by the formation of a premature stop codon early in eudicot evolution. This 5' rpl2 gene was subsequently lost many times from the mitochondrial DNAs of 179 core eudicots surveyed by Southern hybridization. The sequence corresponding to the 3' end of rice rpl2 (termed 3' rpl2) has been lost much more pervasively among the mitochondrial DNAs of core eudicots than has 5' rpl2. Furthermore, where still present in these mitochondrial genomes, 3' rpl2 always appears to be a pseudogene, and there is no evidence that 3' rpl2 was ever a functional mitochondrial gene. An intact and expressed 3' rpl2 gene was discovered in the nucleus of five diverse eudicots (tomato, cotton, Arabidopsis, soybean, and Medicago). In the first three of these species, 5' rpl2 is still present in the mitochondrion, unlike the two legumes, where both parts of rpl2 are present in the nucleus as separate genes. The full-length rpl2 gene has been transferred intact to the nucleus in maize. We propose that the 3' end of rpl2 was functionally transferred to the nucleus early in eudicot evolution, and that this event then permitted the nonsense mutation that gave rise to the mitochondrial 5' rpl2 gene. Once 5' rpl2 was established as a stand-alone mitochondrial gene, it was then lost, and was probably transferred to the nucleus many times. This complex history of gene fission and gene transfer has created four distinct types of rpl2 structures or compartmentalizations in angiosperms: (1) intact rpl2 gene in the mitochondrion, (2) intact gene in the nucleus, (3) split gene, 5' in the mitochondrion and 3' in the nucleus, and (4) split gene, both parts in the nucleus.  相似文献   

5.
6.
Choi C  Liu Z  Adams KL 《The New phytologist》2006,172(3):429-439
The transfer of mitochondrial genes to the nucleus is an ongoing evolutionary process in flowering plants. Evolutionarily recent gene transfers provide insights into the evolutionary dynamics of the process and the way in which transferred genes become functional in the nucleus. Genes that are present in the mitochondrion of some angiosperms but have been transferred to the nucleus in the Populus lineage were identified by searches of Populus sequence databases. Sequence analyses and expression experiments were used to characterize the transferred genes. Two succinate dehydrogenase genes and six mitochondrial ribosomal protein genes have been transferred to the nucleus in the Populus lineage and have become expressed. Three transferred genes have gained an N-terminal mitochondrial targeting presequence from other pre-existing genes and two of the transferred genes do not contain an N-terminal targeting presequence. Intact copies of the succinate dehydrogenase gene Sdh4 are present in both the mitochondrion and the nucleus. Both copies of Sdh4 are expressed in multiple organs of two Populus species and RNA editing occurs in the mitochondrial copy. These results provide a genome-wide perspective on mitochondrial genes that were transferred to the nucleus and became expressed, functional genes during the evolutionary history of Populus.  相似文献   

7.
Most chloroplast and mitochondrial proteins are encoded by nuclear genes that once resided in the organellar genomes. Transfer of most of these genes appears to have occurred soon after the endosymbiotic origin of organelles, and so little is known about the process. Our efforts to understand how chloroplast genes are functionally transferred to the nuclear genome have led us to discover the most recent evolutionary gene transfer yet described. The gene rpl22, encoding chloroplast ribosomal protein CL22, is present in the chloroplast genome of all plants examined except legumes, while a functional copy of rpl22 is located in the nucleus of the legume pea. The nuclear rpl22 gene has acquired two additional domains relative to its chloroplast ancestor: an exon encoding a putative N-terminal transit peptide, followed by an intron which separates this first exon from the evolutionarily conserved, chloroplast-derived portion of the gene. This gene structure suggests that the transferred region may have acquired its transit peptide by a form of exon shuffling. Surprisingly, phylogenetic analysis shows that rpl22 was transferred to the nucleus in a common ancestor of all flowering plants, at least 100 million years preceding its loss from the legume chloroplast lineage.  相似文献   

8.
N Kubo  M Takano  M Nishiguchi  K Kadowaki 《Gene》2001,271(2):193-201
A promiscuous nuclear sequence containing a mitochondrial DNA fragment was isolated from rice. Nucleotide sequence analysis reveals that the cDNA clone #21 carries a mitochondrial sequence homologous to the 3' portion of the rps19 gene followed by the 5' portion of the rps3 gene. The mitochondrial sequence is present in an antisense orientation. Sequence comparison of the #21 cDNA with the original mitochondrial sequence shows 99% similarity, suggesting a recent transfer event. Moreover, evidence for a lack of an RNA editing event and retaining of the group II intron sequence strongly suggests that the sequence was transferred from mitochondrion to the nucleus via DNA rather than RNA as an intermediate. The upstream region to the mitochondria-derived sequence shows homology to part of the vacuolar H(+)-ATPase B subunit (V-ATPase B) gene. Isolation of a functional V-ATPase B cDNA and its comparison with the #21 cDNA reveal a number of nucleotide substitutions resulting in many translational stop codons in the #21 cDNA. This indicates that the #21 cDNA sequence is not functional. Analysis of genomic sequences shows the presence of five intron sequences in the #21 cDNA, whereas the functional V-ATPase B gene has 14 introns. Of these, three exons and their internal two introns are homologous to each other, suggesting a duplication event of V-ATPase B genomic DNA. The results of this investigation strongly suggest that the mitochondrial sequence was integrated in an antisense orientation into the pre-existing V-ATPase B pseudogene that can be transcribed and spliced. This represents a case of unsuccessful gene transfer from mitochondrion to the nucleus.  相似文献   

9.

Background  

Many mitochondrial genes, especially ribosomal protein genes, have been frequently transferred as functional entities to the nucleus during plant evolution, often by an RNA-mediated process. A notable case of transfer involves the rps14 gene of three grasses (rice, maize, and wheat), which has been relocated to the intron of the nuclear sdh2 gene and which is expressed and targeted to the mitochondrion via alternative splicing and usage of the sdh2 targeting peptide. Although this transfer occurred at least 50 million years ago, i.e., in a common ancestor of these three grasses, it is striking that expressed, nearly intact pseudogenes of rps14 are retained in the mitochondrial genomes of both rice and wheat. To determine how ancient this transfer is, the extent to which mitochondrial rps14 has been retained and is expressed in grasses, and whether other transfers of rps14 have occurred in grasses and their relatives, we investigated the structure, expression, and phylogeny of mitochondrial and nuclear rps14 genes from 32 additional genera of grasses and from 9 other members of the Poales.  相似文献   

10.
Evolution of mitochondrial gene content: gene loss and transfer to the nucleus   总被引:22,自引:0,他引:22  
Mitochondrial gene content is highly variable across extant eukaryotes. The number of mitochondrial protein genes varies from 3 to 67, while tRNA gene content varies from 0 to 27. Moreover, these numbers exclude the many diverse lineages of non-respiring eukaryotes that lack a mitochondrial genome yet still contain a mitochondrion, albeit one often highly derived in ultrastructure and metabolic function, such as the hydrogenosome. Diversity in tRNA gene content primarily reflects differential usage of imported tRNAs of nuclear origin. In the case of protein genes, most of this diversity reflects differential degrees of functional gene transfer to the nucleus, with more minor contributions resulting from gene loss from the cell as a consequence of either substitution via a functional nuclear homolog or the cell's dispensation of the function of the gene product. The tempo and pattern of mitochondrial gene loss is highly episodic, both across the broad sweep of eukaryotes and within such well-studied groups as angiosperms. All animals, some plants, and certain other groups of eukaryotes are mired in profound stases in mitochondrial gene content, whereas other lineages have experienced relatively frequent gene loss. Loss and transfer to the nucleus of ribosomal protein and succinate dehydrogenase genes has been especially frequent, sporadic, and episodic during angiosperm evolution. Potential mechanisms for activation of transferred genes have been inferred, and intermediate stages in the process have been identified by comparative studies. Several hypotheses have been proposed for why mitochondrial genes are transferred to the nucleus, why mitochondria retain genomes, and why functional gene transfer is almost exclusively unidirectional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号