首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Heat shock protein (Hsp) 70/Hsp90-organizing proteins (Hop/Sti1) are thought to function as adaptor proteins to link the two chaperone machineries Hsp70 and Hsp90 during the processing of substrate proteins in eukaryotes. Hop (Hsp70/Hsp90-organizing protein) is composed of three tetratricopeptide repeat (TPR) domains, of which the first (TPR1) binds to Hsp70, the second (TPR2A) binds to Hsp90, and the third (TPR2B) is of unknown function. Contrary to most other eukaryotes, the homologue closest to the Caenorhabditis elegans Hop homologue R09E12.3 (CeHop) lacks the TPR1 domain and the short linker region connecting it to TPR2A, questioning the reported function as an Hsp90/Hsp70 adaptor in vitro and in vivo. We observed high constitutive expression levels of CeHop and detected significant phenotypes upon knockdown, linking the protein to functions in gonad development. Interestingly, we observed physical interactions with both chaperones Hsp70 and Hsp90, albeit only the interaction with Hsp90 is strong and inhibition of the Hsp90 ATPase activity can be observed upon binding of CeHop. However, the formation of ternary complexes with both chaperone machineries is impaired, as Hsp70 and Hsp90 compete for CeHop interaction sites, in particular as Hsp90 binds to both TPR domains simultaneously and requires both TPR domains for ATPase regulation. These results imply that, at least in C. elegans, essential functions of Hop exist which apparently do not depend on the simultaneous binding of Hsp90 and Hsp70 to Hop.  相似文献   

2.
In eukaryotic cells, Hsp90 chaperones assist late folding steps of many regulatory protein clients by a complex ATPase cycle. Binding of clients to Hsp90 requires prior interaction with Hsp70 and a transfer reaction that is mediated by the co-chaperone Sti1/Hop. Sti1 furthers client transfer by inhibiting Hsp90's ATPase activity. To better understand how Sti1 prepares Hsp90 for client acceptance, we characterized the interacting domains and analysed how Hsp90 and Sti1 mutually influence their conformational dynamics using hydrogen exchange mass spectrometry. Sti1 stabilizes several regions in all three domains of Hsp90 and slows down dissociation of the Hsp90 dimer. Our data suggest that Sti1 inhibits Hsp90's ATPase activity by preventing N-terminal dimerization and docking of the N-terminal domain with the middle domain. Using crosslinking and mass spectrometry we identified Sti1 segments, which are in close vicinity of the N-terminal domain of Hsp90. We found that the length of the linker between C-terminal dimerization domain and the C-terminal MEEVD motif is important for Sti1 association rates and propose a kinetic model for Sti1 binding to Hsp90.  相似文献   

3.
Environmental and physiological stresses such as heat shock, oxidative stress, heavy metals, and pathogenic conditions induce cellular stress response. This response is often mediated by heat shock proteins that function as molecular chaperones. A stress-inducible cochaperone, Sti1/Hop (Hsp organizer protein), functions as an adaptor protein that simultaneously binds with Hsp70 and Hsp90 to transfer client proteins from Hsp70 to Hsp90. However, the biological role of STI-1 in vivo is poorly understood in metazoans. Here, we report the characterization of the Caenorhabditis elegans homolog of Sti1/Hop, which is approximately 56% identical with human STI-1. C. elegans STI-1 (CeSTI-1) is expressed in the pharynx, intestine, nervous system, and muscle from larvae to adults. Analysis of proteins immunoprecipitated with anti-STI-1 antibody by mass spectrometry revealed that CeSTI-1 can bind with both Hsp70 and Hsp90 homologs like its mammalian counterpart. sti-1 expression is elevated by heat stress, and an sti-1(jh125) null mutant shows decreased fertility under heat stress conditions. These mutants also show abnormally high lethality in extreme heat and may be functioning with DAF-16 in thermotolerance. In addition, sti-1(jh125) mutants have a shortened life span. Our results confirm that CeSTI-1 is a cochaperone protein that may maintain homeostatic functions during episodes of stress and can regulate longevity in nematodes.  相似文献   

4.
Sti1 is a novel activator of the Ssa proteins   总被引:1,自引:0,他引:1  
The molecular chaperones Hsp70 and Hsp90 are involved in the folding and maturation of key regulatory proteins in eukaryotes. Of specific importance in this context is a ternary multichaperone complex in which Hsp70 and Hsp90 are connected by Hop. In Saccharomyces cerevisiae two components of the complex, yeast Hsp90 (yHsp90) and Sti1, the yeast homologue of Hop, had already been identified, but it remained to be shown which of the 14 different yeast Hsp70s are part of the Sti1 complex and what were the functional consequences resulting from this interaction. With a two-hybrid approach and co-immunoprecipitations, we show here that Sti1 specifically interacts with the Ssa group of the cytosolic yeast Hsp70 proteins. Using purified components, we reconstituted the dimeric Ssa1-Sti1 complex and the ternary Ssa1-Sti1-yHsp90 complex in vitro. The dissociation constant between Sti1 and Ssa1 was determined to be 2 orders of magnitude weaker than the affinity of Sti1 for yHsp90. Surprisingly, binding of Sti1 activates the ATPase of Ssa1 by a factor of about 200, which is in contrast to the behavior of Hop in the mammalian Hsp70 system. Analysis of the underlying activation mechanism revealed that ATP hydrolysis is rate-limiting in the Ssa1 ATPase cycle and that this step is accelerated by Sti1. Thus, Sti1 is a potent novel effector for the Hsp70 ATPase.  相似文献   

5.
Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37   总被引:7,自引:0,他引:7  
In vivo activation of client proteins by Hsp90 depends on its ATPase-coupled conformational cycle and on interaction with a variety of co-chaperone proteins. For some client proteins the co-chaperone Sti1/Hop/p60 acts as a "scaffold," recruiting Hsp70 and the bound client to Hsp90 early in the cycle and suppressing ATP turnover by Hsp90 during the loading phase. Recruitment of protein kinase clients to the Hsp90 complex appears to involve a specialized co-chaperone, Cdc37p/p50(cdc37), whose binding to Hsp90 is mutually exclusive of Sti1/Hop/p60. We now show that Cdc37p/p50(cdc37), like Sti1/Hop/p60, also suppresses ATP turnover by Hsp90 supporting the idea that client protein loading to Hsp90 requires a "relaxed" ADP-bound conformation. Like Sti1/Hop/p60, Cdc37p/p50(cdc37) binds to Hsp90 as a dimer, and the suppressed ATPase activity of Hsp90 is restored when Cdc37p/p50(cdc37) is displaced by the immunophilin co-chaperone Cpr6/Cyp40. However, unlike Sti1/Hop/p60, which can displace geldanamycin upon binding to Hsp90, Cdc37p/p50(cdc37) forms a stable complex with geldanamycin-bound Hsp90 and may be sequestered in geldanamycin-inhibited Hsp90 complexes in vivo.  相似文献   

6.
The Hop/Sti1 co-chaperone binds to both Hsp70 and Hsp90. Biochemical and co-crystallographic studies have suggested that the EEVD-containing C terminus of Hsp70 or Hsp90 binds specifically to one of the Hop tetratricopeptide repeat domains, TPR1 or TPR2a, respectively. Mutational analyses of Hsp70 and Hop were undertaken to better characterize interactions between the C terminus of Hsp70 and Hop domains. Surprisingly, truncation of EEVD plus as many as 34 additional amino acids from the Hsp70 C terminus did not reduce the ability of Hsp70 mutants to co-immunoprecipitate with Hop, although further truncation eliminated Hop binding. Hop point mutations targeting a carboxylate clamp position in TPR1 disrupted Hsp70 binding, as was expected; however, similar point mutations in TPR2a or TPR2b also inhibited Hsp70 binding in some settings. Using a yeast-based in vivo assay for Hop function, wild type Hop and TPR2b mutants could fully complement deletion of Sti1p; TPR1 and TPR2a point mutants could partially restore activity. Conformations of Hop and Hop mutants were probed by limited proteolysis. The TPR1 mutant digested in a similar manner to wild type; however, TPR2a and TPR2b mutants each displayed greater resistance to chymotryptic digestion. All point mutants retained an ability to dimerize, and none appeared to be grossly misfolded. These results raise questions about current models for Hop/Hsp70 interaction.  相似文献   

7.
《Journal of molecular biology》2019,431(15):2729-2746
Members of the Hsp90 and Hsp70 families of molecular chaperones are imp\ortant for the maintenance of protein homeostasis and cellular recovery following environmental stresses, such as heat and oxidative stress. Moreover, the two chaperones can collaborate in protein remodeling and activation. In higher eukaryotes, Hsp90 and Hsp70 form a functionally active complex with Hop (Hsp90–Hsp70 organizing protein) acting as a bridge between the two chaperones. In bacteria, which do not contain a Hop homolog, Hsp90 and Hsp70, DnaK, directly interact during protein remodeling. Although yeast possesses a Hop-like protein, Sti1, Hsp90, and Hsp70 can directly interact in yeast in the absence of Sti1. Previous studies showed that residues in the middle domain of Escherichia coli Hsp90 are important for interaction with the J-protein binding region of DnaK. The results did not distinguish between the possibility that (i) these sites were involved in direct interaction and (ii) the residues in these sites participate in conformational changes which are transduced to other sites on Hsp90 and DnaK that are involved in the direct interaction. Here we show by crosslinking experiments that the direct interaction is between a site in the middle domain of Hsp90 and the J-protein binding site of Hsp70 in both E. coli and yeast. Moreover, J-protein promotes the Hsp70–Hsp90 interaction in the presence of ATP, likely by converting Hsp70 into the ADP-bound conformation. The identification of the protein–protein interaction site is anticipated to lead to a better understanding of the collaboration between the two chaperones in protein remodeling.  相似文献   

8.
Hsp70 and Hsp90 protein chaperones cooperate in a protein-folding pathway required by many "client" proteins. The co-chaperone Sti1p coordinates functions of Hsp70 and Hsp90 in this pathway. Sti1p has three tetratricopeptide repeat (TPR) domains. TPR1 binds Hsp70, TPR2a binds Hsp90, and the ligand for TPR2b is unknown. Although Sti1p is thought to be dedicated to the client folding pathway, we earlier showed that Sti1p regulated Hsp70, independently of Hsp90, in a way that impairs yeast [PSI+] prion propagation. Using this prion system to monitor Sti1p regulation of Hsp70 and an Hsp90-inhibiting compound to monitor Hsp90 regulation, we identified Sti1p mutations that separately affect Hsp70 and Hsp90. TPR1 mutations impaired Sti1p regulation of Hsp70, but deletion of TPR2a and TPR2b did not. Conversely, TPR2a and TPR2b mutations impaired Sti1p regulation of Hsp90, but deletion of TPR1 did not. All Sti1p mutations variously impaired the client folding pathway, which requires both Hsp70 and Hsp90. Thus, Sti1p regulated Hsp70 and Hsp90 separately, Hsp90 is implicated as a TPR2b ligand, and mutations separately affecting regulation of either chaperone impair a pathway that is dependent upon both. We further demonstrate that client folding depended upon bridging of Hsp70 and Hsp90 by Sti1p and find conservation of the independent regulation of Hsp70 and Hsp90 by human Hop1.  相似文献   

9.
Hsp70/Hsp90 organizing protein (Hop) coordinates Hsp70 and Hsp90 interactions during assembly of steroid receptor complexes. Hop is composed of three tetratricopeptide repeat (TPR) domains (TPR1, TPR2a, and TPR2b) and two DP repeat domains (DP1 and DP2); Hsp70 interacts directly with TPR1 and Hsp90 with TPR2a, but the function of other domains is less clear. Human Hop and the Saccharomyces cerevisiae ortholog Sti1p, which share a common domain arrangement, are functionally interchangeable in a yeast growth assay and in supporting the efficient maturation of glucocorticoid receptor (GR) function. To gain a better understanding of Hop structure/function relationships, we have extended comparisons to the Hop ortholog from Drosophila melanogaster (dHop), which lacks DP1. Although dHop binds Hsp70 and Hsp90 and can rescue the growth defect in yeast lacking Sti1p, dHop failed to support GR function in yeast, which suggests a novel role for Hop in GR maturation that goes beyond Hsp binding. Chimeric Hop constructs combining human and Drosophila domains demonstrate that the C-terminal domain DP2 is critical for this previously unrecognized role in steroid receptor function.  相似文献   

10.
The molecular chaperone Hsp (heat-shock protein) 90 is critical for the activity of diverse cellular client proteins. In a current model, client proteins are transferred from Hsp70 to Hsp90 in a process mediated by the co-chaperone Sti1/Hop, which may simultaneously interact with Hsp70 and Hsp90 via separate TPR (tetratricopeptide repeat) domains, but the mechanism and in vivo importance of this function is unclear. In the present study, we used truncated forms of Sti1 to determine the minimal regions required for the Hsp70 and Hsp90 interaction, as well as Sti1 dimerization. We found that both TPR1 and TPR2B contribute to the Hsp70 interaction in vivo and that mutations in both TPR1 and TPR2B were required to disrupt the in vitro interaction of Sti1 with the C-terminus of the Hsp70 Ssa1. The TPR2A domain was required for the Hsp90 interaction in vivo, but the isolated TPR2A domain was not sufficient for the Hsp90 interaction unless combined with the TPR2B domain. However, isolated TPR2A was both necessary and sufficient for purified Sti1 to migrate as a dimer in solution. The DP2 domain, which is essential for in vivo function, was dispensable for the Hsp70 and Hsp90 interaction, as well as Sti1 dimerization. As evidence for the role of Sti1 in mediating the interaction between Hsp70 and Hsp90 in vivo, we identified Sti1 mutants that result in reduced recovery of Hsp70 in Hsp90 complexes. We also identified two Hsp90 mutants that exhibit a reduced Hsp70 interaction, which may help clarify the mechanism of client transfer between the two molecular chaperones.  相似文献   

11.
Substrate transfer from the chaperone Hsp70 to Hsp90   总被引:5,自引:0,他引:5  
Hsp90 is an essential chaperone protein in the cytosol of eukaryotic cells. It cooperates with the chaperone Hsp70 in defined complexes mediated by the adaptor protein Hop (Sti1 in yeast). These Hsp70/Hsp90 chaperone complexes play a major role in the folding and maturation of key regulatory proteins in eukaryotes. Understanding how non-native client proteins are transferred from one chaperone to the other in these complexes is of central importance. Here, we analyzed the molecular mechanism of this reaction using luciferase as a substrate protein. Our experiments define a pathway for luciferase folding in the Hsp70/Hsp90 chaperone system. They demonstrate that Hsp70 is a potent capture device for unfolded protein while Hsp90 is not very efficient in this reaction. When Hsp90 is absent, in contrast to the in vivo situation, Hsp70 together with the two effector proteins Ydj1 and Sti1 exhibits chaperone activity towards luciferase. In the presence of the complete chaperone system, Hsp90 exhibits a specific positive effect only in the presence of Ydj1. If this factor is absent, the transferred luciferase is trapped on Hsp90 in an inactive conformation. Interestingly, identical results were observed for the yeast and the human chaperone systems although the regulatory function of human Hop is completely different from that of yeast Sti1.  相似文献   

12.
13.
Sti1/Hop is a modular protein required for the transfer of client proteins from the Hsp70 to the Hsp90 chaperone system in eukaryotes. It binds Hsp70 and Hsp90 simultaneously via TPR (tetratricopeptide repeat) domains. Sti1/Hop contains three TPR domains (TPR1, TPR2A and TPR2B) and two domains of unknown structure (DP1 and DP2). We show that TPR2A is the high affinity Hsp90-binding site and TPR1 and TPR2B bind Hsp70 with moderate affinity. The DP domains exhibit highly homologous α-helical folds as determined by NMR. These, and especially DP2, are important for client activation in vivo. The core module of Sti1 for Hsp90 inhibition is the TPR2A-TPR2B segment. In the crystal structure, the two TPR domains are connected via a rigid linker orienting their peptide-binding sites in opposite directions and allowing the simultaneous binding of TPR2A to the Hsp90 C-terminal domain and of TPR2B to Hsp70. Both domains also interact with the Hsp90 middle domain. The accessory TPR1-DP1 module may serve as an Hsp70-client delivery system for the TPR2A-TPR2B-DP2 segment, which is required for client activation in vivo.  相似文献   

14.
The Saccharomyces cerevisiae [PSI(+)] prion is believed to be a self-propagating cytoplasmic amyloid. Earlier characterization of HSP70 (SSA1) mutations suggested that [PSI(+)] propagation is impaired by alterations that enhance Ssa1p's substrate binding. This impairment is overcome by second-site mutations in Ssa1p's conserved C-terminal motif (GPTVEEVD), which mediates interactions with tetratricopeptide repeat (TPR) cochaperones. Sti1p, a TPR cochaperone homolog of mammalian Hop1 (Hsp70/90 organizing protein), activates Ssa1p ATPase, which promotes substrate binding by Ssa1p. Here we find that in SSA1-21 cells depletion of Sti1p improved [PSI(+)] propagation, while excess Sti1p weakened it. In contrast, depletion of Fes1p, a nucleotide exchange factor for Ssa1p that facilitates substrate release, weakened [PSI(+)] propagation, while overproducing Fes1p improved it. Therefore, alterations of Hsp70 cochaperones that promote or prolong Hsp70 substrate binding impair [PSI(+)] propagation. We also find that the GPTVEEVD motif is important for physical interaction with Hsp40 (Ydj1p), another Hsp70 cochaperone that promotes substrate binding but is dispensable for viability. We further find that depleting Cpr7p, an Hsp90 TPR cochaperone and CyP-40 cyclophilin homolog, improved [PSI(+)] propagation in SSA1 mutants. Although Cpr7p and Sti1p are Hsp90 cochaperones, we provide evidence that Hsp90 is not involved in [PSI(+)] propagation, suggesting that Sti1p and Cpr7p functionally interact with Hsp70 independently of Hsp90.  相似文献   

15.
Through simultaneous interactions with Hsp70 and Hsp90 via separate tetratricopeptide repeat (TPR) domains, the cochaperone protein Hop/Sti1 has been proposed to play a critical role in the transfer of client proteins from Hsp70 to Hsp90. However, no prior mutational analysis demonstrating a critical in vivo role for the TPR domains of Sti1 has been reported. We used site-directed mutagenesis of the TPR domains combined with a genetic screen to isolate mutations that disrupt Sti1 function. A single amino acid alteration in TPR2A disrupted Hsp90 interaction in vivo but did not significantly affect function. However, deletion of a conserved residue in TPR2A or mutations in the carboxy-terminal DP2 domain completely disrupted Sti1 function. Surprisingly, mutations in TPR1, previously shown to interact with Hsp70, were not sufficient to disrupt in vivo functions unless combined with mutations in TPR2B, suggesting that TPR1 and TPR2B have redundant or overlapping in vivo functions. We further examined the genetic and physical interaction of Sti1 with a mutant form of Hsp90, providing insight into the importance of the TPR2A domain of Sti1 in regulating Hsp90 function.  相似文献   

16.
Hsp90 is critical for the regulation and activation of numerous client proteins critical for diverse functions such as cell growth, differentiation, and reproduction. Cytosolic Hsp90 function is dependent on a battery of co-chaperone proteins that regulate the ATPase activity of Hsp90 function or direct Hsp90 to interact with specific client proteins. Little is known about how Hsp90 complexes vary between different organisms and how this affects the scope of clients that are activated by Hsp90. This study determined whether ten distinct Hsp90 co-chaperones were encoded by genes in 19 disparate eukaryotic organisms. Surprisingly, none of the co-chaperones were present in all organisms. The co-chaperone Hop/Sti1 was most widely dispersed (18 out of 19 species), while orthologs of Cdc37, which is critical for the stability and activation of diverse protein kinases in yeast and mammals, were identified in only nine out of 19 species examined. The organism with the smallest proteome, Encephalitozoon cuniculi, contained only three of these co-chaperones, suggesting a correlation between client diversity and the complexity of the Hsp90 co-chaperone machine. Our results suggest co-chaperones are critical for cytosolic Hsp90 function in vivo, but that the composition of Hsp90 complexes varies depending on the specialized protein folding requirements of divergent species.  相似文献   

17.
18.
19.
Wang X  Lu XA  Song X  Zhuo W  Jia L  Jiang Y  Luo Y 《The Biochemical journal》2012,441(1):387-397
Hsp90 (heat-shock protein 90) is one of the most important molecular chaperones in eukaryotes. Hsp90 facilitates the maturation, activation or degradation of its client proteins. It is now well accepted that both ATP binding and co-chaperone association are involved in regulating the Hsp90 chaperone machinery. However, other factors such as post-translational modifications are becoming increasingly recognized as being involved in this process. Recent studies have reported that phosphorylation of Hsp90 plays an unanticipated role in this process. In the present study, we systematically investigated the impact of phosphorylation of a single residue (Thr90) of Hsp90α (pThr90-Hsp90α) on its chaperone machinery. We demonstrate that protein kinase A specifically phosphorylates Hsp90α at Thr90, and that the pThr9090-Hsp90α level is significantly elevated in proliferating cells. Thr90 phosphorylation affects the binding affinity of Hsp90α to ATP. Subsequent examination of the interactions of Hsp90α with co-chaperones reveals that Thr90 phosphorylation specifically regulates the association of a subset of co-chaperones with Hsp90α. The Hsp90α T90E phosphor-mimic mutant exhibits increased association with Aha1 (activator of Hsp90 ATPase homologue 1), p23, PP5 (protein phosphatase 5) and CHIP (C-terminus of Hsp70-interacting protein), and decreased binding affinity with Hsp70, Cdc37 (cell division cycle 37) and Hop [Hsc70 (heat-shock cognate protein 70)/Hsp90-organizing protein], whereas its interaction with FKBP52 (FK506-binding protein 4) is only moderately affected. Moreover, we find that the ability of the T90E mutant to form complexes with its clients, such as Src, Akt or PKCγ (protein kinase Cγ), is dramatically impaired, suggesting that phosphorylation affects its chaperoning activity. Taken together, the results of the present study demonstrate that Thr90 phosphorylation is actively engaged in the regulation of the Hsp90α chaperone machinery and should be a generic determinant for the cycling of Hsp90α chaperone function.  相似文献   

20.
The heat shock protein 90 plays a pivotal role in the life cycle control of Leishmania donovani promoting the fast‐growing insect stage of this parasite. Equally important for insect stage growth is the co‐chaperone Sti1. We show that replacement of Sti1 is only feasible in the presence of additional Sti1 transgenes indicating an essential role. To better understand the impact of Sti1 and its interaction with Hsp90, we performed a mutational analysis of Hsp90. We established that a single amino acid exchange in the Leishmania Hsp90 renders that protein resistant to the inhibitor radicicol (RAD), yet does not interfere with its functionality. Based on this RAD‐resistant Hsp90, we established a combined chemical knockout/gene complementation (CKC) approach. We can show that Hsp90 function is required in both insect and mammalian life stages and that the Sti1‐binding motif of Hsp90 is crucial for proliferation of insect and mammalian stages of the parasite. The Sti1‐binding motif in Leishmania Hsp90 is suboptimal – optimizing the motif increased initial intracellular proliferation underscoring the importance of the Hsp90–Sti1 interaction for this important parasitic protozoan. The CKC strategy we developed will allow the future analysis of more Hsp90 domains and motifs in parasite viability and infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号