首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures.  相似文献   

2.
Bacteria often inhabit and exhibit distinct dynamical behaviors at interfaces, but the physical mechanisms by which interfaces cue bacteria are still poorly understood. In this work, we use interfaces formed between coexisting isotropic and liquid crystal (LC) phases to provide insight into how mechanical anisotropy and defects in LC ordering influence fundamental bacterial behaviors. Specifically, we measure the anisotropic elasticity of the LC to change fundamental behaviors of motile, rod-shaped Proteus mirabilis cells (3 μm in length) adsorbed to the LC interface, including the orientation, speed, and direction of motion of the cells (the cells follow the director of the LC at the interface), transient multicellular self-association, and dynamical escape from the interface. In this latter context, we measure motile bacteria to escape from the interfaces preferentially into the isotropic phase, consistent with the predicted effects of an elastic penalty associated with strain of the LC about the bacteria when escape occurs into the nematic phase. We also observe boojums (surface topological defects) present at the interfaces of droplets of nematic LC (tactoids) to play a central role in mediating the escape of motile bacteria from the LC interface. Whereas the bacteria escape the interface of nematic droplets via a mechanism that involved nematic director-guided motion through one of the two boojums, for isotropic droplets in a continuous nematic phase, the elasticity of the LC generally prevented single bacteria from escaping. Instead, assemblies of bacteria piled up at boojums and escape occurred through a cooperative, multicellular phenomenon. Overall, our studies show that the dynamical behaviors of motile bacteria at anisotropic LC interfaces can be understood within a conceptual framework that reflects the interplay of LC elasticity, surface-induced order, and topological defects.  相似文献   

3.
We developed a localized surface plasmon resonance (LSPR)-based label-free optical biosensor for detection of salbutamol (Sal). Hollow gold nanoparticles (HGNs) which deposited on transparent indium tin oxide (ITO) film coated glass was used to sensing platform. Antibody against Sal was immobilized on HGN surface to recognize the target Sal molecules. Thus, the change of LSPR peak was proportional to the concentration of Sal in the solution. The experimental results demonstrated that the LSPR immunosensor possessed a good sensitivity and a high selectivity for Sal. The detection range for Sal was from 0.05 to 0.8 μg/mL with a correlation coefficient of 0.996. The biosensor was applied for the detection for Sal in spiked animal feed and pork liver samples, and the recoveries were in the range of 97–105 %. Therefore, it is expected that this approach may offer a new method in designing label-free LSPR immunosensor for detection of small molecules.  相似文献   

4.
Bacteria often inhabit and exhibit distinct dynamical behaviors at interfaces, but the physical mechanisms by which interfaces cue bacteria are still poorly understood. In this work, we use interfaces formed between coexisting isotropic and liquid crystal (LC) phases to provide insight into how mechanical anisotropy and defects in LC ordering influence fundamental bacterial behaviors. Specifically, we measure the anisotropic elasticity of the LC to change fundamental behaviors of motile, rod-shaped Proteus mirabilis cells (3 μm in length) adsorbed to the LC interface, including the orientation, speed, and direction of motion of the cells (the cells follow the director of the LC at the interface), transient multicellular self-association, and dynamical escape from the interface. In this latter context, we measure motile bacteria to escape from the interfaces preferentially into the isotropic phase, consistent with the predicted effects of an elastic penalty associated with strain of the LC about the bacteria when escape occurs into the nematic phase. We also observe boojums (surface topological defects) present at the interfaces of droplets of nematic LC (tactoids) to play a central role in mediating the escape of motile bacteria from the LC interface. Whereas the bacteria escape the interface of nematic droplets via a mechanism that involved nematic director-guided motion through one of the two boojums, for isotropic droplets in a continuous nematic phase, the elasticity of the LC generally prevented single bacteria from escaping. Instead, assemblies of bacteria piled up at boojums and escape occurred through a cooperative, multicellular phenomenon. Overall, our studies show that the dynamical behaviors of motile bacteria at anisotropic LC interfaces can be understood within a conceptual framework that reflects the interplay of LC elasticity, surface-induced order, and topological defects.  相似文献   

5.
In this paper, a tunable plasmonic absorber based on TiN-nanosphere/liquid crystal (LC) nanocomposite in visible and near-infrared regions is proposed. TiN-nanosphere/LC nanocomposite is a combination of titanium nitride (TiN) nanospheres dispersed in a host of LC and plays the main role in post fabrication tunability. The proposed absorber has three more than 90% absorption peaks and the absorption tunability of about 76 nm. It is shown that TiN-nanospheres are able to support localized surface plasmon resonance (LSPR). The Maxwell-Garnett theory is utilized to approximate the permittivity of the composite structure. Also, the effect of geometric parameters on the absorption is studied. Moreover, a single sheet of graphene is utilized to compensate the decrement of the absorption caused by the geometric parameters.  相似文献   

6.
The conditions under which the localized surface plasmon resonance (LSPR) model can be applied to the calculation of surface-enhanced Raman scattering (SERS) enhancement factors have been questioned because the chemical effect presents simultaneously with LSPR effect, resulting in calculations that are not always consistent with the measured data. The SERS spectra of crystal violet (CV) molecules on single, dimer, trimer, and aggregates of silver microparticles surface-modified with nanostructures (MSMN) were obtained. It is found that the chemical effect is determined by the chemical adsorption behavior of CV molecules on single particle. As more particles are introduced as amplifiers, to assemble dimer, trimer, and aggregates, no new SERS signals related to the chemical effect can be observed, except for the further enhancement to the original signals. The further enhancement is attributed to the LSPR effect from the electromagnetic coupling with introduced particles. This is also demonstrated by dark field scattering. The LSPR theoretical values of single, dimer, trimer, and aggregates of MSMNs should fit the measured enhancement factor (G LSPR) after correcting the SERS enhancement factor (G SERS) with the chemical enhancement factor on the single particle (G Chem-Sgl), i.e., G LSPR?=?G SERS/G Chem-Sgl. Tip-enhanced Raman spectroscopy with a gold nanoparticle further implies that this could be extended to nanoparticle systems. This work provides an effective and simple route, whereby only the chemical effect from a single particle needs to be considered when studying the fit between the LSPR model and the measured LSPR enhancement factor.  相似文献   

7.
Gold–silver core–shell triangular nanoprisms (Au/AgTNPs) were grown onto transparent indium tin oxide (ITO) thin film-coated glass substrate through a seed-mediated growth method without using peculiar binder molecules. The resulting Au/AgTNPs were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction, UV–vis spectroscopy, and cyclic voltammograms. The peak of dipolar plasmonic resonance was located at near infrared region of ~700 nm, which showed the refractive index (RI) sensitivity of 248 nm/RIU. Moreover, thin gold shells were electrodeposited onto the surface of Au/AgTNPs in order to stabilize nanoparticles. Compared with the Au/AgTNPs, this peak of localized surface plasmon resonance (LSPR) was a little red-shift and decreased slightly in intensity. The refractive index sensitivity was estimated to be 287 nm/RIU, which showed high sensitivity as a LSPR sensing platform. Those triangular nanoprisms deposited on the ITO substrate could be further functionalized to fabricate LSPR biosensors. Results of this research show a possibility of improving LSPR sensor by using core–shell nanostructures.  相似文献   

8.

Aptamers are DNA or RNA single-stranded molecules that bind specifically to target molecules with high affinity. Function of nucleic acid aptamers is based on organized tertiary structure of them that is related to primary sequence, length of nucleic acid molecule, and environmental conditions. Herein, a localized surface plasmon resonance (LSPR) nanobioprobe has been developed based on specific aptamer-conjugated gold nanoparticles for rapid detection of methamphetamine. Detection of methamphetamine was studied via monitoring the gold nanoparticles (GNPs) LSPR band alterations in the presence of different concentrations. The covalent conjugation has been confirmed with FT-IR spectroscopy, and size alterations of gold nanoparticles before and after the conjugation state were monitored using dynamic light scattering (DLS) technique. The results show high affinity of aptamer to methamphetamine. Moreover, the results show conjugated aptamer with GNP in different concentrations of methamphetamine that contribute to color changes that is visible with unaided eye. Also, 14 nm LSPR shift was seen after conjugation of aptamer with GNP. Nanoparticle diameter after conjugation with aptamer was increased from 30 to 91 nm and decreased after incubation with methamphetamine (due to folding) from 91 to 84 nm. Detection limit of this designed nanoprobe is 500 nM. Plasmonic nanoparticle-based nanobioprobe is a new field for development of sensitive detection systems.

  相似文献   

9.
Doping nematic liquid crystals with nonracemic chiral compounds induces a twisted nematic (cholesteric) phase. The ability of solutes to twist the nematic phase may be related to the overall shape of the chiral dopant and consequently to its absolute configuration. The cholesteric induction is therefore a powerful tool complementary to chiroptical techniques to obtain stereochemical information on chiral molecules.  相似文献   

10.
ABSTRACT

Multi-level theory simulations have been performed to model a number of important molecular properties of a bent-core nematic liquid crystal (LC) A131. These important properties include molecular conformations, molecular Raman spectra, differential polarisability ratios, molecular crystals packing, atomic LC structures, order parameters, and Raman depolarisation spectra. The simulations contain four theory levels, involving molecular quantum chemistry, molecular crystal packing, super cell density functional based tight binding optimisation, and super cell molecular dynamics calculations. To heat initial optimised super cell structures, molecular dynamics simulations reveal phase transitions to uniaxial and biaxial nematic phases from molecular crystals. LC atomic structures result in direct calculations on order parameters, which can be further applied to computations on Raman depolarisation spectra with differential polarisability ratios, obtained in the molecular quantum chemistry theory level. The good agreement of simulated Raman depolarisation spectra with the experiment provides a detailed analysis on the unusually low values of experimental uniaxial order parameters.  相似文献   

11.
Enantioselective segregation has been attained in the Bx phase of a novel substituted oxadiazole achiral banana-shaped liquid crystal (LC) without introducing any chiral species. This bent-core molecule exhibits LC polymorphism; the higher temperature nematic (N) phase and the lower temperature banana smectic phase (Bx phase), in which spontaneous chiral segregation with (+) and (-) chiral domains occurs with equal probabilities. In twisted cell geometries, extrinsically induced twisted N structures are formed and result in intrinsically chiral conglomerate when the temperature is decreased from N to Bx. The observed optical activity in homochiral Bx phase is comparable to those theoretically predicted and is proportional to the cell thickness.  相似文献   

12.
Xiao D  Wada T  Inoue Y 《Chirality》2009,21(1):110-113
In order to understand the roles of moderately organized media and the factors controlling the chirality transfer in supramolecular photochirogenesis, enantiodifferentiating photoisomerization of (Z)-cyclooctene to the chiral (E)-isomer (1E) has been performed for the first time in liquid crystal (LC) systems such as lyotropic LCs of poly(gamma-benzyl-L-glutamate) (PBLG), difluorobenzene derivatives mixture, and thermotropic cholesteryl oleyl carbonate LCs. Basically, the as-employed LCs provided small enantiomer excess (<5%). It is interesting that lyotropic PBLG LCs give contrasting results in cholesteric and nematic mesophases, revealing the importance of the relevant mesophase structure of LC. Selective excitation in achiral difluorobenzene LC doped with a chiral sensitizer facilitates us to conclude that the LC's chiral spatial arrangement is not sufficient or suitable to induce appreciable enantiomeric excess (ee) in the product, but the existence of molecular chirality (of a chiral sensitizer) is essential to afford an optically active (nonracemic) product at least in the present photosensitization system. The photosensitizations in thermotropic LCs further reveal that the product's ee can be manipulated by the LC mesophase not directly but through the sensitizer's conformational changes induced by the supramolecular interactions with the surrounding LC structure.  相似文献   

13.
Localized surface plasmon resonance (LSPR) properties of Au-Ag-Au three-layered nanoshell are investigated theoretically using the quasi-static electricity. Triple-bands LSPRs have been observed in the absorption spectrum. Both the peak wavelength and intensity could be fine tuned by altering the thickness and radius of the separate Ag layer. The properties and physical origin of the LSPR in the Au-Ag-Au three-layered nanoshell is much different from that of Au-dielectric-Au three-layered nanoshell. The corresponding physical mechanism has been illustrated by plotting the local electric field patterns and analyzing the interaction of the surface charges from different metal interfaces. Although the LSPR of Au-Ag-Au three-layered nanoshell is affected by the plasmon hybridization from all metal surfaces, it has been found that the plasmon coupling in different metallic layer takes main effect on the LSPR properties of different absorption peaks. These results indicate that the different type of metallic layers appearing alternately in the multilayered nanoshells could create abundant tunable LSPR modes, which provides potential for multiplex biosensing based on LSPR.  相似文献   

14.
Excessive UV exposures are commonly associated with adverse health effects, but proper amounts of UV are beneficial for people and essential in the natural production of Vitamin D(3) in skin. Two methods have been developed for direct evaluation of the Vitamin D synthetic capacity of sunlight (and artificial UV sources). The first one uses an in vitro model of Vitamin D(3) synthesis (ethanol solution of 7-dehydrocholesterol, 7-DHC), and concentration of previtamin D(3) accumulated during an UV exposure is determined using specially designed spectrophotometric analysis. The second method utilizes photoisomerization of provitamin D in nematic liquid crystalline (LC) matrix, and visual estimation of accumulated previtamin D becomes possible due to special design of a LC cell. This user-friendly method is appropriate for personal UV dosimetry and may have wide application in tanning saloons, in clinical dermatology and UV therapy.  相似文献   

15.
A new optical sensor based on the localized surface plasmon resonance (LSPR) in 2D arrays of silver nanoparticles (AgNPs) combined with a differential optical measurement method is developed. LSPR substrates comprised of self-assembled, 2D arrays of AgNPs exhibit coherent plasmon coupling manifested as a sharp peak in the blue spectral region. A bottom-up approach was used to fabricate reproducible and cost-effective substrates with a figure of merit (FOM) of ~24. The LSPR shift was determined by measuring the difference between light extinction at two wavelengths selected on each side of the sharp peak. The sharpness of the coherent plasmon resonance together with the differential measurement method enabled a record sensing resolution in bulk for a LSPR sensor of ~4.8E-6 RIU.  相似文献   

16.
Observation that DNA molecules in bacteriophage capsids preferentially form torus type of knots provided a sensitive gauge to evaluate various models of DNA arrangement in phage heads. Only models resulting in a preponderance of torus knots could be considered as close to reality. Recent studies revealed that experimentally observed enrichment of torus knots can be qualitatively reproduced in numerical simulations that include a potential inducing nematic arrangement of tightly packed DNA molecules within phage capsids. Here, we investigate what aspects of the nematic arrangement are crucial for inducing formation of torus knots. Our results indicate that the effective stiffening of DNA by the nematic arrangement not only promotes knotting in general but is also the decisive factor in promoting formation of DNA torus knots in phage capsids.  相似文献   

17.
18.
Solution of chlorophyll a in liquid crystals mixture (MBBA + EBBA) was investigated. Chl molecules are in LC in low electric field oriented. They can be divided into two groups: one strongly interacting with LC and subjected to reorientation by the electric field, and another weakly interacting with the solvent and insensitive to the voltage applied. The emission spectrum of the first type of chlorophyll is strongly perturbed. At higher voltages, the pigment molecules orientation in the plane of the electrode is another. Pigment absorption and emission anisotropy provides information about the reorientation of LC molecules. Even at high (10?3M) Chl concentration and regular pigment array, the interaction between the pigment and solvent exceeds pigment-pigment interaction because the solvent appears to have a stronger influence on the Chl spectrum.  相似文献   

19.
Because Langerhans cells (LC) in peripheral tissues are generally "immature" cells with poor lymphostimulatory activity, the contribution of immune responses initiated by LC to the pathogenesis of pulmonary LC histiocytosis (LCH) has been uncertain. In this study we demonstrate that LC accumulating in LCH granulomas are phenotypically similar to mature lymphostimulatory dendritic cells present in lymphoid organs. LC in LCH granulomas intensely expressed B7-1 and B7-2 molecules, whereas normal pulmonary LC and LC accumulating in other pathologic lung disorders did not express these costimulatory molecules. The presence of B7+ LC in LCH granulomas was associated with the expression in these lesions, but not at other sites in the lung, of a unique profile of cytokines (presence of GM-CSF, TNF-alpha, and IL-1beta and the absence of IL-10) that is known to promote the in vitro differentiation of LC into cells expressing a lymphostimulatory phenotype. Finally, LCH granulomas were the only site where CD154-positive T cells could be identified in close contact with LC intensely expressing CD40 Ags. Taken together, these results strongly support the idea that an abnormal immune response initiated by LC may participate in the pathogenesis of pulmonary LCH, and suggest that therapeutic strategies aimed at modifying the lymphostimulatory phenotype of LC may be useful in the treatment of this disorder.  相似文献   

20.
A Fiber-Optic Localized Surface Plasmon Resonance (FO LSPR) sensor was fabricated using spherical gold nanoparticles (Au NPs) on a flattened end-face of the optical fiber. The Au NPs were easily synthesized by the Turkevich method and were immobilized on the end-face of the optical fiber by using a self-assembled monolayer (SAM). In order to examine the possibility of its application as a biosensor for label-free immunoassays, the fabricated FO LSPR sensor was used for the detection of the antibody-antigen reaction of interferon-gamma (IFN-γ) and the limit of detection (LOD) was approximately 2pg/ml. Herein, The antibodies and bovine serum albumins (BSAs) were immobilized on the Au NPs by physisorption. Also, the FO LSPR sensor was used for the detection of a prostate-specific antigen (PSA) and the LOD was 1pg/ml below. The fabricated FO LSPR sensor can be used for real-time label-free immunoassay having fast detection time, high resolution and sensitivity. In addition, the proposed sensor platform has the advantages of low cost, simple optical setup, remote sensing, simple fabrication, real-time detection, low sample volume, and potential application to in-vivo detection systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号