首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 540 毫秒
1.
The structure of a new antibiotic of the iturin group, bacillomycin F, has been demonstrated. It is a mixture of homologous peptidolipids, essentially C51H80N12O14 and C52N82N12O14. The lipid moiety consists of minor isoC15, anteisoC15 beta-amino acids and major isoC16, isoC17 and anteisoC17 beta-amino acids. The peptide sequence was determined by studying the peptides obtained after mild HCl hydrolysis and by Edman degradation of bacillomycin F treated with N-bromosuccinimide. The sequence was confirmed by two-dimensional NMR spectrometry and fast-atom-bombardment mass spectrometry gave the molecular masses of the homologous compounds. Bacillomycin F is a cyclic peptidolipid; its complete structure is given in the paper.  相似文献   

2.
The structures of the O-polysaccharides of the lipopolysaccharides of Proteus mirabilis O7 and O49 were determined by chemical methods, mass spectrometry, including MS/MS, and NMR spectroscopy, including experiments run in an H2O/D2O mixture to reveal correlations for NH protons. The O-polysaccharides were found to contain N-carboxyacetyl (malonyl) and N-(3-carboxypropanoyl) (succinyl) derivatives of 4-amino-4,6-dideoxyglucose (4-amino-4-deoxyquinovose, Qui4N), respectively. The behavior of Qui4N derivatives with the dicarboxylic acids under conditions of acid hydrolysis and methanolysis was studied using GLC-MS.  相似文献   

3.
The structure of bacillomycin L, an antifungal agent isolated from the culture medium of a strain of Bacillus subtilis, has been investigated. The peptide moiety contains one mole each of D-aspartic acid, L-aspartic acid, L-glutamine, L-serine, D-serine, L-threonine, and D-tyrosine. The lipid moiety is a mixture of 3-amino-12-methyltridecanoic acid (46%), 3-amino-12-methyltetradecanoic acid (38%, 3-amino-14-methylpentadecanoic acid (11%), and two minor homologues. The peptide sequence and the cyclic structure were determined by structural analysis of the peptides obtained by mild acid hydrolysis. The molecular weight was determined by the thermoosmotic method; this showed that bacillomycin L has a monomeric structure which is given in Formula 1.  相似文献   

4.
Strain BAS50, isolated from a petroleum reservoir at a depth of 1,500 m and identified as Bacillus licheniformis, grew and produced a lipopeptide surfactant when cultured on a variety of substrates at salinities of up to 13% NaCl. Surfactant production occurred both aerobically and anaerobically and was optimal at 5% NaCl and temperatures between 35 and 45 degrees C. The biosurfactant, termed lichenysin A, was purified and chemically characterized. A tentative structure and composition for the surfactant are described. Lichenysin A is a mixture of lipopeptides, with the major components ranging in size from 1,006 to 1,034 Da. The lipid moiety contains a mixture of 14 linear and branched beta-hydroxy fatty acids ranging in size from C12 to C17. There are seven amino acids per molecule. The peptide moiety is composed of the following amino acids: glutamic acid as the N-terminal amino acid, asparagine, valine, leucine, and isoleucine as the C-terminal amino acid, at a ratio of 1.1:1.1:1.0:2.8:1.0, respectively. Purified lichenysin A decreases the surface tension of water from 72 mN/m to 28 mN/m and achieves the critical micelle concentration with as little as 12 mg/liter, characterizing the product as a powerful surface-active agent that compares favorably to others surfactants. The antibacterial activity of lichenysin A has been demonstrated.  相似文献   

5.
Eight anionic disaccharide precursors of lipid A accumulate at 42 degrees C in 3-deoxy-D-manno-octulosonic acid-deficient temperature-sensitive mutants of Salmonella typhimurium. These compounds comprise a series of lipids based on the minimal structure, O-[2-amino-2-deoxy-N2,O3-bis(3-hydroxytetradecanoyl)-beta-D-glucopyranos yl] -(1----6)-2-amino-2-deoxy-N2, O3-bis(3-hydroxytetradecanoyl)-alpha-D-glucopyranose 1,4'- bisphosphate (designated lipid IVA) that differ from each other by the presence of an additional phosphoethanolamine moiety (IIIA), or an aminodeoxypentose moiety (IIA), or both (IA). A homologous set of metabolites is further derivatized with a palmitoyl function; these are designated IVB, IIIB, IIB, and IB (Raetz, C. R. H., Purcell, S., Meyer, M. V., Qureshi, N., and Takayama, K. (1985) J. Biol. Chem. 260, 16080-16088). The attachment of the palmitoyl moiety, known to be on the reducing terminal GlcN residue by mass spectrometry, was determined to be O-beta of the N2-linked beta-hydroxymyristoyl group of that residue of IVB by 13C NMR and two-dimensional 1H chemical shift correlation spectroscopy experiments. 31P NMR indicated the presence of diphosphodiester moieties in IIIA, IIIB, and IA and monophosphodiester moieties in IIA and IA. Selective 1H decoupling of the 31P spectrum of IIIA demonstrated that the O-diphosphoethanolamine moiety is attached to the O4' position in IIIA. On the basis of the observed 31P chemical shifts it was concluded that the aminodeoxypentose is located at position 1 in IIA and IA, while diphosphoethanolamine is most likely located at O-4' in IA and IIIB, as in IIIA.  相似文献   

6.
A novel reaction was explored in which synthetic platelet-activating factor, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC), upon treatment with 1 N NaOH in methanol at 60 degrees C for 20 min, sequentially released the acetyl group, then the choline moiety with concomitant formation of the monomethyl ester of 1-O-alkyl-glycero-phosphoric acid. A mechanism is proposed in which a transient cyclic phosphate intermediate is formed and then attacked by a CH3O moiety to yield a mixture of the sn-2 and sn-3 methyl esters. Proof of structure of the monomethyl ester derivative was achieved through the use of thin-layer chromatography, aluminum oxide chromatography, and examination of the trimethylsilyl derivative of the monomethyl ester by gas-liquid chromatography-mass spectrometry. Replacement of the acyl group on the 2 position with an ethyl or methyl residue completely prevented any attack by 1 N NaOH in methanol at 60 degrees C. Sphingomyelin was not attacked and only acetate removal was noted with 1-O-alkyl-2-acetyl-sn-glycero-3-phosphoethanolamine under similar conditions. The significance of these findings as they relate to the influence of substituents on the chemical and biological reactivity of AGEPC is discussed.  相似文献   

7.
Intracellular concentrations of amino acids were determined in cells of Streptococcus lactis 133 during growth in complex, spent, and chemically defined media. Glutamic and aspartic acids represented the major constituents of the amino acid pool. However, organisms grown in spent medium or in defined medium supplemented with ornithine also contained unusually high levels of two additional amino acids. One of these amino acids was ornithine. The second compound exhibited properties of a neutral amino acid by coelution with valine from the amino acid analyzer. The compound did not, however, comigrate with valine or any other standard amino acid by two-dimensional thin-layer chromatography. The unknown amino acid was purified by paper and thin-layer chromatography, and its molecular structure was determined by 1H and 13C nuclear magnetic resonance spectroscopy. This new amino acid was shown to be N5-(1-carboxyethyl)-ornithine. The 14C-labeled compound was formed by cells of S. lactis 133 during growth in spent medium or defined medium containing [14C]ornithine. Formation of the derivative by resting cells required ornithine and the presence of a metabolizable sugar. N5-(1-Carboxyethyl)-ornithine was synthesized chemically from both poly-S-ornithine and (2S)-N2-carbobenzyloxy-ornithine as a 1:1 mixture of two diastereomers. The physical and chemical properties of the amino acid purified from S. lactis 133 were identical to those of one of the synthetic diastereomers. The bis-N-trifluoroacetyl-di-n-butyl esters of the natural and synthetic compounds generated identical gas chromatography-mass spectrometry spectra. A mechanism is suggested for the in vivo synthesis of N5-(1-carboxyethyl)-ornithine, and the possible functions of this new amino acid are discussed.  相似文献   

8.
Lipopeptides are amphiphilic compounds which contain both hydrophobic fatty acid moieties and amphiphilic peptide moieties. From the cell-free broth of Bacillus subtilis HSO121, eight cyclic lipopeptides were isolated by reversed-phase high performance liquid chromatography (RP-HPLC). The peptide part of each lipopeptide was elucidated according to electrospray ionization quadruple-time-of-flight mass spectrometry (ESI Q-TOF MS) and the fatty acid part was analyzed by electroionization gas chromatography/mass spectrometry (EI GC/MS). It showed that fractions 1-8 had molecular masses of 1007, 1021, 1021, 1035, 1035, 1035, 1063, and 1049, respectively. Analysis of hydrolyzed lipopeptides revealed that they had invariant amino acid compositions. The differences in molecular weights represent changes in the number of methylene groups and different types of branched chains in fatty acids. Peptide sequences of two of the eight lipopeptides appeared to be N-Asp-Leu-Leu-Val-Glu-Leu-Leu-C, which was different from previously reported lipopeptides. The remaining six had an identical peptide sequence of N-Glu-Leu-Leu-Val-Asp-Leu-Leu-C. The fatty acid parts were found to be mixtures of iso C(12), iso C(13), anteiso C(13), iso C(14), n C(14), iso C(15), anteiso C(15), n C(15), anteiso C(16) and anteiso C(17) beta-hydroxy fatty acids. The structure of each lipopeptide was determined to be the beta-hydroxy fatty acid bonded to the peptide chain.  相似文献   

9.
C C Yang  J Leong 《Biochemistry》1984,23(15):3534-3540
When grown in iron-limiting culture medium, sugar beet deleterious Pseudomonas 7SR1 produced extra-cellularly the yellow-green, fluorescent siderophore pseudobactin 7SR1. Pseudobactin 7SR1 had a molecular formula of C46H63N13O23 and a molecular mass of 1166 g/mol. Pseudobactin 7SR1 contained a cyclic octapeptide with the amino acid sequence L-Ala-Gly-Ser-Ser-threo-beta-OH-Asp-Thr-Ser-N delta-OH-Orn. Since pseudobactin 7SR1 was not affected by nonspecific enzymes, it might contain D-amino acids. A yellow-green, fluorescent quinoline derivative is postulated to be attached via an ester bond to the serine residue following the glycine. A malamide group was attached to carbon 3 of the quinoline derivative. The three bidentate iron(III)-chelating groups consisted of an alpha-hydroxy acid group derived from beta-hydroxyaspartic acid, an omicron-dihydroxy aromatic group derived from the yellow-green, fluorescent chromophore, and a hydroxamate group derived from N delta-acetyl-N delta-hydroxyornithine. The chemical structure of pseudobactin 7SR1 is remarkably similar to that of pseudobactin, the siderophore of plant growth promoting Pseudomonas B10.  相似文献   

10.
Wu X  Takahashi M  Chen SG  Monnier VM 《Biochemistry》2000,39(6):1515-1521
Amadoriases are a novel class of FAD enzymes which catalyze the oxidative deglycation of glycated amino acids to yield corresponding amino acids, glucosone, and H(2)O(2). We previously reported the purification and characterization of two amadoriase isoenzymes from Aspergillus fumigatus and the molecular cloning of amadoriase II. To identify the primary structure of amadoriase I, we prepared a cDNA library from Aspergillus fumigatus and isolated a clone using a probe amplified by polymerase chain reaction with primers designed according to the partial amino acid sequences from peptide mapping. The primary structure of the enzyme deduced from the nucleotide sequence comprises 445 amino acid residues. The enzyme contains 1 mol of FAD as a cofactor, which is covalently linked to Cys342, as determined by mutagenesis analysis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and electrospray ionization-collisional-activated dissociation tandem mass spectrometry. Sequence alignment studies show that amadoriase I has 22% homology with monomeric sarcosine oxidase in which FAD is also linked to a homologous Cys residue. Amadoriases are of potential importance as tools for uncoupling hyperglycemia and glycation reactions that are thought to play a role in diabetic complications.  相似文献   

11.
A gene cluster for the biosynthesis of a new small cyclic peptide, dubbed trichamide, was discovered in the genome of the global, bloom-forming marine cyanobacterium Trichodesmium erythraeum ISM101 because of striking similarities to the previously characterized patellamide biosynthesis cluster. The tri cluster consists of a precursor peptide gene containing the amino acid sequence for mature trichamide, a putative heterocyclization gene, an oxidase, two proteases, and hypothetical genes. Based upon detailed sequence analysis, a structure was predicted for trichamide and confirmed by Fourier transform mass spectrometry. Trichamide consists of 11 amino acids, including two cysteine-derived thiazole groups, and is cyclized by an N C terminal amide bond. As the first natural product reported from T. erythraeum, trichamide shows the power of genome mining in the prediction and discovery of new natural products.  相似文献   

12.
Neurospora mitochondria contain an acyl-carrier protein   总被引:6,自引:0,他引:6  
Mitochondria of Neurospora crassa were found to contain a protein which was labelled with [14C]pantothenic acid and which carried an acyl group. This protein, when purified 6000-fold, closely resembled the bacterial and chloroplast acyl-carrier protein(s) [ACP(s)] in its physical and chemical properties. The predominant acyl group esterified to the purified protein was 3-hydroxytetradecanoate, as determined by gas chromatographic mass spectrometry. The amino acid sequence of the tryptic peptide carrying the 4'-phosphophantetheine moiety showed a high degree of sequence similarity to the analogous bacterial and chloroplast ACP peptide sequences. The possible functions of this ACP in lipid metabolism are discussed in view of the fact that Neurospora has a separate cytoplasmic enzyme complex which carries out the de novo biosynthesis of fatty acids.  相似文献   

13.
A minor species of isoleucine tRNA (tRNA(minor Ile)) specific to the codon AUA has been isolated from Escherichia coli B and a modified nucleoside N+ has been found in the first position of the anticodon (Harada, F., and Nishimura, S. (1974) Biochemistry 13, 300-307). In the present study, tRNA(minor Ile)) was purified from E. coli A19, and nucleoside N+ was prepared, by high-performance liquid chromatography, in an amount (0.6) A260 units) sufficient for the determination of chemical structures. By 400 MHz 1H NMR analysis, nucleoside N+ was found to have a pyrimidine moiety and a lysine moiety, the epsilon amino group of which was involved in the linkage between these two moieties. From the NMR analysis together with mass spectrometry, the structure of nucleoside N+ was determined as 4-amino-2-(N6-lysino)-1-(beta-D-ribofuranosyl)pyrimidinium ("lysidine"), which was confirmed by chemical synthesis. Lysidine is a novel type of modified cytidine with a lysine moiety and has one positive charge. Probably because of such a unique structure, lysidine in the first position of anticodon recognizes adenosine but not guanosine in the third position of codon.  相似文献   

14.
In our attempts to design crystalline alpha-helical peptides, we synthesized and crystallized GAI (C11H21N3O4) in two crystal forms, GAI1 and GAI2. Form 1 (GAI1) Gly-L-Ala-L-Ile (C11H21N3O4.3H2O) crystals are monoclinic, space group P2(1) with a = 8.171(2), b = 6.072(4), c = 16.443(4) A, beta = 101.24(2) degrees, V = 800 A3, Dc = 1.300 g cm-3 and Z = 2, R = 0.081 for 482 reflections. Form 2 (GAI2) Gly-L-Ala-L-Ile (C11H21N3O4.1/2H2O) is triclinic, space group P1 with a = 5.830(1), b = 8.832(2), c = 15.008(2) A, alpha = 102.88(1), beta = 101.16(2), gamma = 70.72(2) degrees, V = 705 A3, Z = 2, Dc = 1.264 g cm-3, R = 0.04 for 2582 reflections. GAI1 is isomorphous with GAV and forms a helix, whereas GAI2 does not. In GAI1, the tripeptide molecule is held in a near helical conformation by a water molecule that bridges the NH3+ and COO- groups, and acts as the fourth residue needed to complete the turn by forming two hydrogen bonds. Two other water molecules form intermolecular hydrogen bonds in stabilizing the helical structure so that the end result is a column of molecules that looks like an incipient alpha-helix. GAI2 imitates a cyclic peptide and traps a water molecule. The conformation angles chi 11 and chi 12 for the side chain are (-63.7 degrees, 171.1 degrees) for the helical GAI1, and (-65.1 degrees, 58.6 degrees) and (-65.0 degrees, 58.9 degrees) for the two independent nonhelical molecules in GAI2; in GAI1, both the C gamma atoms point away from the helix, whereas in GAI2 the C gamma atom with the g+ conformation points inward to the helix and causes sterical interaction with atoms in the adjacent peptide plane. From these results, it is clear that the helix-forming tendencies of amino acids correlate with the restrictions of side-chain rotamer conformations. Both the peptide units in GAI1 are trans and show significant deviation from planarity [omega 1 = -168(1) degrees; omega 2 = -171(1) degrees] whereas both the peptide units in both the molecules A and B in GAI2 do not show significant deviation from planarity [omega 1 = 179.3(3) degrees; omega 2 = -179.3(3) degrees for molecule A and omega 1 = 179.5(3) degrees; omega 2 = -179.4(3) degrees for molecule B], indicating that the peptide planes in these incipient alpha-helical peptides are considerably bent.  相似文献   

15.
Deamidation of asparagine and glutamine residues, isomerization of aspartic acid side chains, and racemization of the L- to the D-form of the amino acids are common spontaneous chemical reactions known to occur in proteins. Previous studies have implicated succinimides as intermediates in these reactions; however, the evidence has been indirect. Our results demonstrate, for the first time, the presence of a succinimide intermediate in an intact protein. The succinimide (cyclic imide) variant was isolated from thermally stressed recombinant methionyl human growth hormone (hGH) by high performance anion-exchange chromatography, further purified by reversed-phase high performance liquid chromatography, and analyzed by tryptic mapping. A later eluting tryptic peptide, compared with the native T12 peptide (residues 128-134, Leu-Glu-Asp-Gly-Ser-Pro-Arg), was analyzed by mass spectrometry (MS). This variant had a protonated molecular mass of 755.3 atomic mass units (u), as compared with 773.3 u for the native T12 peptide. A difference of 18 u, a loss of water, is consistent with the formation of a succinimide intermediate at Asp-130 of methionyl hGH. MS/MS analysis of the cyclic imide-containing peptide verified that the modification occurred at Asp-130. A difference of 18 u was also observed for the intact cyclic imide methionyl hGH variant (22,238 u), as measured by electrospray mass spectrometry, compared with native methionyl hGH (22,256 u).  相似文献   

16.
Analytical procedures have been modified to determine the abundance of muramic acid in four different Holocene sediment samples. Muramic acid is specific to the peptidoglycan moiety of the cell walls of most eubacterial pro‐karyotic organisms. The following procedure seemed to be the most appropriate for the detection of muramic acid and amino acids, including diaminopimelic acid. Hydrolysis of the samples (in 6 N HCl, 4.5 h, at 100°C) was followed by separation and purification of amino sugars and amino acids using Amberlite XAD‐2 and then Bio‐Rad AG 50W‐X8 resins. The N,O‐heptafluorobutyryl‐n‐butyl ester derivatives were prepared by esterification in acidified (3 N HCl) n‐butanol for 3 h at 100°C, followed by acylation by refluxing with heptafluorobutyric anhydride in acetonitrile (2:1 v/v) for 12 min at 150°C. The derivatives were analyzed by gas chromatography (GC) and gas chromatography‐mass spectrometry. Fast atom bombardment (FAB) ionization was used for the muramic acid derivative to determine its molecular weight and structure, d‐and l‐amino acids were separated by GC and a capillary chiral column. By using this technique a stable N,O‐heptafluo‐robutyryl‐n‐butyl ester derivative of muramic acid was identified at picogram levels in Holocene sedimentary microbial communities. It has been reported previously that microorganisms in sediments rapidly degrade muramic acid from cell walls of dead prokaryotes. Kinetic experiments revealed that muramic acid was relatively stable in intact cell walls but decomposed rapidly in the free form. These investigations noted above showed that the concentration of muramic acid may be used as an indicator of the presence of the intact cell walls of cyanobacteria and most other bacteria in Holocene microbial communities, and of microbial contamination in samples older than the Holocene.  相似文献   

17.
We recently developed a method for estimating protein dynamics in vivo with heavy water ((2)H(2)O) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) [16], and we confirmed that (2)H labeling of many hepatic free amino acids rapidly equilibrated with body water. Although this is a reliable method, it required modest sample purification and necessitated the determination of tissue-specific amino acid labeling. Another approach for quantifying protein kinetics is to measure the (2)H enrichments of body water (precursor) and protein-bound amino acid or proteolytic peptide (product) and to estimate how many copies of deuterium are incorporated into a product. In the current study, we used nanospray linear trap Fourier transform ion cyclotron resonance mass spectrometry (LTQ FT-ICR MS) to simultaneously measure the isotopic enrichment of peptides and protein-bound amino acids. A mathematical algorithm was developed to aid the data processing. The most notable improvement centers on the fact that the precursor/product labeling ratio can be obtained by measuring the labeling of water and a protein (or peptide) of interest, thereby minimizing the need to measure the amino acid labeling. As a proof of principle, we demonstrate that this approach can detect the effect of nutritional status on albumin synthesis in rats given (2)H(2)O.  相似文献   

18.
Reasons for believing that primitive mechanisms of translation may have employed thiol esters of the amino acids rather than oxygen esters are summarized. It is suggested that coenzyme A (HSCoA), which fulfills the role of aminoacyl transfer in the synthesis of peptide antibiotics, is a primitive analogue of tRNA which performs a similar role in protein synthesis. HSCoA—an adenylic acid moiety containing phosphates esterified at the 3′ and 5′ positions and linked to a peptide-like structure terminating in a reactive thiol—possesses chemical features suggestive of both peptides and polynucleotides. Examination of the chemistry of HSCoA-like molecules shows that a rather similar compound can carry out a repeating intramolecular peptide synthesis in the absence of enzymes. Condensation of further nucleotides onto the adenylic acid moiety gives rise to parallel modes of peptide and oligonucleotide synthesis. A “self-improving” ability to select available amino acids is inherent in the proposed mechanism of peptide synthesis. The hypothesis plausibly explains the universal occurrence of a sulphur-containing amino acid at the N terminus of nascent proteins.  相似文献   

19.
Polymyxin-resistant mutants of Escherichia coli and Salmonella typhimurium accumulate a novel minor lipid that can donate 4-amino-4-deoxy-l-arabinose units (l-Ara4N) to lipid A. We now report the purification of this lipid from a pss(-) pmrA(C) mutant of E. coli and assign its structure as undecaprenyl phosphate-alpha-l-Ara4N. Approximately 0.2 mg of homogeneous material was isolated from an 8-liter culture by solvent extraction, followed by chromatography on DEAE-cellulose, C18 reverse phase resin, and silicic acid. Matrix-assisted laser desorption ionization/time of flight mass spectrometry in the negative mode yielded a single species [M - H](-) at m/z 977.5, consistent with undecaprenyl phosphate-alpha-l-Ara4N (M(r) = 978.41). (31)P NMR spectroscopy showed a single phosphorus atom at -0.44 ppm characteristic of a phosphodiester linkage. Selective inverse decoupling difference spectroscopy demonstrated that the undecaprenyl phosphate group is attached to the anomeric carbon of the l-Ara4N unit. One- and two-dimensional (1)H NMR studies confirmed the presence of a polyisoprene chain and a sugar moiety with chemical shifts and coupling constants expected for an equatorially substituted arabinopyranoside. Heteronuclear multiple-quantum coherence spectroscopy analysis demonstrated that a nitrogen atom is attached to C-4 of the sugar residue. The purified donor supports in vitro conversion of lipid IV(A) to lipid II(A), which is substituted with a single l-Ara4N moiety. The identification of undecaprenyl phosphate-alpha-l-Ara4N implies that l-Ara4N transfer to lipid A occurs in the periplasm of polymyxin-resistant strains, and establishes a new enzymatic pathway by which Gram-negative bacteria acquire antibiotic resistance.  相似文献   

20.
We demonstrate in this contribution the evidence that significant cooperative binding effect can be identified for the amino acid sites that are determinant to the binding characteristics in peptide–peptide interactions. The analysis of tryptophan‐scanning mutagenesis of the 14‐mer peptide consisting only of glycine provides a mapping of position‐dependent contributions to the binding energy. The pronounced tryptophan‐associated peptide–peptide interactions are originated from the indole moieties with the main chains of 14‐mer glycines containing N–H and C?O moieties. Specifically, with the presence of two tryptophans as determinant amino acids, cooperative binding can be observed, which are dependent on relative positions of the two tryptophans with a “volcano”‐like characteristics. An optimal separation of 6–10 amino acids between two adjacent binding sites can be identified to achieve maximal binding interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号