首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
原绿球藻(Prochlorococcus)作为海洋丰度最高的浮游植物,对海洋生态系统的物质循环和能量流动起着重要的驱动作用。原绿球藻生长和光合作用活性容易受到环境胁迫的影响,进而影响整个海洋生态系统的稳定性。因此,研究原绿球藻应对环境胁迫的响应机制具有重要的生态意义。原绿球藻主要通过分化出不同的生态型来适应不同光照和营养盐的海洋环境,但仍然会很难快速适应各种突如其来的海洋环境变化。本文从原绿球藻应对环境胁迫的角度,探讨了其生理和分子响应机制的最新研究进展,包括光系统I循环电子传递在光照变化时发挥的重要作用,通过RNA快速响应而调控基因表达应对环境胁迫,以及在辅助异养细菌的保护下应对活性氧的胁迫等。本文也展望了原绿球藻对环境胁迫响应的生理和分子机制的未来研究方向,旨在为原绿球藻抗逆机制的深入研究提供参考。  相似文献   

2.
Phosphate plays a key role in regulating primary productivity in several regions of the world's oceans and here dissolved organic phosphate can be an important phosphate source. A key enzyme for utilizing dissolved organic phosphate is alkaline phosphatase and the phoA‐type of this enzyme has a zinc cofactor. As the dissolved zinc concentration is low in phosphate depleted environments, this has led to the hypothesis that some phytoplankton may be zinc‐P co‐limited. Recently, it was shown that many marine bacteria contain an alternative form of alkaline phosphatase called phoX, but it is unclear which marine lineages carry this enzyme. Here, we describe the occurrence in low phosphate environments of phoX that is associated with uncultured Prochlorococcus and SAR11 cells. Through heterologous expression, we demonstrate that phoX encodes an active phosphatase with a calcium cofactor. The enzyme also functions with magnesium and copper, whereas cobalt, manganese, nickel and zinc inhibit enzyme activity to various degrees. We also find that uncultured SAR11 cells and cyanophages contain a different alkaline phosphatase related to a variant present in several Prochlorococcus isolates. Overall, the results suggest that many bacterial lineages including Prochlorococcus and SAR11 may not be subject to zinc‐P co‐limitation.  相似文献   

3.
To acquire phosphorus, cyanobacteria use the typical bacterial ABC-type phosphate transporter, which is composed of a periplasmic high-affinity phosphate-binding protein PstS and a channel formed by two transmembrane proteins PstC and PstA. A putative pstS gene was identified in the genomes of cyanophages that infect the unicellular marine cyanobacteria Prochlorococcus and Synechococcus. However, it has not been determined whether the cyanophage PstS protein is functional during infection to enhance the phosphate uptake rate of host cells. Here we showed that the cyanophage P-SSM2 PstS protein was abundant in the infected Prochlorococcus NATL2A cells and the host phosphate uptake rate was enhanced after infection. This is consistent with our biochemical and structural analyses showing that the phage PstS protein is indeed a high-affinity phosphate-binding protein. We further modelled the complex structure of phage PstS with host PstCA and revealed three putative interfaces that may facilitate the formation of a chimeric ABC transporter. Our results provide insights into the molecular mechanism by which cyanophages enhance the phosphate uptake rate of cyanobacteria. Phosphate acquisition by infected bacteria can increase the phosphorus contents of released cellular debris and virus particles, which together constitute a significant proportion of the marine dissolved organic phosphorus pool.  相似文献   

4.
Cultured isolates of the unicellular planktonic cyanobacteria Prochlorococcus and marine Synechococcus belong to a single marine picophytoplankton clade. Within this clade, two deeply branching lineages of Prochlorococcus, two lineages of marine A Synechococcus and one lineage of marine B Synechococcus exhibit closely spaced divergence points with low bootstrap support. This pattern is consistent with a near-simultaneous diversification of marine lineages with divinyl chlorophyll b and phycobilisomes as photosynthetic antennae. Inferences from 16S ribosomal RNA sequences including data for 18 marine picophytoplankton clade members were congruent with results of psbB and petB and D sequence analyses focusing on five strains of Prochlorococcus and one strain of marine A Synechococcus. Third codon position and intergenic region nucleotide frequencies vary widely among members of the marine picophytoplankton group, suggesting that substitution biases differ among the lineages. Nonetheless, standard phylogenetic methods and newer algorithms insensitive to such biases did not recover different branching patterns within the group, and failed to cluster Prochlorococcus with chloroplasts or other chlorophyll b-containing prokaryotes. Prochlorococcus isolated from surface waters of stratified, oligotrophic ocean provinces predominate in a lineage exhibiting low G + C nucleotide frequencies at highly variable positions. Received: 18 January 1997 / Accepted: 18 May 1997  相似文献   

5.
6.
S-layers are paracrystalline proteinaceous lattices that surround prokaryotic cells, forming a critical interface between the cells and their extracellular environment. Here, we report the discovery of a novel S-layer protein present in the Gram-negative marine organism, Pseudoalteromonas tunicata D2. An uncharacterized protein (EAR28894) was identified as the most abundant protein in planktonic cultures and biofilms. Bioinformatic methods predicted a beta-helical structure for EAR28894 similar to the Caulobacter S-layer protein, RsaA, despite sharing less than 20% sequence identity. Transmission electron microscopy revealed that purified EAR28894 protein assembled into paracrystalline sheets with a unique square lattice symmetry and a unit cell spacing of ~9.1 nm. An S-layer was found surrounding the outer membrane in wild-type cells and completely removed from cells in an EAR28894 deletion mutant. S-layer material also appeared to be “shed” from wild-type cells and was highly abundant in the extracellular matrix where it is associated with outer membrane vesicles and other matrix components. EAR28894 and its homologs form a new family of S-layer proteins that are widely distributed in Gammaproteobacteria including species of Pseudoalteromonas and Vibrio, and found exclusively in marine metagenomes. We propose the name Slr4 for this novel protein family.  相似文献   

7.
Marine picocyanobacteria, comprised of the genera Synechococcus and Prochlorococcus, are the most abundant and widespread primary producers in the ocean. More than 20 genetically distinct clades of marine Synechococcus have been identified, but their physiology and biogeography are not as thoroughly characterized as those of Prochlorococcus. Using clade-specific qPCR primers, we measured the abundance of 10 Synechococcus clades at 92 locations in surface waters of the Atlantic and Pacific Oceans. We found that Synechococcus partition the ocean into four distinct regimes distinguished by temperature, macronutrients and iron availability. Clades I and IV were prevalent in colder, mesotrophic waters; clades II, III and X dominated in the warm, oligotrophic open ocean; clades CRD1 and CRD2 were restricted to sites with low iron availability; and clades XV and XVI were only found in transitional waters at the edges of the other biomes. Overall, clade II was the most ubiquitous clade investigated and was the dominant clade in the largest biome, the oligotrophic open ocean. Co-occurring clades that occupy the same regime belong to distinct evolutionary lineages within Synechococcus, indicating that multiple ecotypes have evolved independently to occupy similar niches and represent examples of parallel evolution. We speculate that parallel evolution of ecotypes may be a common feature of diverse marine microbial communities that contributes to functional redundancy and the potential for resiliency.  相似文献   

8.
Abstract. The ribbon‐shaped salivary glands in Bulla striata were studied with light microscopy and transmission electron microscopy (TEM). Secretion is produced in tubules formed by two types of secretory cells, namely granular mucocytes and vacuolated cells, intercalated with ciliated cells. A central longitudinal duct lined by the same cell types collects the secretion and conducts it to the buccal cavity. In granular mucocytes, the nucleus is usually central and the secretory vesicles contain oval‐shaped granular masses attached to the vesicle membrane. Glycogen granules can be very abundant, filling the space around the secretory vesicles. These cells are strongly stained by PAS reaction for polysaccharides. Their secretory vesicles are also stained by Alcian blue, revealing acidic mucopolysaccharides, and the tetrazonium reaction detects proteins in minute spots at the edge of the vesicles, corresponding to the granular masses observed in TEM. Colloidal iron staining for acidic mucopolysaccharides in TEM reveals iron particles in the electron‐lucent region of the vesicles, while the granular masses are free of particles. In vacuolated cells, which are thinner and less abundant than the granular mucocytes, the nucleus is basal and the cytoplasm contains large electron‐lucent vesicles. These vesicles are very weakly colored by light microscopy techniques, but colloidal iron particles could be observed within them. The golf tee‐shaped ciliated cells contain some electron‐dense lysosomes in the apical region. In these cells, the elongated nucleus is subapically located, and bundles of microfibrils are common in the slender cytoplasmic stalk that reaches the basal lamina. The morphological, histochemical, and cytochemical data showed some similarities between salivary glands in B. striata and Aplysia depilans. These similarities could reflect the phylogenetic relationship between cephalaspidean and anaspidean opisthobranchs or result from a convergent adaptation to an identical herbivorous diet.  相似文献   

9.
Our view of marine microbes is transforming, as culture-independent methods facilitate rapid characterization of microbial diversity. It is difficult to assimilate this information into our understanding of marine microbe ecology and evolution, because their distributions, traits, and genomes are shaped by forces that are complex and dynamic. Here we incorporate diverse forces—physical, biogeochemical, ecological, and mutational—into a global ocean model to study selective pressures on a simple trait in a widely distributed lineage of picophytoplankton: the nitrogen use abilities of Synechococcus and Prochlorococcus cyanobacteria. Some Prochlorococcus ecotypes have lost the ability to use nitrate, whereas their close relatives, marine Synechococcus, typically retain it. We impose mutations for the loss of nitrogen use abilities in modeled picophytoplankton, and ask: in which parts of the ocean are mutants most disadvantaged by losing the ability to use nitrate, and in which parts are they least disadvantaged? Our model predicts that this selective disadvantage is smallest for picophytoplankton that live in tropical regions where Prochlorococcus are abundant in the real ocean. Conversely, the selective disadvantage of losing the ability to use nitrate is larger for modeled picophytoplankton that live at higher latitudes, where Synechococcus are abundant. In regions where we expect Prochlorococcus and Synechococcus populations to cycle seasonally in the real ocean, we find that model ecotypes with seasonal population dynamics similar to Prochlorococcus are less disadvantaged by losing the ability to use nitrate than model ecotypes with seasonal population dynamics similar to Synechococcus. The model predictions for the selective advantage associated with nitrate use are broadly consistent with the distribution of this ability among marine picocyanobacteria, and at finer scales, can provide insights into interactions between temporally varying ocean processes and selective pressures that may be difficult or impossible to study by other means. More generally, and perhaps more importantly, this study introduces an approach for testing hypotheses about the processes that underlie genetic variation among marine microbes, embedded in the dynamic physical, chemical, and biological forces that generate and shape this diversity.  相似文献   

10.
Organisms use proteins to perform an enormous range of functions that are essential for life. Proteins are usually composed of 20 different kinds of amino acids that each contain between one and four nitrogen atoms. In aggregate, the nitrogen atoms that are bound in proteins typically account for a substantial fraction of the nitrogen in a cell. Many organisms obtain the nitrogen that they use to make proteins from the environment, where its availability can vary greatly. These observations prompt the question: can environmental nitrogen scarcity lead to adaptive evolution in the nitrogen content of proteins? In this issue, Gilbert & Fagan (2011) address this question in the marine cyanobacteria Prochlorococcus, examining a variety of ways in which cells might be thrifty with nitrogen when making proteins. They show that different Prochlorococcus strains vary substantially in the average nitrogen content of their encoded proteins and relate this variation to nitrogen availability in different marine habitats and to genomic base composition (GC content). They also consider biases in the nitrogen content of different kinds of proteins. In most Prochlorococcus strains, a group of proteins that are commonly induced during nitrogen stress are poor in nitrogen relative to other proteins, probably reflecting selection for reduced nitrogen content. In contrast, ribosomal proteins are nitrogen rich relative to other Prochlorococcus proteins, and tend to be down‐regulated during nitrogen limitation. This suggests the possibility that decaying ribosomal proteins act as a source of nitrogen‐rich amino acids during periods of nitrogen stress. This work contributes to our understanding of how nutrient limitation might lead to adaptive variation in the composition of proteins and signals that marine microbes hold great promise for testing hypotheses about protein elemental costs in the future.  相似文献   

11.
The 20S proteasome is almost exclusively localized within cells. High levels of extracellular proteasomes are also found circulating in the blood plasma of patients suffering from a variety of inflammatory, autoimmune and neoplastic diseases. However, the origin of these proteasomes remained enigmatic. Since the proteome of microparticles, small membrane enclosed vesicles released from cells, was shown to contain proteasomal subunits, we studied whether intact proteasomes are actively released into the extracellular space. Using human primary T lymphocytes stimulated with CaCl2 and the calcium ionophore A23187 to induce membrane blebbing we demonstrate that microparticles contain proteolytically active 20S proteasomes as well as the proteasome activator PA28 and subunits of the 19S proteasome regulator. Furthermore, our experiments reveal that incubation of in vitro generated T lymphocyte‐microparticles with sphingomyelinase results in the hydrolysis of the microparticle membranes and subsequent release of proteasomes from the vesicles. Thus, we here show for the first time that functional proteasomes can be exported from activated immune cells by way of microparticles, the dissolution of which may finally lead to the generation of extracellular proteasomes.  相似文献   

12.
Picocyanobacteria represented by Prochlorococcus and Synechococcus have an important role in oceanic carbon fixation and nutrient cycling. In this study, we compared the community composition of picocyanobacteria from diverse marine ecosystems ranging from estuary to open oceans, tropical to polar oceans and surface to deep water, based on the sequences of 16S-23S rRNA internal transcribed spacer (ITS). A total of 1339 ITS sequences recovered from 20 samples unveiled diverse and several previously unknown clades of Prochlorococcus and Synechococcus. Six high-light (HL)-adapted Prochlorococcus clades were identified, among which clade HLVI had not been described previously. Prochlorococcus clades HLIII, HLIV and HLV, detected in the Equatorial Pacific samples, could be related to the HNLC clades recently found in the high-nutrient, low-chlorophyll (HNLC), iron-depleted tropical oceans. At least four novel Synechococcus clades (out of six clades in total) in subcluster 5.3 were found in subtropical open oceans and the South China Sea. A niche partitioning with depth was observed in the Synechococcus subcluster 5.3. Members of Synechococcus subcluster 5.2 were dominant in the high-latitude waters (northern Bering Sea and Chukchi Sea), suggesting a possible cold-adaptation of some marine Synechococcus in this subcluster. A distinct shift of the picocyanobacterial community was observed from the Bering Sea to the Chukchi Sea, which reflected the change of water temperature. Our study demonstrates that oceanic systems contain a large pool of diverse picocyanobacteria, and further suggest that new genotypes or ecotypes of picocyanobacteria will continue to emerge, as microbial consortia are explored with advanced sequencing technology.  相似文献   

13.
Fine structure of the corpuscles of stannius in the toadfish.   总被引:1,自引:0,他引:1  
The micro-anatomy of the corpuscles of Stannius of the toadfish, Opsanus tau, an aglomerular marine teleost, has been studied by light and electron microscopy. The corpuscles are composed of extensively anastomosed cords of epithelial cells which maintain intimate contact with blood capillaries. Most of the epithelial cells contain acidophilic granules which also show a positive reaction with the periodic acid-Schiff technique and aldehyde fuchsin. On the basis of fine structural criteria, three cell types can be recognized. The granular cells contain abundant quantities of granular endoplasmic reticulum, ribosomes, Golgi apparatus with prosecretory granules, coated vesicles, polymorphic mitochondria with lamellar cristae, filaments, microtubules, a cilium, a variety of lysosome-like dense bodies, glycogen particles, lipid droplets, secretory granules and intranuclear lipid-like inclusions. One variety of agranular cell (type I) is characterized by the total absence of secretory granules, but it contains large amounts of granular endoplasmic reticulum and ribosomes, conspicuous profiles of Golgi apparatus, coated vesicles and sometimes an abundance of glycogen. Another variety of agranular cell (type II) has poorly developed cytoplasmic organelles. The perivascular space between the capillary and parenchyma contains connective tissue cells and abundant nerve fibers. The different types of epithelial cells observed in the corpuscles of Stannius of this fish may represent functional stages of the secretory cycle in a single cell type.  相似文献   

14.
Synechococcus and Prochlorococcus have made great contributions to earth’s photosynthetic biomass. ATP-binding cassette (ABC) protein systems have been characterized to play important roles in various physiological functions, including carbon fixation, phosphate assimilation, and vitamin B12 metabolism. In this study, the repertoire and domain architectures of ABC systems in Synechococcus and Prochlorococcus, as well as their potential evolutionary mechanism, have been surveyed extensively. Comparative analysis revealed an uneven phylogenetic distribution of the ABC systems in these organisms, and in particular that fresh-water Synechococcus strains contain more ABC systems than those of marine ones. Phylogenetic analysis indicated that lineage-specific gene expansion and duplication may be the important forces driving the variability of ABC systems in fresh-water Synechococcus and such an expansion was likely to be relevant to their ecological tolerance. At the domain level, ATP-binding domains in several ABC systems were found to fuse with many additional domains after the divergence from their common ancestor, indicating the versatile functions of ABC systems in cyanobacteria. Subsequently, 19 ABC system families were deduced to be the core set of ABC systems conserved in all marine-living Synechococcus and Prochlorococcus. In conclusion, the comprehensive survey of ABC systems in Synechococcus and Prochlorococcus provides novel insights into their potential evolutionary mechanism and the basis for further investigation of their physiological roles.  相似文献   

15.
Phosphonates (Pn) are diverse organic phosphorus (P) compounds containing C–P bonds and comprise up to 25% of the high-molecular weight dissolved organic P pool in the open ocean. Pn bioavailability was suggested to influence markedly bacterial primary production in low-P areas. Using metagenomic data from the Global Ocean Sampling expedition, we show that the main potential microbial contributor in Pn utilization in oceanic surface water is the globally important marine primary producer Prochlorococcus. Moreover, a number of Prochlorococcus strains contain two distinct putative Pn uptake operons coding for ABC-type Pn transporters. On the basis of microcalorimetric measurements, we find that each of the two different putative Pn-binding protein (PhnD) homologs transcribed from these operons possesses different Pn- as well as inorganic phosphite-binding specificities. Our results suggest that Prochlorococcus adapt to low-P environments by increasing the number of Pn transporters with different specificities towards phosphite and different Pns.  相似文献   

16.
Summary: Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45°N to 40°S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level.  相似文献   

17.

Background  

RNA turnover plays an important role in the gene regulation of microorganisms and influences their speed of acclimation to environmental changes. We investigated whole-genome RNA stability of Prochlorococcus, a relatively slow-growing marine cyanobacterium doubling approximately once a day, which is extremely abundant in the oceans.  相似文献   

18.
Many cyanophage isolates which infect the marine cyanobacteria Synechococcus spp. and Prochlorococcus spp. contain a gene homologous to psbA, which codes for the D1 protein involved in photosynthesis. In the present study, cyanophage psbA gene fragments were readily amplified from freshwater and marine samples, confirming their widespread occurrence in aquatic communities. Phylogenetic analyses demonstrated that sequences from freshwaters have an evolutionary history that is distinct from that of their marine counterparts. Similarly, sequences from cyanophages infecting Prochlorococcus and Synechococcus spp. were readily discriminated, as were sequences from podoviruses and myoviruses. Viral psbA sequences from the same geographic origins clustered within different clades. For example, cyanophage psbA sequences from the Arctic Ocean fell within the Synechococcus as well as Prochlorococcus phage groups. Moreover, as psbA sequences are not confined to a single family of phages, they provide an additional genetic marker that can be used to explore the diversity and evolutionary history of cyanophages in aquatic environments.  相似文献   

19.
Prochlorophyta – a matter of class distinctions   总被引:1,自引:0,他引:1  
Prochloron (a marine symbiont) and Prochlorothrix (from freshwater plankton) contain chlorophylls a and b; Prochlorococcus (common in marine picoplankton) contains divinyl-chlorophylls a and b. Like cyanophytes they are all clearly photosynthetic prokaryotes, but since they contain no blue or red bilin pigment they were assigned to a new algal sub-class, the Prochlorophyta. However, since their possible phylogenetic relationships to ancestral green-plant chloroplasts have not received support from molecular biology, it now seems expedient to consider them as aberrant cyanophytes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号