首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Avoiding water loss for insects is critical for survival. Selection for reduced water loss will depend on trade-offs between resources allocated for reproduction and those allocated for resisting desiccation. However, we lack knowledge on how selection for desiccation resistance can affect the male ejaculate. Furthermore, as male ejaculate composition is complex, desiccation resistant females could evolve traits that enable them to derive longevity benefits from mating. Here, we assessed how selection for desiccation resistance impacts male testes and accessory gland size, protein content of these organs, female sperm storage and male ability to inhibit female remating behavior, in the Mexican fruit fly Anastrepha ludens. Additionally, we tested if mating increased longevity and fecundity in desiccation resistant females. Males selected for resistance to desiccation stress had smaller accessory glands and seminal vesicles and females mating with these males stored less sperm compared to control males. Females mating with resistant males had lower fecundity compared to females mating with control males. Desiccation resistant females lived longer than control females, yet this was irrespective of mating. Rapid evolutionary responses to hydric stress can have correlated effects in reproductive capabilities, which are not restricted to pre-copulatory traits. Trade-offs between resistance to desiccation stress are reflected in decreased allocation of resources to reproductive organs. Thus, production of the ejaculate may be costly for A. ludens males. Knowledge on the evolution of ejaculate traits and reproductive organ size in response to directional selection for desiccation resistance, will aid our understanding of differential sex-specific responses to environmental stress.  相似文献   

2.
U Tram  M F Wolfner 《Genetics》1999,153(2):837-844
The seminal fluid that is transferred along with sperm during mating acts in many ways to maximize a male's reproductive success. Here, we use transgenic Drosophila melanogaster males deficient in the seminal fluid proteins derived from the accessory gland (Acps) to investigate the role of these proteins in the fate of sperm transferred to females during mating. Competitive PCR assays were used to show that while Acps contribute to the efficiency of sperm transfer, they are not essential for the transfer of sperm to the female. In contrast, we found that Acps are essential for storage of sperm by females. Direct counts of stored sperm showed that 10% of normal levels are stored by females whose mates transfer little or no Acps along with sperm.  相似文献   

3.
Strategic ejaculation is a behavioural strategy shown by many animals as a response to sperm competition and/or as a potential mechanism of cryptic male choice. Males invest more mating resources when the risk of sperm competition increases or they invest more in high quality females to maximize their reproductive output. We tested this hypothesis in the false garden mantid Pseudomantis albofimbriata, where females are capable of multiply mating and body condition is an indicator of potential reproductive fitness. We predicted male mantids would ejaculate strategically by allocating more sperm to high quality females. To determine if and how males alter their ejaculate in response to mate quality, we manipulated female food quantity so that females were either in good condition with many eggs (i.e. high quality) or poor condition with few eggs (i.e. low quality). Half of the females from each treatment were used in mating trials in which transferred sperm was counted before fertilisation occurred and the other half of females were used in mating trials where fertilisation occurred and ootheca mass and total eggs in the ootheca were recorded. Opposed to our predictions, the total number of sperm and the proportion of viable sperm transferred did not vary significantly between female treatments. Male reproductive success was entirely dependent on female quality/fecundity, rather than on the number of sperm transferred. These results suggest that female quality is not a major factor influencing postcopulatory male mating strategies in P. albofimbriata, and that sperm number has little effect on male reproductive success in a single mating scenario.  相似文献   

4.
Males of many species evolved the capability of adjusting their ejaculate phenotype in response to social cues to match the expected mating conditions. When females store sperm for a prolonged time, the expected fitness return of plastic adjustments of ejaculate phenotype may depend on the interval between mating and fertilization. Although prolonged female sperm storage (FSS) increases the opportunity for sperm competition, as a consequence of the longer temporal overlap of ejaculates from several males, it may also create variable selective forces on ejaculate phenotype, for example by exposing trade‐offs between sperm velocity and sperm survival. We evaluated the relationship between the plasticity of ejaculate quality and FSS in the guppy, Poecilia reticulata, a polyandrous live‐bearing fish in which females store sperm for several months and where stored sperm contribute significantly to a male's lifelong reproductive success. In this species, males respond to the perception of future mating opportunities by increasing the quantity (number) and quality (swimming velocity) of ready‐to‐use sperm (an anticipatory response called ‘sperm priming’). Here we investigated (a) the effect of sperm priming on in vitro sperm viability at stripping and its temporal decline (as an estimate of sperm survival), and (b) the in vivo competitive fertilization success in relation to female sperm storage using artificial insemination. As expected, sperm‐primed males produced more numerous and faster sperm, but with a reduced in vitro sperm viability at stripping and after 4 hr, compared with their counterparts. Artificial insemination revealed that the small (nonsignificant) advantage of primed sperm when fertilization immediately follows insemination is reversed when eggs are fertilized by female‐stored sperm, weeks after insemination. By suggesting a plastic trade‐off between sperm velocity and viability, these results demonstrate that prolonged female sperm storage generates divergent selection pressures on ejaculate phenotype.  相似文献   

5.
1. To examine the relationship between male–female emergence patterns and ejaculate dynamics, patterns producing sperm and seminal fluids in male internal reproductive organs, the size of a spermatophore transferred at mating and the fate of spermatophore contents moved into female storage organs were compared among the fishflies (Megaloptera: Corydalidae: Chauliodinae), Parachauliodes continentalis, P. japonicus and Neochauliodes sinensis .
2. Spermatophore contents moved into female storage organs decreased rapidly in P. japonicus and N. sinensis , but hardly at all in P. continentalis . This suggests that the females of the former two species may remate sooner than the latter species as it is known in insects that material remaining in the storage organs mechanically inhibits receptivity to mating.
3. Male P. japonicus and N. sinensis increased in internal reproductive organ mass continuously after adult eclosion, and the spermatophore size produced at the first mating increased with male age. In contrast, the internal reproductive organs of P. continentalis were relatively small and did not increase in mass after emergence. P. continentalis transferred a constantly smaller spermatophore at any copulation than the former two species.
4. Males of P. japonicus and N. sinensis emerged earlier than females, while P. continentalis showed a nearly simultaneous emergence pattern between the sexes. It seems that males of P. japonicus and N. sinensis (more polyandrous than P. continentalis ) inhibit female receptivity for a longer time period by emerging earlier and transferring larger ejaculates. In these two species, the number of sperm ejaculated at the first mating also increased with male age. The increase in sperm number by emerging earlier may be adaptive for the males owing to numerical sperm competition when the female remates.  相似文献   

6.
In species where females mate promiscuously, competition between ejaculates from different males to fertilize the ova is an important selective force shaping many aspects of male reproductive traits, such as sperm number, sperm length and sperm–sperm interactions. In eusocial Hymenoptera (bees, wasps and ants), males die shortly after mating and their reproductive success is ultimately limited by the amount of sperm stored in the queen''s spermatheca. Multiple mating by queens is expected to impose intense selective pressure on males to optimize the transfer of sperm to the storage organ. Here, we report a remarkable case of cooperation between spermatozoa in the desert ant Cataglyphis savignyi. Males ejaculate bundles of 50–100 spermatozoa. Sperm bundles swim on average 51% faster than solitary sperm cells. Team swimming is expected to increase the amount of sperm stored in the queen spermatheca and, ultimately, enhance male posthumous fitness.  相似文献   

7.
While sperm competition risk favours males transferring many sperm to secure fertilizations, females of a variety of species actively reduce sperm numbers reaching their reproductive tract, e.g. by extrusion or killing. Potential benefits of spermicide to females include nutritional gains, influence over sperm storage and paternity, and the elimination of sperm bearing somatic mutations that would lower zygote fitness.We investigated changes in sperm viability after in vivo and in vitro exposure to the female tract in the polyandrous fly, Scathophaga stercoraria. Sperm viability was significantly lower in the females' spermathecae immediately after mating than in the experimental males' testes. Males also varied significantly in the proportion of live sperm found in storage in vivo. However, the exact mechanism of sperm degradation remains to be clarified. In vitro exposure to extracts of the female reproductive tract, including female accessory glands, failed to significantly lower sperm viability compared to controls. These results are consistent either with postcopulatory sperm mortality in vivo depending entirely on the male (with individual differences in sperm viability, motility or longevity) or with postcopulatory sperm mortality being subtly affected by female effects which were not detected by the in vitro experimental conditions. Importantly, we found no evidence in support of the hypothesis that female accessory glands contribute to sexual conflict via spermicide. Therefore, female muscular control remains to date the only ascertained mechanism of female influence on sperm storage in this species.  相似文献   

8.
In most insects, sperm transferred by the male to the female during mating are stored within the female reproductive tract for subsequent use in fertilization. In Drosophila melanogaster, male accessory gland proteins (Acps) within the seminal fluid are required for efficient accumulation of sperm in the female's sperm storage organs. To determine the events within the female reproductive tract that occur during sperm storage, and the role that Acps and sperm play in these events, we identified morphological changes that take place during sperm storage in females mated to wild-type, Acp-deficient or sperm-deficient males. A reproducible set of morphological changes occurs in a wild-type mating. These were categorized into 10 stereotypic stages. Sperm are not needed for progression through these stages in females, but receipt of Acps is essential for progression beyond the first few stages of morphological change. Furthermore, females that received small quantities of Acps reached slightly later stages than females that received no Acps. Our results suggest that timely morphological changes in the female reproductive tract, possibly muscular in nature, may be needed for successful sperm storage, and that Acps from the male are needed in order for these changes to occur.  相似文献   

9.
Sperm competition theory predicts that males should allocate sperm according to the number of competing ejaculates. Prudent allocation of sperm in response to different levels of sperm competition has been found across a number of taxa; however, some studies suggest that males may not always allocate sperm as expected. Here we examine sperm allocation in the Australian field cricket Teleogryllus oceanicus, using female mating status (virgin, singly mated, or multiply mated) to manipulate male perception of sperm competition risk and intensity. Consistent with theory, we found that male crickets adjust their ejaculates in response to female mating status. However, rather than altering the absolute numbers of sperm transferred to a female, males altered the quality of their sperm. Males ejaculated sperm of low viability (proportion of live vs. dead sperm) when mating with virgins, increased sperm viability when mating with singly mated females, but reduced sperm viability when mating with multiply mated females. Our results show that variation in ejaculate quality can be an important aspect of strategic ejaculation by males and suggest caution in the interpretation of studies in which males do not appear to allocate sperm according to theory.  相似文献   

10.
The medfly, Ceratitis capitata, is an invasive species in which polyandry, associated with sperm precedence, is a common behaviour in the wild. In this species, characterized by internal fertilization, we disclose how the sperm from two males are stored in the female storage organs and how they are used in terms of paternity outcome. The experiments were designed to furnish comparable and unbiased estimates of sperm numbers and progeny in twice-mated females. Results are incorporated in a model through which it is possible to relate the amount of stored sperm with the progeny of twice-mated females. The results show that polyandrous medfly females conserve equal amounts of sperm from the two males to fertilize their eggs. However, we observed a clear advantage of the second male's sperm in siring progeny, which interestingly decreases in favor of the first male as ovipositions progress. The results enable us to exclude differential sperm mortality and suggest that it is the mechanics governing the storage organs which causes the initial, but decreasing second male sperm precedence during the female reproductive life. These outcomes allow us to correlate sperm use in polyandrous females with the mating strategies and invasiveness of this fly.  相似文献   

11.
Abstract By contrast to females that can maximize reproductive success with only one or a few copulations, males generally increase their fitness with frequency of mating. Sperm storage and allocation is therefore crucial for both male and female fitness. Sperm storage in Aleochara bilineata (Coleoptera; Staphylinidae) is investigated by measuring the number of spermatozoa stored in the female spermatheca after single, double or triple successive copulations with different males. The potential advantages of polyandry are studied in terms of the number of sperm stored by females mated twice with the same male (i.e. repeated copulation), compared with females mated twice with two different virgin males (i.e. polyandry). Level of polygyny is also estimated by measuring sperm allocation when ten successive mates are offered to a virgin male. Aleochara bilineata females store the sperm of the same or different males additively, suggesting no advantage for polyandry in terms of the number of sperm stored. A virgin male is able to inseminate ten different females but the number of sperm transferred decreases linearly. Finally, the latencies and durations of copulations are measured in all experiments to estimate changes according to the male or female status (i.e. virgin or mated). The latency before mating is higher when females are virgin than when females have already mated.  相似文献   

12.
Single mating productivities (used as estimates of the relative number of sperm transferred) are highly correlated with several parameters used to quantify sperm competition in D. melanogster. Matings that result in the transferal of large numbers of sperm are associated with longer delay of female remating than are matings that transfer fewer sperm. Males that transfer larger numbers of sperm also suffer a smaller proportional reduction in reproductive success (smaller COST) than males transferring fewer sperm. The number of sperm transferred by a female's second mate is not related to the COST to the first male. However, there is a high positive correlation between the number of sperm transferred by the second male and P2 (the proportion of second male progeny following female remating). Thus, large sperm numbers apparently increase the reproductive success of males whether they mate with virgin or non-virgin females. Because female receptivity mediates these events, there is no need to invoke sperm displacement to explain the reproductive outcome of female remating.The timing of female remating is evaluated in terms of a receptivity-threshold model. This model suggests that female receptivity returns when some small, relatively constant, number of sperm remain in storage.  相似文献   

13.
Females of the swallowtail butterfly Papilio xuthus L. (Lepidoptera: Papilionidae) mate multiply during their life span and use the spermatophores transferred to increase their longevity as well as fecundity. Sperm from different males may be stored in the sperm storage organs (bursa copulatrix and spermatheca). To clarify the pattern of sperm storage and migration in the reproductive tract, mated females are dissected after various intervals subsequent to the first mating, and the type and activity of sperm in the spermatheca are observed. When virgin females are mated with virgin males, the females store sperm in the spermatheca for more than 10 days. Sperm displacement is found in females that are remated 7 days after the first mating. Immediately after remating, these females flush out the sperm of the first male from the spermatheca before sperm migration of the second male has started. However, females receiving a small spermatophore at the second mating show little sperm displacement, and the sperm derived from the small spermatophore might not be able to enter the spermatheca. Females appear to use spermatophore size to monitor male quality.  相似文献   

14.
《Biological Control》2008,46(3):281-287
Hymenopteran parasitoids are usually arrhenotokous parthenogenetic, where females arise from fertilized and males from unfertilized eggs. Therefore, the reproductive fitness of females is a function of egg production and furthermore affected by mating, whereas that of males is mainly determined by the number of daughters they father. Aphidius ervi Haliday is a quasi-gregarious parasitoid of a number of aphid pests on economically important crops such as legumes and cereals. Females are monandrous whereas males are polygynous. Here, we tested how parental age at mating and male mating history affected mating success, fecundity and daughter production in this species. Once-mated males perform significantly better than naïve males with regard to mating success, suggesting that males learn from previous matings. The fecundity of virgin females is not significantly different from that of mated females regardless of parental age at mating and male mating history, indicating that mating does not stimulate egg production or contribute to female nutrient supply. Males can replenish sperm supply after mating, implying that they are at least moderately synspermatogenic. Preference for young over old mates for mating by both sexes may be explained by the fact that aging of both sexes contributes to the reduction of daughter production. Rather than sperm depletion, the reduced daughter production may be attributed to diminishing sperm viability and mobility in aging males and increasing constraints in fertilization process in aging females. Our results also show that female age has a stronger impact on the production of daughters, suggesting that fertilization process in females is more sensitive to aging than sperm vigor in males.  相似文献   

15.
Laboratory studies reveal that in several rodent species the females prefer dominant males as mating partners. Here we investigate the correlation between bank vole males’ social rank and their sperm quality and quantity. We used agonistic encounters to determine males’ social status. Sperm quality was assessed by its motility, viability, maturity, morphology and sperm tail membrane integrity. Relatively more dominant males were heavier than males of lower social status. The males’ social position affected the testes, seminal vesicles and coagulation gland development. The weights of these reproductive organs were significantly higher in more dominant males than in more subordinate males. Sperm counts and the values of the other parameters describing sperm quality were higher in high-ranking males than in subordinates. Our results suggest that bank vole females benefit from choosing and mating with high-ranking males by obtaining more and better-quality sperm.  相似文献   

16.
The relationship between sperm production, insemination rate, and sperm transfer were studied in the sweet potato weevil, Cylas formicarius. Older adult males retained more sperm in the testes-seminal vesicle complex (TSC) and thus more was ejaculated into females at first mating. Number of matings per day for males was relatively constant across different ages, and frequent mating resulted in a reduced amount of sperm transferred to females, especially in young males. Young virgin males had a relatively small ejaculate, and almost all sperm transferred to females was stored in the spermatheca, whereas older virgin males transferred a larger amount of sperm to females, in whom sperm was found in both the spermatheca and post-spermathecal organs (PSO) after mating. The number of sperm in the PSO decreased markedly within 24 h after mating, but amounts in the spermatheca remained the same. Just where the sperm in the PSO went is a point that remained undetermined. The amount of sperm in the spermatheca was reduced more rapidly in females that laid eggs than in females that did not, although sperm reduction occurred even in the latter. Insemination of this weevil corresponded with the volume of the spermatheca, and the amount of sperm stored in the TSC was determined by the age and mating history of the males.  相似文献   

17.
Methyl eugenol (ME) and inclusion of protein into the adult diet increase the mating competitiveness of the Oriental fruit fly, Bactrocera dorsalis (Hendel). Exposing males to ME or protein is a promising post‐teneral treatment for males being released in the sterile insect technique (SIT). However, the effect of this post‐teneral treatment on male reproductive organs or the male ejaculate is unknown. During mating, males transfer sperm and accessory gland products (AGPs) to females and these compounds are reported to modulate female sexual inhibition. We studied the impact of male exposure to ME and a yeast hydrolysate (YH) diet on the protein reserves of males, male reproductive organ size, and the male ejaculate through sperm and AGPs. We show that males exposed to ME regardless of access to YH accumulated a greater amount of whole body protein. Males fed on YH also had increased total body protein and had bigger reproductive organs than YH‐deprived males, but no apparent effect of ME exposure was observed on reproductive organ size. Females stored less sperm when mated with males fed on YH and ME compared to males not fed on ME. YH and ME had no effect on male AGPs. Females injected with AGPs of males fed on YH and exposed to ME were just as likely to mate as females injected with AGPs of non‐treated males. However, females injected with AGPs of males exposed to ME mated faster than females injected with AGPs of non‐exposed males. We conclude that while exposure to ME increases male copulatory success and protein reserves in the male body, there seem to be some potential trade‐offs such as lower sperm stored by females. We discuss our results in terms of pre‐release protocols that may be used for B. dorsalis in SIT application.  相似文献   

18.
In the fly Dryomyza anilis females have two kinds of sperm storage organs: one bursa copulatrix and three spermathecae (two spermathecae with a common duct form the doublet, and the third is a singlet spermathecal unit). At the beginning of a mating the male deposits his sperm in the bursa copulatrix. After sperm transfer the male taps the female''s abdomen with his claspers. This behaviour has been shown to increase the male''s fertilization success. After mating, the female discharges large quantities of sperm before oviposition. To find out where the sperm remaining in the female are stored, I counted the number of sperm in the droplet and in the female''s sperm storage organs after different types of mating. I carried out three mating experiments. In experiment 1, virgin females were mated with one male and the matings were interrupted either immediately after sperm transfer or after several tapping sequences. The results show that during male tapping more sperm moved into the singlet spermatheca. In addition, the total number of sperm correlated with sperm numbers in all sperm storage organs, and male size was positively related to the number of sperm remaining in the bursa. In experiment 2, females mated with several males. The number of sperm increased with increasing number of matings only in the doublet spermatheca. No increase in the number of sperm in the singlet spermatheca during consecutive matings suggests that sperm were replaced or did not reach this sperm storage organ. In experiment 3, virgin females were mated with a single male and half of them were allowed to lay eggs. The experiment showed that during egglaying, females primarily used sperm from their singlet spermatheca. The results from the three experiments suggest that sperm stored in the singlet spermatheca is central for male fertilization success and male tapping is related to sperm storage in the singlet spermatheca. The different female''s sperm storage organs in D. anilis may have separate functions during sperm storage as well as during sperm usage.  相似文献   

19.
We investigated the effects of injecting male-derived extracts on congeneric female receptivity in two species of Callosobruchus beetle, C. chinensis and C. maculatus. We also examined the influence of interspecific mating on female remating behaviour in these two species. Male-derived extracts reduced congeneric female receptivity in both species. As quick-acting components, extracts of C. chinensis male seminal vesicles reduced the receptivity of C. maculatus females, whereas extracts of C. maculatus male testes reduced the receptivity of C. chinensis females. As slow-acting components, extracts of male accessory glands of other species reduced the receptivity of both C. maculatus and chinensis females. After interspecific mating, the sperm of C. maculatus males were transferred to the reproductive organs of C. chinensis females, thereby reducing their receptivity. In contrast, no C. chinensis sperm were transferred to the reproductive organs of C. maculatus females; accordingly, the latter's receptivity was not reduced. Furthermore, the survival rate of C. chinensis females decreased markedly after interspecific mating. These results raise the possibility that under circumstances where populations of these two species share the same habitat, reproductive interference would occur only in the interactions between C. maculatus males and C. chinensis females.  相似文献   

20.
Recent studies suggest that sperm production and transfer may have significant costs to males. Male sperm investment into a current copulation may therefore influence resources available for future matings, which selects for male strategic mating investment. In addition, females may also benefit from actively or passively altering the number of sperm transferred by males. In the scorpionfly Panorpa cognata, the number of sperm transferred during copulation depended on copulation duration and males in good condition (residual weight) copulated longer and also transferred more sperm. Moreover, sperm transferred and stored per unit time was higher in copulations with females in good condition than in copulations with females in poor condition. Males varied greatly and consistently in their sperm transfer rate, indicative of costs associated with this trait. The duration of the pairing prelude also varied between males and correlated negatively with the male's sperm transfer rate, but no other male character correlated significantly with male sperm transfer rate. The results are consistent with strategic mating effort but sperm transfer could also be facilitated by the physical size of females and/or females in good condition may be more cooperative during sperm transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号