首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Biomarker discovery results in the creation of candidate lists of potential markers that must be subsequently verified in plasma.1 The most mature methods at present require abundant protein depletion and fractionation at the protein/peptide levels in order to detect and quantitate low ng/mL concentrations of plasma proteins by stable isotope dilution mass spectrometry. Sample-processing methods with sufficient throughput, recovery, and reproducibility to enable robust detection and quantitation of candidate bio-marker proteins were evaluated by adding five non-native proteins to immunoaffinity-depleted female plasma at varying concentrations (1000, 100, 50, 25, and 10 ng/mL). Each protein was monitored by one or more representative synthetic tryptic peptides labeled with [13C6]leucine or [13C5] valine. Following reduction, carbamidomethylation, and enzymatic digestion, two separate processing paths were compared. In path 1, digested plasma was diluted 1:10 and [13C] internal standards were added just prior to direct analysis by multiple reaction monitoring with LC-MS/MS (MRM LC-MS/MS). In path 2, peptides were separated by strong cation exchange, and [13C] internal standards were added to corresponding SCX fractions prior to analysis by MRM LC-MS/MS. Detection and quantitation by MRM used the response of at least two product ions from each of the signature peptides. Using processing path 1, we achieved detection and quantitation down to 50 ng/mL in depleted plasma. However, using processing path 2, we achieved detection and quantitation of all spiked proteins, including the non-native protein at 10 ng/mL. While analysis of non-fractionated plasma achieved higher recovery of those proteins detected in both processes, SCX fractionation at the peptide level clearly increases detection and LOQs for potential biomarker proteins in plasma.  相似文献   

2.
Sarcolemmal Ca2+/Mg2+ ecto-ATPase (Myoglein; MW 180 kD) is a membrane bound enzyme which requires a millimolar concentration of either Ca2+ or Mg2+ for maximal hydrolysis of ATP. The isoelectric point (pI) of the cardiac ecto-ATPase was 5.7. The purified Ca2+/Mg2+ ecto-ATPase from the rat heart sarcolemmal appeared as a single band with MW 90 kD in the SDS-PAGE. In order to understand the nature of this enzyme, the 90 kD band in the SDS-PAGE was electroeluted; the analysis of the eluate showed 2 prominent bands with MW 90 and 85 kD. The presence of 2 bands was further confirmed by gradient gel (10-20%) electrophoresis in 0.375 M Tris-HCl buffer, pH 8.8. Analysis of the purified Ca2+/Mg2+ ecto-ATPase as well as the electroeluted protein in a non-equilibrium linear two dimensional electrophoresis (Ampholyte pI 3.0-10.0) also showed two distinct bands. Mass spectroscopic analysis of the enzyme using different matrix combinations revealed the presence of multi-components indicating microheterogeneity in the protein structure. Treatment of the ecto-ATPase with DL-dithiothreitol did not alter the pattern of mass spectroscopic analysis and this indicated that the microheterogeneity may be due to some posttranslational modifications. It is concluded that rat cardiac Ca2+/Mg2+ ecto-ATPase is an acidic protein having two subunits. Furthermore, the enzyme shows microheterogeneity in its molecular structure.  相似文献   

3.
4.
In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein 1. The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification.HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH4)2SO4). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) 2. As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter 3. Automated column scouting allows for an efficient approach for determining which HIC media should be employed for future, more exhaustive optimization experiments and protein purification runs 4.The specific protein being purified here is recombinant green fluorescent protein (GFP); however, the approach may be adapted for purifying other proteins with one or more hydrophobic surface regions. GFP serves as a useful model protein, due to its stability, unique light absorbance peak at 397 nm, and fluorescence when exposed to UV light 5. Bacterial lysate containing wild type GFP was prepared in a high-salt buffer, loaded into a Bio-Rad DuoFlow medium pressure liquid chromatography system, and adsorbed to HiTrap HIC columns containing different HIC media. The protein was eluted from the columns and analyzed by in-line and post-run detection methods. Buffer blending, dynamic sample loop injection, sequential column selection, multi-wavelength analysis, and split fraction eluate collection increased the functionality of the system and reproducibility of the experimental approach.Download video file.(63M, mov)  相似文献   

5.
The majority of mass spectrometry-based protein quantification studies uses peptide-centric analytical methods and thus strongly relies on efficient and unbiased protein digestion protocols for sample preparation. We present a novel objective approach to assess protein digestion efficiency using a combination of qualitative and quantitative liquid chromatography-tandem MS methods and statistical data analysis. In contrast to previous studies we employed both standard qualitative as well as data-independent quantitative workflows to systematically assess trypsin digestion efficiency and bias using mitochondrial protein fractions. We evaluated nine trypsin-based digestion protocols, based on standard in-solution or on spin filter-aided digestion, including new optimized protocols. We investigated various reagents for protein solubilization and denaturation (dodecyl sulfate, deoxycholate, urea), several trypsin digestion conditions (buffer, RapiGest, deoxycholate, urea), and two methods for removal of detergents before analysis of peptides (acid precipitation or phase separation with ethyl acetate). Our data-independent quantitative liquid chromatography-tandem MS workflow quantified over 3700 distinct peptides with 96% completeness between all protocols and replicates, with an average 40% protein sequence coverage and an average of 11 peptides identified per protein. Systematic quantitative and statistical analysis of physicochemical parameters demonstrated that deoxycholate-assisted in-solution digestion combined with phase transfer allows for efficient, unbiased generation and recovery of peptides from all protein classes, including membrane proteins. This deoxycholate-assisted protocol was also optimal for spin filter-aided digestions as compared with existing methods.MS-based proteomics is an indispensable technology for the characterization of complex biological systems, including relative or absolute protein expression levels and protein post-translational modifications. The most popular method for analyzing medium to high complexity protein samples in large-scale proteomics relies on protein digestion by using the endoprotease trypsin. Analysis and sequencing of tryptic peptides by liquid chromatography-tandem MS (LC-MS/MS)1 then enables identification and determination of protein expression levels based on the peptide ion abundance level or the (fragment) ion intensities of identified peptides. This peptide-centric approach thus strongly relies on efficient, unbiased and reproducible protein digestion protocols. Efficiency is required to maximize the number of detectable peptides per protein (coverage) to distinguish unique proteins within protein families with similar sequences and/or sequence variants, and to detect post-translational modifications. Unbiased generation of peptides is required for the resulting data set to most accurately reflect the relative (stoichiometry) and absolute protein abundance in a sample. A particular protocol should be unbiased with respect to abundance, molecular weight, hydrophobicity and protein class. Membrane proteins for example are often suspected to be underrepresented. For MS-based proteomics approaches several critical steps can be distinguished: (a) disruption and solubilization of cells and protein complexes, (b) protein denaturation and enzymatic proteolysis, (c) MS-compatible peptide recovery, which normally entails removal of reagent leftovers and desalting before MS analysis, (d) adequate peptide separation (achieved by liquid chromatography), and (e) MS peptide analysis and sequencing (MS/MS), including the chosen data acquisition strategy.Comparative evaluations of digestion protocols generally consist of qualitative studies using standard tandem mass spectrometry. These approaches may reveal efficiency (i.e. more identifications), but are unable to reveal digestion protocol induced bias with respect to peptide and protein abundance, including membrane proteins. In addition, most data-dependent acquisition workflows are intrinsically biased, which is detrimental for making comparisons. The aim of the present study was to systematically assess efficiency and bias of trypsin-based protocols applying both standard qualitative and label-free quantitative MS approaches.The in-gel digestion protocol for proteomics, established over 15 years ago (1), has been the cornerstone method affording robust protein identifications from many sample types. Although sodium dodecyl sulfate (SDS) interferes with trypsin digestion and hampers LC-MS analysis, this powerful detergent can still be used to achieve complete protein solubilization as gel-separation is an effective way to remove interfering substances. Gel-based approaches are however not optimal for protein samples of increasing complexity and dynamic range (2). Inherent and practical limitations include, for example, concentration-dependent, incomplete peptide recovery and error-prone handling procedures (36). This hampers throughput, reproducibility and unbiased protein analysis, which in recent years has prompted a shift toward the application and optimization of in-solution digestion procedures.Previous comparative studies revealed that for in-solution digestions, the acid labile and MS-compatible detergent RapiGest performed most favorably compared with buffer only, urea, other detergents and organic solvents (79). Sodium deoxycholate (SDC), naturally found in mammalian bile (10), has emerged as a cheaper MS-compatible detergent for in-solution digestion (11). Unlike other detergents, SDC was found to enhance trypsin activity almost fivefold at a concentration of 1% (12). Like RapiGest, SDC can also be removed by acidification, but potentially without detrimental peptide loss if a phase separation protocol involving organic solvent is applied (12).An alternative strategy is to perform protein digestion on spin filter devices, introduced a few years ago by Manza and co-workers (13), and further developed by Wisniewski et al. (14). This approach allows the use of SDS to first achieve complete protein solubilization followed by removal of the detergent through repeated washes with urea (14). This is an effective way to remove interfering chemicals and small molecules after protein solubilization, and before digestion, without substantial sample loss. Although this protocol is touted to be a highly effective and universal method for any type of sample, digestion is performed using urea or buffer only and has so far not been evaluated in combination with detergents such as SDC.For our comparative study we selected protocols and methods based on spin filter-aided and standard in-solution digestion that were previously reported optimal and we also report novel optimized protocols. We investigated several experimental parameters including reagents for protein solubilization and denaturation (SDS, SDC, urea), spin filter aided removal of SDS before digestion (urea, SDC, buffer), trypsin digestion conditions (buffer, RapiGest, SDC, urea), and methods for removal of detergents before analysis of peptides (acid precipitation or phase separation with ethyl acetate).Mitochondria are organelles carrying out key metabolic processes fundamental for cellular function (15). The mitochondrial proteome is predicted to contain up to a thousand proteins (16) and is very heterogeneous with a wide range of protein pI, molecular weight and hydrophobicity values (17). We selected mitochondrial preparations to serve as model sample of medium complexity, containing a favorable combination of peptide and protein classes, including soluble and insoluble membrane-anchored or integral proteins.Using standard qualitative as well as data-independent quantitative LC-MS/MS workflows we demonstrate that SDC-based protocols combined with phase separation are the most optimal for both in-solution and filter-aided tryptic digestion, yielding the highest efficiency and lowest bias. This workflow enabled quantitative and objective assessment of various protein digestion conditions, identifying optimal protocols for efficient and unbiased protein analysis.  相似文献   

6.
7.

Background

Identifying protein complexes is crucial to understanding principles of cellular organization and functional mechanisms. As many evidences have indicated that the subgraphs with high density or with high modularity in PPI network usually correspond to protein complexes, protein complexes detection methods based on PPI network focused on subgraph's density or its modularity in PPI network. However, dense subgraphs may have low modularity and subgraph with high modularity may have low density, which results that protein complexes may be subgraphs with low modularity or with low density in the PPI network. As the density-based methods are difficult to mine protein complexes with low density, and the modularity-based methods are difficult to mine protein complexes with low modularity, both two methods have limitation for identifying protein complexes with various density and modularity.

Results

To identify protein complexes with various density and modularity, including those have low density but high modularity and those have low modularity but high density, we define a novel subgraph's fitness, f ρ , as f ρ = (density) ρ *(modularity)1-ρ, and propose a novel algorithm, named LF_PIN, to identify protein complexes by expanding seed edges to subgraphs with the local maximum fitness value. Experimental results of LF-PIN in S.cerevisiae show that compared with the results of fitness equal to density (ρ = 1) or equal to modularity (ρ = 0), the LF-PIN identifies known protein complexes more effectively when the fitness value is decided by both density and modularity (0<ρ<1). Compared with the results of seven competing protein complex detection methods (CMC, Core-Attachment, CPM, DPClus, HC-PIN, MCL, and NFC) in S.cerevisiae and E.coli, LF-PIN outperforms other seven methods in terms of matching with known complexes and functional enrichment. Moreover, LF-PIN has better performance in identifying protein complexes with low density or with low modularity.

Conclusions

By considering both the density and the modularity, LF-PIN outperforms other protein complexes detection methods that only consider density or modularity, especially in identifying known protein complexes with low density or low modularity.
  相似文献   

8.
9.
The primary structural information of proteins employed as biotherapeutics is essential if one wishes to understand their structure–function relationship, as well as in the rational design of new therapeutics and for quality control. Given both the large size (around 150 kDa) and the structural complexity of intact immunoglobulin G (IgG), which includes a variable number of disulfide bridges, its extensive fragmentation and subsequent sequence determination by means of tandem mass spectrometry (MS) are challenging. Here, we applied electron transfer dissociation (ETD), implemented on a hybrid Orbitrap Fourier transform mass spectrometer (FTMS), to analyze a commercial recombinant IgG in a liquid chromatography (LC)-tandem mass spectrometry (MS/MS) top-down experiment. The lack of sensitivity typically observed during the top-down MS of large proteins was addressed by averaging time-domain transients recorded in different LC-MS/MS experiments before performing Fourier transform signal processing. The results demonstrate that an improved signal-to-noise ratio, along with the higher resolution and mass accuracy provided by Orbitrap FTMS (relative to previous applications of top-down ETD-based proteomics on IgG), is essential for comprehensive analysis. Specifically, ETD on Orbitrap FTMS produced about 33% sequence coverage of an intact IgG, signifying an almost 2-fold increase in IgG sequence coverage relative to prior ETD-based analysis of intact monoclonal antibodies of a similar subclass. These results suggest the potential application of the developed methodology to other classes of large proteins and biomolecules.Top-down mass spectrometry (MS)1 (13) has continued to demonstrate its particular advantages over traditionally employed bottom-up MS strategies (4). Specifically, top-down MS allows the characterization of specific protein isoforms originating from the alternative splicing of mRNA that code single nucleotide polymorphisms and/or post-translational modifications (PTMs) of protein species (5). Intact protein molecular weight (MW) determination and subsequent gas-phase fragmentation of selected multiply charged protein ions (referred to as tandem MS or MS/MS) theoretically might result in complete protein sequence coverage and precise assignment of the type and position of PTMs, amino acid substitutions, and C- or N-terminal truncations (6), whereas the bottom-up MS approach allows only the identification of a certain protein family when few or redundant peptides are found for a particular protein isoform. At a practical level, however, top-down MS-based proteomics struggles not only with the single- or multi-dimensional separation of undigested proteins, which demonstrates lower reproducibility and repeatability than for peptides, but also with technical limitations present in even state-of-the-art mass spectrometers. The outcome of a top-down MS experiment depends indeed on the balance between the applied resolution of the mass spectrometer and its sensitivity. The former is required for unambiguous assignment of ion isotopic clusters in both survey and MS/MS scans, whereas the latter is ultimately dependent on the scan speed of the mass analyzer, which determines the number of scans that can be accumulated for a given analyte ion on the liquid chromatography (LC) timescale to enhance the resulting signal-to-noise ratio (SNR). Until recently, the instrument of choice for top-down MS has been the Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer, primarily because of its superior resolving power and the availability of electron capture dissociation for the efficient MS/MS of large biomolecules (7, 8). However, this solution has been shown to have some limitations in the analysis of large proteins (9). The main issue, as described by Compton et al. (10), is that the SNR in Fourier transform mass spectrometry (FTMS) is inversely proportional to the width of the isotopic and charge state distributions (11), which both increase as a function of MW. Particularly, the SNR dramatically decreases with MW under standard on-line LC-MS/MS operating conditions if isotopic resolution is required. It is noteworthy that such SNR reduction can affect not only intact mass measurements, but also the subsequent MS/MS performance.The most widely employed solution for improving top-down analysis is thus a substantial reduction of the protein mixture complexity, for example, through off-line sample prefractionation (12). Furthermore, when the MW exceeds 100 kDa, proteins are often analyzed via direct infusion after off-line purification of the single isoform or species of interest (13). Overall, these strategies aim to improve the quality of mass spectra, specifically their SNR, by increasing the number of scans dedicated to each selected isoform or species. However, off-line intact protein analysis has limitations, including sample degradation and modification (e.g., oxidation during long off-line measurements and sample storage). The time required for multistep LC-based protein purification can also be substantial.Electron capture dissociation (ECD) (14, 15) and electron transfer dissociation (ETD) (16) are ion activation techniques that allow polypeptide fragmentation with reduced PTM losses (17, 18). Nevertheless, ECD and ETD generally provide larger sequence coverage for intact proteins than slow-heating activation methods such as collision induced dissociation (CID) and infrared multiple photon dissociation (19, 20). Furthermore, ECD and ETD are known to cleave disulfide bonds, a fundamental feature for the analysis of proteins in their native state (i.e., without cysteine reduction and alkylation) (2123).The structural analysis of high MW intact proteins with MS has garnered much recent attention in the literature (24, 25), mainly because of the improved capabilities offered by rapidly developing sample preparation, protein separation, and mass spectrometric methods and techniques. Immunoglobulin G (IgG) proteins are antibodies with an MW of about 150 kDa that are composed of two identical sets of light and glycosylated heavy chains with both intra- and intermolecular disulfide bridges (Fig. 1) (26). IgGs represent an attractive target for structural analysis method development, given their high importance as biotherapeutics (27). A unit-mass resolution mass spectrum demonstrating an isotopic distribution of an isolated charge state of a 148 kDa IgG1 has been recently achieved with FT-ICR MS equipped with 9.4 T superconducting magnet and a statically harmonized ICR cell (24). However, further analytical improvements are needed to achieve routine and reproducible MS operation at the required level of resolution and sensitivity.Open in a separate windowFig. 1.Schematic representation of IgG1. Two identical light (blue) and two identical heavy (fucsia) chains form the intact IgG. The light chain is composed of a variable domain (VL) and a constant domain (CL), whereas the heavy chain comprises one variable domain (VH) and three constant domains (CH1–3). Each domain contains an intramolecular disulfide bridge (in red); intermolecular disulfide bridges link the heavy chains to each other (two bonds) and each heavy chain to one light chain (one bond). Each heavy chain includes an N-glycosylation site (located at Asn297; here, a G0F/G0F glycosylation is shown).Fragmentation of intact antibodies in the gas phase following the top-down MS approach has been previously attempted without precursor ion charge state isolation by means of nozzle-skimmer CID on a linear trap quadrupole (LTQ)-Orbitrap™ (28, 29) and with precursor ion isolation via ETD on a high resolution quadrupole time-of-flight (qTOF) mass spectrometer (25). Relative to the results previously obtained with slow-heating MS/MS methods, the ETD qTOF MS/MS demonstrated substantially higher sequence coverage, reaching 15% for human and 21% for murine IgGs. Important for future top-down proteomics development for complex protein mixtures, the ETD qTOF MS/MS results were obtained on the LC timescale. To increase the sequence coverage and confidence in product ion assignment, a substantial increase in SNR was achieved by averaging MS/MS data from up to 10 identical LC-MS/MS experiments. The high complexity of the product ion population reduced the effective resolution to about 30,000, presumably limiting the assignment of overlapping high charge state product ions in the 1000–2000 m/z range. Even higher peak complexity was observed in the region of charge reduced species and complementary heavy product ions, above 3000 m/z. Finally, numerous disulfide bonds drastically reduced MS/MS efficiency in the disulfide bond-protected regions.Here we demonstrate that ETD-enabled hybrid linear ion trap Orbitrap FTMS allows us to further improve the top-down ETD-based LC-MS/MS of monoclonal antibodies, introduced earlier for TOF-based MS. To fully take advantage of the high resolving power of Orbitrap MS/MS for increasing both the number of assigned product ions and the confidence of the assignments, maintaining an LC-MS/MS setup useful in a general proteomics workflow for protein desalting and separation, we averaged time-domain transients (derived from separated LC-MS/MS runs) before Fourier transform signal processing.  相似文献   

10.
The present study introduced and evaluated modification of E. coli BL21 (DE3) to improve its biosorption capacity by the transfer of the Corynebacterium glutamicum metallothionein gene (C.gMT). The C.gMT sequence was extracted and cloned in pET28a vector and the ligation product was transferred into E. coli BL21 (DE3). It has been also submitted to the GenBank database (accession number KJ638906.1). The performance of the recombinant bacterium was evaluated at different metal ions concentrations, contact times, pH values, and co-ions. The results show that recombinant BL21 (DE3) was able to uptake Pb+2, and Zn+2 at greater percentages than could BL21 (DE3). The optimum pH for the removal of each heavy metal was different. As contact time increased, Pb+2 and Zn+2 biosorption by the recombinant bacterium increased, while the biosorption of Cd+2 remained at a nearly steady rate for contact times of more than 1 h. Increasing the concentrations of Pb+2 and Zn+2 in solution increased biosorption of these metals by the recombinant BL21 (DE3) over that of Cd+2. It could be hypothesized that Pb+2 and Zn+2 removal by C.gMT-engineered BL21 (DE3) occurred mainly via intracellular biosorption (absorption) and that Cd+2 was mainly taken up through cell surface biosorption (adsorption).  相似文献   

11.
Protein ubiquitination regulates numerous cellular functions in eukaryotes. The prevailing view about the role of RING or U-box ubiquitin ligases (E3) is to provide precise positioning between the attached substrate and the ubiquitin-conjugating enzyme (E2). However, the mechanism of ubiquitin transfer remains obscure. Using the carboxyl terminus of Hsc70-interacting protein as a model E3, we show herein that although U-box binding is required, it is not sufficient to trigger the transfer of ubiquitin onto target substrates. Furthermore, additional regions of the E3 protein that have no direct contact with E2 play critical roles in mediating ubiquitin transfer from E2 to attached substrates. By combining computational structure modeling and protein engineering approaches, we uncovered a conformational flexibility of E3 that is required for substrate ubiquitination. Using an engineered version of the carboxyl terminus of Hsc70-interacting protein ubiquitin ligase as a research tool, we demonstrate a striking flexibility of ubiquitin conjugation that does not affect substrate specificity. Our results not only reveal conformational changes of E3 during ubiquitin transfer but also provide a promising approach to custom-made E3 for targeted proteolysis.Protein modification by ubiquitin and ubiquitin-like proteins is a common mechanism through which numerous cellular pathways are regulated (1). The canonical cascade of ubiquitination involves the action of three enzymes, termed E1, E2, and E3, which activate and then conjugate ubiquitin to its substrates (2, 3). The E3 ligase catalyzes the final step in ubiquitin transfer in a substrate-specific manner. Despite advances in understanding the enzymatic cascade of ubiquitination, the mechanism of ubiquitin transfer to the substrate remains an outstanding issue (4). In particular, the role of E3 ubiquitin ligases and how they adapt to progressively modified substrates to maintain specific ubiquitin chain topology is still a mystery.The known E3s belong to three protein families: HECT, RING, and U-box. HECT domain enzymes form a covalent intermediate with ubiquitin before the final transfer of ubiquitin to substrates. In contrast, RING and U-box E3s have been suggested to function as adaptors that position the substrate in close proximity to the E2-ubiquitin thioester (E2-Ub) (5). It has become common “wisdom” that the substrate has to be precisely positioned to get ubiquitinated (6). The positioning hypothesis originally predicted that E3 substrates would have a specific ubiquitination site. However, the absence of “consensus” ubiquitination sites has become apparent in an increasing list of E3 substrates (79). In addition, the crystal structures of several ubiquitination machinery components have revealed a puzzling gap (∼50 Å) between the substrate binding sites and the E2 active sites (10, 11). This raises a fundamental question in ubiquitin transfer. How does the ubiquitin molecule shuttle from the E2 to substrates? Though several interesting models for ubiquitin transfer have been proposed, only limited explicit experimental evidence support these models (4).We used carboxyl terminus of Hsc70-interacting protein (CHIP)3 as a model E3 system to investigate the role of substrate positioning in its ubiquitination. CHIP is a protein quality control E3 that consists of an NH2-terminal tetratricopeptide repeat (TPR) domain, a helical linker domain, and a COOH-terminal U-box domain (12, 13). The TPR domain of CHIP binds directly to EEVD motifs located at the COOH termini of Hsc/Hsp70 and Hsp90, whereas the U-box domains possess ubiquitin ligase activity. CHIP recruits E2 enzymes of the Ubc4/5 family to ubiquitinate misfolded proteins that occupy the chaperone substrate-binding sites, thus remodeling the chaperones from protein-refolding complexes to complexes that promote degradation (14). Using the chaperone as an adaptor, CHIP targets a variety of substrates for ubiquitination (15). In the absence of substrates, CHIP is also able to ubiquitinate the bound chaperones (16). Thus, there is apparent substrate diversity for CHIP-mediated ubiquitination. Insights into the mechanism of action of CHIP have been provided by an x-ray crystal structure which reveals a remarkable, highly asymmetric dimer (25). Here, we demonstrate the existence of intrinsic structural flexibility in the CHIP homodimer that is required for substrate polyubiquitination. The flexible orientation allows CHIP to accommodate substrates with different sizes and structures. Mutations that restrict the flexibility of CHIP markedly decrease substrate ubiquitination, whereas maintaining flexibility enables us to rebuild a functional ubiquitin ligase with altered substrate specificity. Our results provide evidence for the importance of structural flexibility in E3 ligases, which we propose is of general importance to orchestrate progressive ubiquitin conjugation on substrates.  相似文献   

12.
In order to identify the antagonistic substances produced by Bacillus subtilis E1R-J as candidate of biocontrol agents for controlling Apple Valsa Canker, hydrochloric acid precipitation, reverse phase chromatography, gel filtration, and ion exchange chromatography were used. The purified fraction EP-2 showed a single band in native-polyacrylamide gel electrophoresis (native-PAGE) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Fraction EP-2 was eluted from native-PAGE and showed a clear inhibition zone against V. mali 03-8. These results prove that EP-2 is one of the most important antifungal substances produced by B. subtilis E1R-J in fermentation broth. SDS-PAGE and Nano-LC–ESI–MS/MS analysis results demonstrated that EP-2 was likely an antifungal peptide (trA0A086WXP9), with a relative molecular mass of 12.44 kDa and isoelectric point of 9.94. The examination of antagonistic mechanism under SEM and TEM showed that EP-2 appeared to inhibit Valsa mali 03-8 by causing hyphal swelling, distortion, abnormality and protoplasts extravasation. Inhibition spectrum results showed that antifungal protein EP-2 had significantly inhibition on sixteen kinds of plant pathogenic fungi. The stability test results showed that protein EP-2 was stable with antifungal activity at temperatures as high as 100 °C for 30 min and in pH values ranging from 1.0 to 8.0, or incubated with each 5 mM Cu2+, Zn2+, Mg2+, or K+. However, the antifungal activity was negatively affected by Proteinase K treatment.  相似文献   

13.
There is evidence that Ca2+ can regulate vesicle-mediated secretion in plant cells, but the mechanism for this is not known. One possibility is that Ca2+ -dependent phospholipid-binding proteins (annexins) couple the Ca2+ stimulus to the exocytotic response. Using a protocol developed for the isolation of animal annexins we have identified proteins in maize (Zea mays L.) coleoptiles that have similar characteristics to annexins. The predominant polypeptide species run as a doublet of relative molecular mass (Mr) 33000–35000 on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE); another less-abundant protein of Mr 23000 is also present. In the presence of Ca2+ these proteins bind to liposomes composed of acidic phospholipids. Calcium-sensitivity of binding differs for each protein and is also influenced by the pH of the buffer used for the liposome-binding assay. Antiserum raised to the 33 to 35-kDa doublet purified on SDS-PAGE recognises the doublet in crude extracts from maize and proteins of similar Mr in Tradescantia virginiana and tobacco Nicotiana tabacum L. The antiserum also recognises p68 (Annexin VI) from chicken gizzard extracts, indicating homology between animal annexins and the maize proteins. For the maize proteins to be involved in the regulation of exocytosis, binding to phospholipids would be expected to occur at physiological levels of Ca2+. The characteristics of the maize annexin-like proteins are described and attention drawn to the marked effect of pH in lowering the requirement for Ca2+ for phospholipid binding.Abbreviations DEAE diethylaminoethyl - EGTA ethylene glycol-bis (-aminoethyiether)-N,N,N,N-tetraacetic acid - kDa kilodalton(s) - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis This work was funded by the Agricultural and Food Research Council. Our thanks also to Professor P. Lowry and Dr R. Woods, Department of Biochemistry, University of Reading for facilities and advice for antiserum production, and C. Boustead, Department of Biochemistry, University of Leeds for advice on immunoblotting and phospholipid-binding assays.  相似文献   

14.
Disulfide bond identification is important for a detailed understanding of protein structures, which directly affect their biological functions. Here we describe an integrated workflow for the fast and accurate identification of authentic protein disulfide bridges. This novel workflow incorporates acidic proteolytic digestion using pepsin to eliminate undesirable disulfide reshuffling during sample preparation and a novel search engine, SlinkS, to directly identify disulfide-bridged peptides isolated via electron transfer higher energy dissociation (EThcD). In EThcD fragmentation of disulfide-bridged peptides, electron transfer dissociation preferentially leads to the cleavage of the S–S bonds, generating two intense disulfide-cleaved peptides as primary fragment ions. Subsequently, higher energy collision dissociation primarily targets unreacted and charge-reduced precursor ions, inducing peptide backbone fragmentation. SlinkS is able to provide the accurate monoisotopic precursor masses of the two disulfide-cleaved peptides and the sequence of each linked peptide by matching the remaining EThcD product ions against a linear peptide database. The workflow was validated using a protein mixture containing six proteins rich in natural disulfide bridges. Using this pepsin-based workflow, we were able to efficiently and confidently identify a total of 31 unique Cys–Cys bonds (out of 43 disulfide bridges present), with no disulfide reshuffling products detected. Pepsin digestion not only outperformed trypsin digestion in terms of the number of detected authentic Cys–Cys bonds, but, more important, prevented the formation of artificially reshuffled disulfide bridges due to protein digestion under neutral pH. Our new workflow therefore provides a precise and generic approach for disulfide bridge mapping, which can be used to study protein folding, structure, and stability.Disulfide bridges are one of the most common post-translational modifications in proteins (1). The formation of disulfide bonds between cysteine residues is a crucial component in the process of protein folding and plays an important role in stabilizing the tertiary and quaternary structures of proteins (2, 3). Therefore, detecting and characterizing the exact locations of disulfide bonds is an important aspect of proteomics, especially in the context of gaining a comprehensive understanding of protein folding and three-dimensional structures. Moreover, in the use of protein therapeutics (e.g. antibodies), it is also of interest to monitor the reshuffling of disulfide bonds during formulation, storage, and usage, which reflects the antibody structure, stability, and biological function (4).Most knowledge about protein disulfide bridges comes from detailed molecular structures obtained via x-ray crystallography and NMR spectroscopy (5, 6), although regrettably such data are mostly obtained from overexpressed recombinant proteins. Mass spectrometry is gaining importance in the identification and characterization of protein disulfide bridges (7, 8). Some advantages of MS-based approaches include relatively easy sample preparation, short analysis time, and the capability to deal with more complex protein mixtures from endogenous sources. However, the detection of disulfide bridges remains challenging for a few reasons.Firstly, the presence of free sulfhydryl groups can induce undesired sulfhydryl-disulfide reshuffling, especially under neutral and alkaline pH condition. As most standard proteomic strategies use enzymatic digestion in a pH range of 7.5–8.5, undesirable disulfide reshuffling can occur during sample handling (8). Secondly, most of the widely applied database searching programs, such as SEQUEST and Mascot, are not developed, and thus are not suitable, for analyzing fragmentation spectra originating from disulfide-bridged peptides (9).Efforts have been directed at tackling these obstacles and facilitating the identification of authentic disulfide bridges. With respect to sample handling, it has been demonstrated by several groups that disulfide reshuffling can be reduced by (i) blocking free cysteines using alkylating reagents before denaturing the protein, (ii) lowering the pH to 6.0 to 7.0 during tryptic digestion (8, 1013), and (iii) using the enzyme pepsin under acidic conditions for proteolytic digestion (1317). Unfortunately, trypsin becomes less efficient and less specific at more acidic pH, and pepsin, which has an optimal pH range of 1–3, tremendously increases the complexity of both protein digests and data analysis (8). Regarding data analysis, one of the current approaches used for the identification of disulfide bridges involves chromatographic comparison between reduced and non-reduced protein digests, with disulfide-bridged peptides appearing only in non-reduced samples (8, 12). Alternatively, disulfide bonds can be identified directly from non-reduced protein digests using an electron transfer dissociation (ETD)1 MS2 and collision-induced dissociation (CID)/higher energy collision dissociation (HCD) MS3 fragmentation scheme (termed the ETD-MS2 CID/HCD-MS3 approach) (13, 18, 19). Thereby, ETD aids in the preferential cleavage of S–S linkages, generating two disulfide-cleaved peptides, which can be subsequently isolated and further fragmented via CID/HCD for sequence information. In addition, substantial efforts have been made to develop novel strategies specifically for interpreting spectra from disulfide-bridged peptides, including de novo sequencing approaches (20, 21) and database search engines such as MassMatrix and Dbond (9, 22).A combined dual fragmentation scheme, referred to as electron-transfer and higher-energy collision dissociation (EThcD), was introduced by our group recently as implemented on an Orbitrap Elite (2325) and will become available for the Orbitrap Fusion. In this approach, an initial ETD step is applied to fragment the isolated MS precursor, and subsequently all resulting ions are subjected to HCD fragmentation, generating a mixture of b/y and c/z ions. Here we explored the use of EThcD for disulfide bridge analysis. We reasoned that the previously reported ETD-MS2 CID/HCD-MS3 method could be integrated into a single EThcD experiment, with ETD applied first to preferentially break the disulfide bond and HCD employed next to enhance the number of peptide backbone fragments. Based on the fact that all the ions resulting from the ETD process are subjected to HCD simultaneously and thus no MS3 isolation is necessary, the sensitivity and duty cycle of the EThcD workflow should potentially be improved relative to the previous MS3 strategy.In this work, we describe a fast and accurate framework for both intrapeptide and interpeptide disulfide bridge identification, including the acidic digestion procedure using pepsin, the usage of the dual-fragmentation scheme EThcD, and the development of a novel search engine, SlinkS. The workflow described herein diminishes issues induced by disulfide reshuffling during sample preparation and provides direct and efficient identification of intrapeptide and interpeptide disulfide bonds from LC/MS2 experiments. We evaluated the integrated workflow using a mixture of six standard proteins and confirmed that this approach enables reliable and robust identification of authentic disulfide bridges from protein mixtures. Furthermore, we assessed the capability of the workflow to quantitatively monitor the changes of disulfide bridges in stress-induced therapeutic antibodies.  相似文献   

15.
The glycosylation of proteins in fibroblasts from people with the premature ageing disease Hutchinson-Gilford Progeria Syndrome (progeria) was investigated.Protein was prepared from fibroblast cell lines established from skin biopsy taken from progeria patients and control donors. Glycoproteins were labelled by the covalent attachment of the steroid hapten digoxygenin to the sugar group. After separation of total protein by SDS-PAGE and electroblotting onto Immobilon-P, glycoproteins were detected by enzyme immunoassay.We have observed a glycoprotein of Mr 200 kDa which is consistently present in protein preparations from progeria fibroblasts and which is absent, or markedly reduced, in preparations from control fibroblasts. This suggests that it may be useful as a marker for progeria. Similar analysis of progeria lymphoblast and control lymphoblast cultures did not show this altered pattern of glycosylated proteins, indicating that it may be cell-type specific.Glycoproteins were also detected by labelling fibroblastsin vitro with D-[6-3H] glucosamine hydrochloride followed by SDS-PAGE of isolated protein and subsequent fluorography. Profiles of glycoproteins from progeria and control fibroblasts were consistent with those obtained from labelling of carbohydrate groups with digoxygenin. Protease digestion of cell protein verified that the band at Mr 200 kDa contains a protein core.Characteristic features of progeria primarily involve the connective tissue and include wrinkled and loose skin, loss of soft tissue, thin limbs and stiff joints. Death of progeria patients is usually a result of cardiovascular abnormalities. The most consistent manifestations thus involve the connective tissue.The glycoprotein of Mr 200 kDa which we have observed in progeria fibroblastsin vitro could reflect a perturbation in glycosylation which may underly the connective tissue defects seen in progeria.Abbreviations EMEM Eagle's Minimum Essential Medium with Earle's Salts - FCS Fetal Calf Serum - PBS Ca2+- and Mg2+-free Phosphate-Buffered Saline - PDL Population Doubling Level - SDS Sodium Dodecyl Sulphate - SDS-PAGE Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis  相似文献   

16.
We have developed a method for detecting a transgene and its protein product in maize endosperm that allows the kernel to be germinated after analysis. This technique could be highly useful for several monocots and dicots. Our method involves first sampling the endosperm with a hand-held rotary grinder so that the embryo is preserved and capable of germination. This tissue is then serially extracted, first with SDS-PAGE sample buffer to extract proteins, then with an aqueous buffer to extract DNA. The product of the transgene can be detected in the first extract by SDS-PAGE with visualization by total protein staining or immuno-blot detection. The second extract can be purified and used as template DNA in PCR reactions to detect the transgene. This method is particularly useful for screening transgenic kernels in breeding experiments and testing for gene silencing in kernels.  相似文献   

17.
Presenilin-1 (PS1) protein acts as passive ER Ca2+ leak channels that facilitate passive Ca2+ leak across ER membrane. Mutations in the gene encoding PS1 protein cause neurodegeneration in the brains of patients with familial Alzheimer’s disease (FAD). FADPS1 mutations abrogate the function of ER Ca2+ leak channel activity in human neuroblastoma SK-N-SH cells in vitro (Das et al., J Neurochem 122(3):487–500, 2012) and in mouse embryonic fibroblasts. Consequently, genetic deletion or mutations of the PS1 gene cause calcium (Ca2+) signaling abnormalities leading to neurodegeneration in FAD patients. By analogy with other known ion channels it has been proposed that the functional PS1 channels in ER may be multimers of several PS1 subunits. To test this hypothesis, we conjugated the human PS1 protein with an NH2-terminal YFP-tag and a COOH-terminal CFP-tag. As expected YFP–PS1, and PS1–CFP were found to be expressed on the plasma membranes by TIRF microscopy, and both these fusion proteins increased ER Ca2+ leak channel activity similar to PS1 (WT) in SK-N-SH cells, as determined by functional calcium imaging. PS1–CFP was either expressed alone or together with YFP–PS1 into SK-N-SH cell line and the interaction between YFP–PS1 and PS1–CFP was determined by Förster resonance energy transfer analysis. Our results suggest interaction between YFP–PS1 and PS1–CFP confirming the presence of a dimeric or multimeric form of PS1 in SK-N-SH cells. Lateral diffusion of PS1–CFP and YFP–PS1 in the plasma membrane of SK-N-SH cells was measured in the absence or in the presence of glycerol by fluorescence correlation spectroscopy to show that both COOH-terminal and NH2-terminal of human PS1 are located on the cytoplasmic side of the plasma membrane. Therefore, we conclude that both COOH-terminal and NH2-terminal of human PS1 may also be oriented on the cytosolic side of ER membrane.  相似文献   

18.
Three wild-type dairy isolates of lactic acid bacteria (LAB) and one Lactococcus lactis control strain were analyzed for their ability to transfer antibiotic resistance determinants (plasmid or transposon located) to two LAB recipients using both in vitro methods and in vivo models. In vitro transfer experiments were carried out with the donors and recipients using the filter mating method. In vivo mating examined transfer in two natural environments, a rumen model and an alfalfa sprout model. All transconjugants were confirmed by Etest, PCR, pulsed-field gel electrophoresis, and Southern blotting. The in vitro filter mating method demonstrated high transfer frequencies between all LAB pairs, ranging from 1.8 × 10−5 to 2.2 × 10−2 transconjugants per recipient. Transconjugants were detected in the rumen model for all mating pairs tested; however, the frequencies of transfer were low and inconsistent over 48 h (ranging from 1.0 × 10−9 to 8.0 × 10−6 transconjugants per recipient). The plant model provided an environment that appeared to promote comparatively higher transfer frequencies between all LAB pairs tested over the 9-day period (transfer frequencies ranged from 4.7 × 10−4 to 3.9 × 10−1 transconjugants per recipient). In our test models, dairy cultures of LAB can act as a source of mobile genetic elements encoding antibiotic resistance that can spread to other LAB. This observation could have food safety and public health implications.Lactic acid bacteria (LAB) form a taxonomically diverse group of gram-positive, catalase-negative microorganisms, which share the capacity to ferment sugars into lactic acid. Due to their aerotolerant, anaerobic nature, they are found widespread in a variety of different environments. Traditionally LAB are economically important given their use in the manufacture and preservation of fermented foods, such as milk, meat, vegetables, and cereals, in addition to their use as starter cultures. Over the last 2 decades, there has been an increased focus on the health-promoting properties associated with increased ingestion of probiotic LAB. As a result of these health claims, there is an increased availability of commercially prepared probiotic products, including yogurts, milk, cheeses, and even probiotic supplements in tablet form.The global spread of antibiotic resistance, including the emergence of multiresistant bacterial “super bug” strains, has created a public health problem of potentially crisis proportions. The very success of antibiotics accounts for part of the resistance problem; overuse of antibiotic treatments in both humans and animals has selected for a rapid increase of resistant bacterial strains. Acquired resistance genes may transfer by conjugation, transformation, or transduction. However, with regard to horizontal gene transfer (HGT), conjugation (which involves the use of plasmids or conjugative transposons as vehicles for resistance determinants) is thought to have the most significant impact on the spread of resistance genes in the environment (5).Genes conferring acquired resistance to antibiotics such as tetracycline, erythromycin, and vancomycin have been detected in LAB isolated from fermented meat and milk products (3, 6, 8, 9, 11, 22, 37). Conjugative plasmids and transposons are common in LAB (1, 4), and due to their wide environmental distribution, it is possible that these commensal bacteria act as vectors for the dissemination of antibiotic resistance determinants to the consumer via the food chain (8, 24, 32). Such evidence has raised questions regarding LAB''s traditionally accepted safety status and initiated investigations in the biosafety of probiotic products (35). However, no consensus for testing the safety of LAB probiotic products exists at the European level.To date, most of the research assessing the risk posed by the dissemination of resistance genes by LAB has been laboratory-based studies using in vitro mating models. Knowledge concerning HGT in the natural environment is limited (23, 39), and evidence is often circumstantial and extrapolated from laboratory-based studies (4). In order to fully understand the extent to which LAB strains transfer resistance genes in the natural environment, it is essential to study genetic exchange in this context. The rumen may be considered a site for potential conjugal gene transfer due to the following features: (i) its high bacterial density (1010 cells ml−1); (ii) available surfaces suitable for the attachment of bacteria, including substrate particles and the rumen wall; and (iii) frequent seeding of the rumen with soil and plant microorganisms. Similarly, alfalfa sprouts provide a suitable plant model to investigate in vivo conjugal transfer between LAB strains due to their basic growth requirements (for instance, no soil is involved in growing, so therefore, background flora is eliminated), and natural LAB strains are known to colonize sprouts, so there is a good chance of survival once inoculated (16).The aim of this study was to examine the horizontal transfer of tetracycline and erythromycin resistance determinants from three wild-type LAB strains, using both an in vitro mating method and in vivo models. Impacts of this transfer are discussed in the light of food safety and potential effects on public health.  相似文献   

19.
Laserspray ionization (LSI) mass spectrometry (MS) allows, for the first time, the analysis of proteins directly from tissue using high performance atmospheric pressure ionization mass spectrometers. Several abundant and numerous lower abundant protein ions with molecular masses up to ∼20,000 Da were detected as highly charged ions from delipified mouse brain tissue mounted on a common microscope slide and coated with 2,5-dihydroxyacetophenone as matrix. The ability of LSI to produce multiply charged ions by laser ablation at atmospheric pressure allowed protein analysis at 100,000 mass resolution on an Orbitrap Exactive Fourier transform mass spectrometer. A single acquisition was sufficient to identify the myelin basic protein N-terminal fragment directly from tissue using electron transfer dissociation on a linear trap quadrupole (LTQ) Velos. The high mass resolution and mass accuracy, also obtained with a single acquisition, are useful in determining protein molecular weights and from the electron transfer dissociation data in confirming database-generated sequences. Furthermore, microscopy images of the ablated areas show matrix ablation of ∼15 μm-diameter spots in this study. The results suggest that LSI-MS at atmospheric pressure potentially combines speed of analysis and imaging capability common to matrix-assisted laser desorption/ionization and soft ionization, multiple charging, improved fragmentation, and cross-section analysis common to electrospray ionization.Tissue imaging by mass spectrometry (MS) is proving useful in areas such as detecting tumor margins, determining sites of high drug uptake, and mapping signaling molecules in brain tissue (18). Imaging using secondary ion mass spectrometry is well established but is only marginally useful with intact molecular mass measurements from biological tissue (911). Matrix-assisted laser desorption/ionization (MALDI)-MS operating under vacuum conditions has been used for tissue imaging with success, especially for abundant components such as membrane lipids, drug metabolites, and proteins (1214). Spatial resolution of ∼20 μm has been achieved (15), and the MALDI-MS method has been applied in an attempt to shed light on Parkinson disease (16, 17), muscular dystrophy (18), obesity, and cancer (12, 19).Unfortunately, there are disadvantages in using vacuum-based MS for tissue imaging in relation to analysis of unadulterated tissue. Also, the mass spectrometers used in these studies frequently have much lower mass resolution and mass accuracy than are available with atmospheric pressure ionization (API)1 instruments and are not as widely available. Because the vacuum ionization methods produce singly charged ions, mass-selected fragmentation methods provide only limited information, especially for proteins. In addition, no advanced fragmentation such as electron transfer dissociation (ETD) (2022) is available for confident protein confirmation or identification. Atmospheric pressure (AP) MALDI can be coupled to high performance mass spectrometers but suffers from sensitivity issues for tissue imaging where high spatial resolution is desired (23). AP MALDI also primarily produces singly charged ions (24, 25). Thus, mass and cross-section analysis of intact proteins has yet to be accomplished using AP MALDI because of intrinsic mass range limitations of API instruments, which frequently have a mass-to-charge (m/z) limit of <4000. Thus, new improved methods of mass-specific tissue imaging, especially at AP, are needed.The potential of laserspray ionization (LSI) (Scheme 1) (2633) for protein tissue analysis is reported here. LSI has advantages relative to other MS-based methods, including speed of analysis, laser ablation of small volumes, more relevant AP conditions, extended mass range and improved fragmentation through multiple charging, and the ability to obtain cross-section data for proteins on appropriate instrumentation. The applicability of LSI for high mass compounds on high performance API mass spectrometers (Orbitrap Exactive and SYNAPT G2) has been demonstrated producing ESI-like multiply protonated ions (2628). The first experiments showing sequence analysis by ETD using the LSI method were successfully carried out on a Thermo Fisher Scientific (San Jose, CA) LTQ-ETD mass spectrometer (26). Nearly complete sequence coverage was obtained for ubiquitin, an important regulatory protein. Applying ETD fragmentation to LSI-MS analyses potentially provides a new method for studying biological processes, including the mapping of phosphorylation, glycosylation, and ubiquitination sites from intact proteins and directly from tissue.Open in a separate windowScheme 1.Overview of LSI-MS operated in transmission geometry.Furthermore, unlike ESI and related ESI-based methods such as desorption-ESI (34), the LSI method has been shown to allow analysis of lipids in tissue from ablated areas <80 μm (30). In comparison with literature reports for AP MALDI at the same stage of development (35), LSI is more than an order of magnitude more sensitive and is capable of analyzing proteins on high resolution mass spectrometers as was demonstrated by obtaining full-acquisition mass spectra at 100,000 mass resolution (FWHH, m/z 200) after application of only 20 fmol of bovine pancreas insulin in the matrix 2,5-dihydroxyacetophenone (2,5-DHAP) onto a glass microscope slide (33). The analysis speed of LSI was demonstrated by obtaining mass spectra of five samples in 8 s (32). Here, we show the utility of LSI for intact peptide and protein analyses directly from mouse brain tissue. The ability to obtain a protein mass spectrum directly from mouse brain tissue in a single laser shot at 100,000 mass resolution and with ETD fragmentation is demonstrated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号