首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gastrointestinal tract of pigs is densely populated with microorganisms that closely interact with the host and with ingested feed. Gut microbiota benefits the host by providing nutrients from dietary substrates and modulating the development and function of the digestive and immune systems. An optimized gastrointestinal microbiome is crucial for pigs’ health, and establishment of the microbiome in piglets is especially important for growth and disease resistance. However, the microbiome in the gastrointestinal tract of piglets is immature and easily influenced by the environment. Supplementing the microbiome of piglets with probiotic bacteria such as Lactobacillus could help create an optimized microbiome by improving the abundance and number of lactobacilli and other indigenous probiotic bacteria. Dominant indigenous probiotic bacteria could improve piglets’ growth and immunity through certain cascade signal transduction pathways. The piglet body provides a permissive habitat and nutrients for bacterial colonization and growth. In return, probiotic bacteria produce prebiotics such as short-chain fatty acids and bacteriocins that benefit piglets by enhancing their growth and reducing their risk of enteric infection by pathogens. A comprehensive understanding of the interactions between piglets and members of their gut microbiota will help develop new dietary interventions that can enhance piglets’ growth, protect piglets from enteric diseases caused by pathogenic bacteria, and maximize host feed utilization.  相似文献   

2.
The gastrointestinal tract is a complex ecosystem that associates a resident microbiota and cells of various phenotypes lining the epithelial wall expressing complex metabolic activities. The resident microbiota in the digestive tract is a heterogeneous microbial ecosystem containing up to 1 x 10(14) colony-forming units (CFUs) of bacteria. The intestinal microbiota plays an important role in normal gut function and maintaining host health. The host is protected from attack by potentially harmful microbial microorganisms by the physical and chemical barriers created by the gastrointestinal epithelium. The cells lining the gastrointestinal epithelium and the resident microbiota are two partners that properly and/or synergistically function to promote an efficient host system of defence. The gastrointestinal cells that make up the epithelium, provide a physical barrier that protects the host against the unwanted intrusion of microorganisms into the gastrointestinal microbiota, and against the penetration of harmful microorganisms which usurp the cellular molecules and signalling pathways of the host to become pathogenic. One of the basic physiological functions of the resident microbiota is that it functions as a microbial barrier against microbial pathogens. The mechanisms by which the species of the microbiota exert this barrier effect remain largely to be determined. There is increasing evidence that lactobacilli and bifidobacteria, which inhabit the gastrointestinal microbiota, develop antimicrobial activities that participate in the host's gastrointestinal system of defence. The objective of this review is to analyze the in vitro and in vivo experimental and clinical studies in which the antimicrobial activities of selected lactobacilli and bifidobacteria strains have been documented.  相似文献   

3.
Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of the host gut microbiota is often observed in the diseased state. However, little is known on the role of gut microbiota in systemic lupus erythematosus. We investigated the effects of host genetics, sex, age, and dietary intervention on the gut microbiome in a murine lupus model. In young, female lupus-prone mice resembling women at childbearing age, a population with the highest risk for lupus, we found marked depletion of lactobacilli, and increases in Lachnospiraceae and overall diversity compared to age-matched healthy controls. The predicted metagenomic profile in lupus-prone mice showed a significant enrichment of bacterial motility- and sporulation-related pathways. Retinoic acid as a dietary intervention restored lactobacilli that were downregulated in lupus-prone mice, and this correlated with improved symptoms. The predicted metagenomes also showed that retinoic acid reversed many lupus-associated changes in microbial functions that deviated from the control. In addition, gut microbiota of lupus-prone mice were different between sexes, and an overrepresentation of Lachnospiraceae in females was associated with an earlier onset of and/or more severe lupus symptoms. Clostridiaceae and Lachnospiraceae, both harboring butyrate-producing genera, were more abundant in the gut of lupus-prone mice at specific time points during lupus progression. Together, our results demonstrate the dynamics of gut microbiota in murine lupus and provide evidence to suggest the use of probiotic lactobacilli and retinoic acid as dietary supplements to relieve inflammatory flares in lupus patients.  相似文献   

4.
The various bacterial communities associated with humans have many functions and the gut microbiota has a major role in the host. Bacterial imbalance in the gut, known as dysbiosis, has therefore been linked to several diseases. Probiotics, that is, microbial strains that have beneficial effects on the host, are thought to benefit this intestinal ecosystem. Hence, knowledge of the gut microbiota composition and an understanding of its functionalities are of interest. Recently, efforts have focused on developing new high-throughput techniques for studying microbial cells and complex communities. Among them, proteomics is increasingly being used. The purpose of this article is to focus on the recent development of this technology and its usefulness in analyzing the human gut ecosystem and probiotic strains.  相似文献   

5.
Gut microbial diversity is thought to reflect the co‐evolution of microbes and their hosts as well as current host‐specific attributes such as genetic background and environmental setting. To explore interactions among these parameters, we characterized variation in gut microbiome composition of California voles (Microtus californicus) across a contact zone between two recently diverged lineages of this species. Because this contact zone contains individuals with mismatched mitochondrial‐nuclear genomes (cybrids), it provides an important opportunity to explore how different components of the genotype contribute to gut microbial diversity. Analyses of bacterial 16S rRNA sequences and joint species distribution modelling revealed that host genotypes and genetic differentiation among host populations together explained more than 50% of microbial community variation across our sampling transect. The ranked importance (most to least) of factors contributing to gut microbial diversity in our study populations were: genome‐wide population differentiation, local environmental conditions, and host genotypes. However, differences in microbial communities among vole populations (β‐diversity) did not follow patterns of lineage divergence (i.e., phylosymbiosis). Instead, among‐population variation was best explained by the spatial distribution of hosts, as expected if the environment is a primary source of gut microbial diversity (i.e., dispersal limitation hypothesis). Across the contact zone, several bacterial taxa differed in relative abundance between the two parental lineages as well as among individuals with mismatched mitochondrial and nuclear genomes. Thus, genetic divergence among host lineages and mitonuclear genomic mismatches may also contribute to microbial diversity by altering interactions between host genomes and gut microbiota (i.e., hologenome speciation hypothesis).  相似文献   

6.
The various bacterial communities associated with humans have many functions and the gut microbiota has a major role in the host. Bacterial imbalance in the gut, known as dysbiosis, has therefore been linked to several diseases. Probiotics, that is, microbial strains that have beneficial effects on the host, are thought to benefit this intestinal ecosystem. Hence, knowledge of the gut microbiota composition and an understanding of its functionalities are of interest. Recently, efforts have focused on developing new high-throughput techniques for studying microbial cells and complex communities. Among them, proteomics is increasingly being used. The purpose of this article is to focus on the recent development of this technology and its usefulness in analyzing the human gut ecosystem and probiotic strains.  相似文献   

7.
Abstract

In recent years, a plethora of studies have demonstrated the paramount physiological importance of the gut microbiota on various aspects of human health and development. Particular focus has been set on probiotic members of this community, the best studied of which are assigned into the Lactobacillus and Bifidobacterium genera. Effects such as pathogen exclusion, alleviation of inflammation and allergies, colon cancer, and other bowel disorders are attributed to the activity of probiotic bacteria, which selectively ferment prebiotics comprising mainly non-digestible oligosaccharides. Thus, glycan metabolism is an important attribute of probiotic action and a factor influencing the composition of the gut microbiota.

In the quest to understand the molecular mechanism of this selectivity for certain glycans, we have explored the routes of uptake and utilization of a variety of oligosaccharides differing in size, composition, and glycosidic linkages. A combination of “omics” technologies bioinformatics, enzymology and protein characterization proved fruitful in elucidating the protein transport and catabolic machinery conferring the utilization of glucosides, galactosides, and xylosides in the two clinically validated probiotic strains Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bl-04. Importantly, we have been able to identify and in some cases validate the specificity of several transport systems, which are otherwise poorly annotated. Further, we have demonstrated for the first time that non-naturally occurring tri- and tetra-saccharides are internalized and efficiently utilized by probiotic bacteria in some cases better than well-established natural prebiotics.

Selected highlights of these data are presented, emphasising the importance and the diversity of oligosaccharide transport in probiotic bacteria.  相似文献   

8.
《Journal of molecular biology》2014,426(23):3866-3876
The human gut is home to trillions of microbes that form a symbiotic relationship with the human host. During health, the intestinal microbiota provides many benefits to the host and is generally resistant to colonization by new species; however, disruption of this complex community can lead to pathogen invasion, inflammation, and disease. Restoration and maintenance of a healthy gut microbiota composition requires effective therapies to reduce and prevent colonization of harmful bacteria (pathogens) while simultaneously promoting growth of beneficial bacteria (probiotics). Here we review the mechanisms by which the host modulates the gut community composition during health and disease, and we discuss prospects for antibiotic and probiotic therapy for restoration of a healthy intestinal community following disruption.  相似文献   

9.
Intestinal tracts are among the most densely populated microbial ecosystems. Gut microbiota and their influence on the host have been well characterized in terrestrial vertebrates but much less so in fish. This is especially true for coral reef fishes, which are among the most abundant groups of vertebrates on earth. Surgeonfishes (family: Acanthuridae) are part of a large and diverse family of reef fish that display a wide range of feeding behaviours, which in turn has a strong impact on the reef ecology. Here, we studied the composition of the gut microbiota of nine surgeonfish and three nonsurgeonfish species from the Red Sea. High‐throughput pyrosequencing results showed that members of the phylum Firmicutes, especially of the genus Epulopiscium, were dominant in the gut microbiota of seven surgeonfishes. Even so, there were large inter‐ and intraspecies differences in the diversity of surgeonfish microbiota. Replicates of the same host species shared only a small number of operational taxonomic units (OTUs), although these accounted for most of the sequences. There was a statistically significant correlation between the phylogeny of the host and their gut microbiota, but the two were not completely congruent. Notably, the gut microbiota of three nonsurgeonfish species clustered with some surgeonfish species. The microbiota of the macro‐ and microalgavores was distinct, while the microbiota of the others (carnivores, omnivores and detritivores) seemed to be transient and dynamic. Despite some anomalies, both host phylogeny and diet were important drivers for the intestinal microbial community structure of surgeonfishes from the Red Sea.  相似文献   

10.
Herbivorous vertebrates rely on complex communities of mutualistic gut bacteria to facilitate the digestion of celluloses and hemicelluloses. Gut microbes are often convergent based on diet and gut morphology across a phylogenetically diverse group of mammals. However, little is known about microbial communities of herbivorous hindgut‐fermenting reptiles. Here, we investigate how factors at the individual level might constrain the composition of gut microbes in an obligate herbivorous reptile. Using multiplexed 16S rRNA gene sequencing, we characterized the faecal microbial community of a population of gopher tortoises (Gopherus polyphemus) and examined how age, genetic diversity, spatial structure and kinship influence differences among individuals. We recovered phylotypes associated with known cellulolytic function, including candidate phylum Termite Group 3, suggesting their importance for gopher tortoise digestion. Although host genetic structure did not explain variation in microbial composition and community structure, we found that fine‐scale spatial structure, inbreeding, degree of relatedness and possibly ontogeny shaped patterns of diversity in faecal microbiomes of gopher tortoises. Our findings corroborate widespread convergence of faecal‐associated microbes based on gut morphology and diet and demonstrate the role of spatial and demographic structure in driving differentiation of gut microbiota in natural populations.  相似文献   

11.
《Genomics》2022,114(3):110354
Gut microbiota of freshwater carps are often investigated for their roles in nutrient absorption, enzyme activities and probiotic properties. However, little is known about core microbiota, assembly pattern and the environmental influence on the gut microbiota of the Indian major carp, rohu. The gut microbial composition of rohu reared in different culture conditions was analysed by 16S rRNA amplicon sequencing. There was variation on gut microbial diversity and composition. A significant negative correlation between dissolved oxygen content (DO) and alpha diversity was observed, thus signifying DO content as one of the key environmental factors that regulated the diversity of rohu gut microbial community. A significant positive correlation was observed between phosphate concentration and abundance of Actinobacteria in different culture conditions. Two phyla, Proteobacteria and Actinobacteria along with OTU750868 (Streptomyces) showed significant (p < 0.05) differences in their abundance among all culture conditions. The Non-metric multidimensional scaling ordination (NMDS) analysis using Bray-Curtis distances, showed the presence of unique gut microbiota in rohu compared to other herbivorous fish. Based on niche breadth, 3 OTUs were identified as core generalists, persistent across all the culture conditions whereas the specialists dominated in the rohu gut microbiota assembly. Co-occurrence network analysis revealed positive interaction within core members while mutual exclusion between core and non-core members. Predicted microbiota function revealed that different culture conditions affected the metabolic capacity of gut microbiota of rohu. The results overall indicated the significant effect of different rearing environments on gut microbiota structure, assembly and inferred community function of rohu which might be useful for effective manipulation of gut microbial communities of rohu to promote better health and growth under different husbandry settings.  相似文献   

12.
Host ecological factors and external environmental factors are known to influence the structure of gut microbial communities, but few studies have examined the impacts of environmental changes on microbiotas in free‐ranging animals. Rapid land‐use change has the potential to shift gut microbial communities in wildlife through exposure to novel bacteria and/or by changing the availability or quality of local food resources. The consequences of such changes to host health and fitness remain unknown and may have important implications for pathogen spillover between humans and wildlife. To better understand the consequences of land‐use change on wildlife microbiotas, we analyzed long‐term dietary trends, gut microbiota composition, and innate immune function in common vampire bats (Desmodus rotundus) in two nearby sites in Belize that vary in landscape structure. We found that vampire bats living in a small forest fragment had more homogenous diets indicative of feeding on livestock and shifts in microbiota heterogeneity, but not overall composition, compared to those living in an intact forest reserve. We also found that irrespective of sampling site, vampire bats which consumed relatively more livestock showed shifts in some core bacteria compared with vampire bats which consumed relatively less livestock. The relative abundance of some core microbiota members was associated with innate immune function, suggesting that future research should consider the role of the host microbiota in immune defense and its relationship to zoonotic infection dynamics. We suggest that subsequent homogenization of diet and habitat loss through livestock rearing in the Neotropics may lead to disruption to the microbiota that could have downstream impacts on host immunity and cross‐species pathogen transmission.  相似文献   

13.
The aim of this study was to determine the influence of different feeding strategies on the gut microbiota of organic growing-finishing pigs. A total of 76 pigs were allocated to four different dietary treatments (control, probiotics, maize silage and grass silage). Effects of the applied probiotic preparation on the composition of the intestinal and faecal microbiota were monitored. By using a DGGE (denaturing gradient gel electrophoresis)-based methodology, fingerprints of the intestinal microbiota were obtained. The total microbial DNA was isolated from faecal and colon samples and amplified with PCR using different primer sets to detect bifidobacteria and lactobacilli. PCR products were separated using DGGE and the resulting profiles were compared with the findings of the other dietary treatments. Bands were excised from the gels and sequenced for further identification. Particularly two different DGGE profiles of bifidobacteria were observed, while lactobacilli showed larger variety within the dietary treatments.  相似文献   

14.
土壤动物肠道微生物多样性研究进展   总被引:1,自引:0,他引:1  
郝操  Chen Ting-Wen  吴东辉 《生态学报》2022,42(8):3093-3105
随着分子生物学技术方法的快速发展,动物肠道微生物已成为医学、动物生理学与微生物生态学等研究领域热点。土壤动物种类繁多,分布广泛,其作为陆地生态系统重要组分,是驱动生态系统功能的关键因子。土壤动物体内的微生物由于与宿主长期共存,在与宿主协同进化中形成了丰富多样的群落结构,能够影响土壤动物本身的健康,进而介导土壤动物生态功能的实现。近些年,土壤动物肠道微生物工作方兴未艾,日渐得到重视。总结了四个部分内容:1)首先总结了土壤动物肠道微生物多样性领域的研究现状,该领域年发文量逐年增长,且近十年增长快速。土壤模式生物肠道微生物多样性研究较多且更为深入。土壤动物肠道微生物多样性组成与驱动机制、共存机制及群落构建的理论研究是该领域前沿;2)进而展示了土壤动物肠道微生物多样性组成和研究方法,土壤动物肠道菌群组成以变形菌门、厚壁菌门、放线菌门和拟杆菌门为主。早期工作基于传统分离培养,近年来新一代测序技术推动了该领域发展;3)接着关注了土壤动物肠道微生物的生态学功能,总体上体现在肠道微生物能帮助宿主分解食物基质、参与营养利用、影响寿命和繁殖及提高宿主免疫能力,且其能够影响土壤动物的气体排放及介导其对生态系...  相似文献   

15.
Animals maintain complex microbial communities within their guts that fill important roles in the health and development of the host. To what degree a host's genetic background influences the establishment and maintenance of its gut microbial communities is still an open question. We know from studies in mice and humans that external factors, such as diet and environmental sources of microbes, and host immune factors play an important role in shaping the microbial communities (Costello et al. 2012 ). In this issue of Molecular Ecology, Bolnick et al. ( 2014a ) sample the gut microbial community from 150 genetically diverse stickleback isolated from a single lake to provide evidence that another part of the adaptive immune response, the major histocompatibility complex class II (MHCII) receptors of antigen‐presenting cells, may play a role in shaping the gut microbiota of the threespine stickleback, Gasterosteus aculeatus (Bolnick et al. 2014a ). Bolnick et al. ( 2014a ) provide insight into natural, interindividual variation in the diversity of both stickleback MHCII alleles and their gut microbial communities and correlate changes in the diversity of MHCII receptor alleles with changes in the microbiota.  相似文献   

16.
Aims: To investigate the spatial organization of endogenous and exogenously applied Lactobacillus communities at specific locations in the adult gastrointestinal tract of different hosts. Methods and Results: Samples of the human, murine and avian gastrointestinal tract of subjects that received or not received a Lactobacillus probiotic were analysed by fluorescence in situ hybridization (FISH) with rRNA‐targeted probes. High levels of endogenous lactobacilli were observed on the nonsecretory, stratified squamous epithelia present in the forestomach of mice and crop of chickens, respectively. These epithelial associations showed characteristics of bacterial biofilms, i.e. bacteria attached to a surface and embedded in a matrix of extracellular polymeric substances. In other regions of the analysed intestines, lactobacilli seemed to occur mainly as dispersed bacterial cells or as microcolonies. Exogenous administration of a Lactobacillus probiotic did increase the levels of loosely adherent Lactobacillus cells detected. However, the probiotic strains were unable to establish themselves inside the gastrointestinal biofilms. Conclusions: Gastrointestinal biofilms of lactobacilli occur only in specific niches in certain hosts, such as the murine forestomach and avian crop. Significance and Impact of the Study: Biofilm formation by lactobacilli in specific parts of animal gastrointestinal tracts was documented for the first time by FISH.  相似文献   

17.

Background  

The human gut harbors a diverse community of microorganisms which serve numerous important functions for the host wellbeing. Functional foods are commonly used to modulate the composition of the gut microbiota contributing to the maintenance of the host health or prevention of disease. In the present study, we characterized the impact of one month intake of a synbiotic food, containing fructooligosaccharides and the probiotic strains Lactobacillus helveticus Bar13 and Bifidobacterium longum Bar33, on the gut microbiota composition and metabolic profiles of 20 healthy subjects.  相似文献   

18.
Symbiotic bacteria often play an essential nutritional role for insects, thereby allowing them to exploit novel food sources and expand into otherwise inaccessible ecological niches. Although many insects are inhabited by complex microbial communities, most studies on insect mutualists so far have focused on single endosymbionts and their interactions with the host. Here, we provide a comprehensive characterization of the gut microbiota of the red firebug (Pyrrhocoris apterus, Hemiptera, Pyrrhocoridae), a model organism for physiological and endocrinological research. A combination of several culture‐independent techniques (454 pyrosequencing, quantitative PCR and cloning/sequencing) revealed a diverse community of likely transient bacterial taxa in the mid‐gut regions M1, M2 and M4. However, the completely anoxic M3 region harboured a distinct microbiota consisting of facultative and obligate anaerobes including Actinobacteria (Coriobacterium glomerans and Gordonibacter sp.), Firmicutes (Clostri‐dium sp. and Lactococcus lactis) and Proteobacteria (Klebsiella sp. and a previously undescribed Rickettsiales bacterium). Characterization of the M3 microbiota in different life stages of P. apterus indicated that the symbiotic bacterial community is vertically transmitted and becomes well defined between the second and third nymphal instar, which coincides with the initiation of feeding. Comparing the mid‐gut M3 microbial communities of P. apterus individuals from five different populations and after feeding on three different diets revealed that the community composition is qualitatively and quantitatively very stable, with the six predominant taxa being consistently abundant. Our findings suggest that the firebug mid‐gut microbiota constitutes a functionally important and possibly coevolved symbiotic community.  相似文献   

19.
Animals harbour diverse communities of symbiotic bacteria, which differ dramatically among host individuals. This heterogeneity poses an immunological challenge: distinguishing between mutualistic and pathogenic members of diverse and host‐specific microbial communities. We propose that Major Histocompatibility class II (MHC) genotypes contribute to recognition and regulation of gut microbes, and thus, MHC polymorphism contributes to microbial variation among hosts. Here, we show that MHC IIb polymorphism is associated with among‐individual variation in gut microbiota within a single wild vertebrate population of a small fish, the threespine stickleback. We sampled stickleback from Cedar Lake, on Vancouver Island, and used next‐generation sequencing to genotype the sticklebacks’ gut microbiota (16S sequencing) and their MHC class IIb exon 2 sequences. The presence of certain MHC motifs was associated with altered relative abundance (increase or decrease) of some microbial Families. The effect sizes are modest and entail a minority of microbial taxa, but these results represent the first indication that MHC genotype may affect gut microbiota composition in natural populations (MHC‐microbe associations have also been found in a few studies of lab mice). Surprisingly, these MHC effects were frequently sex‐dependent. Finally, hosts with more diverse MHC motifs had less diverse gut microbiota. One implication is that MHC might influence the efficacy of therapeutic strategies to treat dysbiosis‐associated disease, including the outcome of microbial transplants between healthy and diseased patients. We also speculate that macroparasite‐driven selection on MHC has the potential to indirectly alter the host gut microbiota, and vice versa.  相似文献   

20.
The host genetic background, complex surrounding environments, and gut microbiome are very closely linked to human and animal health and disease. Although significant correlations between gut microbiota and human and animal health have been revealed, the specific roles of each gut bacterium in shaping human and animal health and disease remain unclear. However, recent omics-based studies using experimental animals and surveys of gut microbiota from unhealthy humans have provided insights into the relationships among microbial community, their metabolites, and human and animal health. This editorial introduces six review papers that provide new discoveries of disease-associated microbiomes and suggest possible microbiome-based therapeutic approaches to human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号