首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 643 毫秒
1.
Two different anerobic consortia, one removing phenol and ortho (o-) cresol and other removing para(p-) cresol, were cultivated in serum bottles using whey as cosubstrate substitute for proteose peptone. Phenol and p-cresol removal with the phenol-removing consortium were the same with 0.0125% (w/v) whey as with 0.05% proteose peptone. For the other consortium, 8 days were required to decrease the p-cresol concentration from 35 to 2 mg/L with 0.025% whey, while 35 days were required to achieve a similar removal with 0.5% proteose peptone. The two consortia were mixed and cultivated with 0.025% whey. Phenolic compound removal with the mixed consortia was as good as that achieved by each of the two initial consortia against their respective substrates. This removal activity was maintained after several transfers. In a continuous upflow fixed-film reactor, the mixed consortia removed over 98% of 150 mg/L of phenol and 35 mg/L of each o- and p-cresol in the influent at 29 degrees C, with 0.025% whey as cosubstrate. The hydraulic retention time (HRT) was 0.25 day, corresponding to a phenolic compound volumic loading rate of 880 mg/(L of reactor x day). Once the continuous flow reactor achieved constant phenolic compound removal, no intermediates were found in the effluent, while in serum bottles, m-toluic acid, an o-cresol intermediate, accumulated. Measurements of the specific activity for the uptake of different substrates demonstrated the presence of all trophic groups involved in methanogenic fermentation. These activities were, in mg of substrate/(g of volatile suspended solids x day), as follows: 849 +/- 25 for the acidogens; 554 +/- 15 for the acetogens; 934 +/- 37 for the aceticlastic methanogens; and 135 +/- 15 for the hydrogenophilic methanogens. Electron micrographs of the mixed consortia showed seven different morphological bacterial types, including Methanotrix-like bacteria.  相似文献   

2.
The paper presents the main results obtained from the study of the biodegradation of phenolic industrial wastewaters by a pure culture of immobilized cells of Pseudomonas putida ATCC 17484. The experiments were carried out in batch and continuous mode. The maximum degradation capacity and the influence of the adaptation of the microorganism to the substrate were studied in batch mode. Industrial wastewater with a phenol concentration of 1000 mg/l was degraded when the microorganism was adapted to the toxic chemical. The presence in the wastewater of compounds other than phenol was noted and it was found that Pseudomonas putida was able to degrade these compounds. In continuous mode, a fluidized-bed bioreactor was operated and the influence of the organic loading rate on the removal efficiency of phenol was studied. The bioreactor showed phenol degradation efficiencies higher than 90%, even for a phenol loading rate of 0.5 g phenol/ld (corresponding to 0.54 g TOC/ld).  相似文献   

3.
A two-stage bioreactor has been developed to link dechlorination of halogenated methane compounds to the anaerobic processes of methanogenesis and denitrification. A digester methanogenic consortium was shown to dechlorinate chloroform (CF) and carbon tetrachloride (CT) to dichloromethane (DCM), and DCM was then mineralized by an acclimated denitrifying biological activated carbon consortium. Combining these two processes, a sequential methanogenic-denitrifying bioreactor (SMDB) system that completely degraded polychlorinated methanes including CT, CF, and DCM was developed. More than 95% of the added CT and CF was dechlorinated in the methanogenic bioreactor with methanol as the primary substrate, and the resultant DCM was biodegraded in the denitrifying bioreactor with nitrate as the electron acceptor. In the denitrifying bioreactor, the residual CF was completely removed, and the DCM removal efficiency was more than 95%. This novel bioreactor system eliminates the need for aeration and so avoids the air contamination associated with aerobic biotreatment of volatile chlorinated pollutants. This SMDB system provides an alternative to conventional biotreatment of wastewaters and other matrices contaminated with polychlorinated methanes and is, to our knowledge, the first report on such a sequential anoxic system. Received: 26 May 1999 / Accepted: 1 November 1999  相似文献   

4.
The effect of phenol on the biological treatment of wastewaters from a resin producing industry was analyzed in a pre-denitrification system. First, the effect of phenol overloads on the removal of organic matter and nitrogen compounds was studied. During the overloads (from 250 to 4000 mg/L), phenol was detected in the effluent of the anoxic reactor but the system recovered fast after stopping the overloads. The total organic carbon (TOC) removal remained unchanged during phenol addition (91.9% at 0.20 kg TOC/m3 d), except for the highest overload. With regard to total Kjeldahl nitrogen (TKN), its mean removal (87.9% at 0.08 kg TKN/m3 d) was not affected by the phenol overloads. Afterwards, the effect of different phenol concentrations on the biological treatment of these wastewaters was analyzed. Phenol concentrations from 250 to 4000 mg/L were added to the feed. Phenol was completely removed despite the presence of other carbon sources in the wastewater. In spite of the presence of phenol, a TOC removal around 91.3% was achieved at an average organic loading rate of 0.11 kg TOC/m3 d. The mean applied nitrogen loading rates were 0.05 and 0.08 kg TKN/m3 d, obtaining TKN removals around 85.8% and 87.1%, respectively. Therefore, the biological treatment of wastewaters from a resin producing industry in a pre-denitrification system was not affected by the presence of phenol.  相似文献   

5.
A fluidized bed bioreactor (FBBR) was operated for more than 1000 days under two regimes, Methanogenic (M) and Methanogenic-Aerobic (M-A), to remove 2,4,6-trichlorophenol (TCP) and phenol (Phe) from a synthetic wastewater, containing different amounts of TCP and Phe, using different aeration flow-rates (0, 2.13, and 1.06 NL O(2)/L.day). M conditions (80:20 mg/L of TCP:Phe, 0 NL O(2)/L.day) showed similar TCP and Phe removal (>95%). Nevertheless accumulation of 4-chlorophenol (4CP) up to 16 mg/L and Phe up to 4 mg/L was observed, while in M-A conditions (80:20 mg/L of TCP:Phe, 2.13 NL O(2)/L.day) TCP and Phe removal achieved 99.9(+)% and after 70 days no accumulation of intermediates were detected. The increase of TCP and Phe in the influent under M-A conditions from 80:20 to 120:30 mg/L of TCP:Phe did not negatively affect the removal of TCP, intermediates and Phe; in fact, they were similar to those in previous M-A conditions. The decrease in the oxygen flow rate from 2.13 to 1.06 NL O(2)/L.day had no negative effect on pollutant removals, which were as high as in previous two M-A conditions. The specific methanogenic activity of bioparticles of the fluidized bed decreased with long-term partial aeration, starting from 1.097 mmol CH(4)/h.g(TKN) in the M regime (day 60) to <0.02 mmolCH(4)/h.g(TKN) at day 1050, suggesting aerobic regime in the bioreactor rather than an M-A regime. In conclusion, complete removal of TCP and less chlorinated intermediates could be achieved in an initially methanogenic FBBR under conditions of partial aeration, although long-term operation seemed to negatively affect the methanogenic activity of biomass. It is also likely that after extended aeration the microbial community was finally enriched with strains with the ability to attack 2,4,6-TCP under aerobic conditions. This report represents the first evidence of a long exposure to oxygen of an anaerobic microbial consortium that efficiently remove TCP.  相似文献   

6.
An aerobic, single-pass, fixed-film bioreactor was designed for the continuous degradation and mineralization of gas-phase trichloroethylene (TCE). A pure culture of Burkholderia cepacia PR1(23)(TOM(23C)), a Tn5transposon mutant of B. cepacia G4 that constitutively expresses the TCE-degrading enzyme, toluene ortho-monooxygenase (TOM), was immobilized on sintered glass (SIRANtrade mark carriers) and activated carbon. The inert open-pore structures of the sintered glass and the strongly, TCE-absorbing activated carbon provide a large surface area for biofilm development (2-8 mg total cellular protein/mL carrier with glucose minimal medium that lacks chloride ions). At gas-phase TCE concentrations ranging from 0.04 to 2.42 mg/L of air and 0.1 L/min of air flow, initial maximum TCE degradation rates of 0.007-0.715 nmol/(min mg protein) (equivalent to 8.6-392.3 mg TCE/L of reactor/day) were obtained. Using chloride ion generation as the indicator of TCE mineralization, the bioreactor with activated carbon mineralized an average of 6.9-10.3 mg TCE/L of reactor/day at 0.242 mg/L TCE concentration with 0.1 L/min of air flow for 38-40 days. Although these rates of TCE degradation and mineralization are two- to 200-fold higher than reported values, TOM was inactivated in the sintered-glass bioreactor at a rate that increased with increasing TCE concentration (e.g., in approximately 2 days at 0.242 mg/L and <1 day at 2.42 mg/L), although the biofilter could be operated for longer periods at lower TCE concentrations. Using an oxygen probe and phenol as the substrate, the activity of TOM in the effluent cells of the bioreactor was monitored; the loss of TOM activity of the effluent cells corroborated the decrease in the TCE degradation and mineralization rates in the bioreactor. Repeated starving of the cells was found to restore TOM activity in the bioreactor with activated carbon and extended TCE mineralization by approximately 34%. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 674-685, 1997.  相似文献   

7.
The biodegradability of phenol and six other phenolic compounds (o-, m-, and p-cresol, 2-, 3-, and 4-ethylphenol) was examined in batch methanogenic cultures. The effect of concentration of these alkyl phenols on the anaerobic biodegradation of phenol was also evaluated. The inoculum used in this study was cultivated in a continuous flow laboratory fermenter with phenol as the primary substrate. Phenol, at initial concentrations as high to 1400 mg/L was completely degraded to methane and carbondioxide after 350 hours incubation. Complete degradation of m- and p-cresol was also observed while the ethylphenols and o-cresol were not significantly degraded.At initial concentrations exceeding 600 mg/L, phenol inhibited the phenol-degrading microorganisms but not the methanogens. At about 600 mg/L, cresols reduced the rate of phenol degradation to 50% of that observed in a control culture containing only 200 mg/L phenol. Ethylphenols were more inhibitory than cresols. Phenol degrading microorganisms were more susceptible to inhibition by cresols and ethylphenols than were the methanogens. The inhibitory effects of the three isomers of cresol and ethylphenol did not vary with the isomer but rather with the substituted functional group.  相似文献   

8.
Summary The toxicity of a mixture of polychlorinated aliphatic compounds towards an unacclimated methanogenic consortium was assayed in carrier-free, continuously-stirred batch experiments. Results obtained indicate that a 50 % inhibition of methanogenesis occurs at 3.3 mg toxic mixture per litre mixed liquor and that at 100 mg toxic mixture per litre mixed liquor, the inhibition of methanogenesis is complete.  相似文献   

9.
The conversion by a methanogenic consortium of phenol into phenylalanine, with benzoic and phenylpropionic acid as intermediates, was investigated. When (sup14)C-labelled phenol was fed to the consortium, the radioactivity was mostly transferred into methane and CO(inf2), but 4% of the radioactivity was found in the water fraction after extraction of the culture medium with an organic solvent. Utilization of labelled compounds and analysis by gas chromatography coupled with mass spectrometry revealed that a fraction of the benzoic acid produced was transformed into 3-phenylpropionic acid. When fully (sup13)C-labelled acetic acid was fed to the consortium, the labels were incorporated at the 1 and 2 positions of 3-phenylpropionic acid. When deuterium-labelled 3-phenylpropionic acid was fed to the consortium, part of the phenylalanine of the biomass was labelled. These metabolic transformations are reversible, since deuterium-labelled phenylalanine generated labelled 3-phenylpropionic acid. Cinnamic acid was also transformed into 3-phenylpropionic acid.  相似文献   

10.
Continuous flow sand column bioreactor experiments were conducted to investigate the effect of 2,4-dinitrotoluene (DNT) concentration (i.e. DNT loading rate) and influent dissolved oxygen (DO) concentration on aerobic biodegradation of DNT by wild type (DNT) and recombinant (YV1) Burkholderia sp., the latter containing plasmid pSC160 which carries the gene (vgb) encoding the hemoglobin (VHb) from the bacterium Vitreoscilla. The experiments were conducted in two continuous flow packed bed sand column bioreactors, one growing the wild type strain and the other growing YV1. Under oxygen-rich feed conditions (6.8 mg DO/L in the feed) with an influent DNT concentration of 99.6 mg/L (DNT loading rate approximately = 9.2 mg/m2/day), the effluent DNT concentration from the wild type bioreactor reached 0.7 mg DNT/L in 40 days whereas it was less than 0.2 mg DNT/L for the YV1 bioreactor in about 25 days. When influent DNT concentration was increased to 214 mg/L (DNT loading rate approximately = 20.3 mg/m2/day) while maintaining the same influent DO level of 6.8 mg/L, the effluent DNT concentration increased to about 5 mg/L for the wild type bioreactor whereas it was maintained at less than 0.2 mg/L for the YV1 bioreactor. Additionally, when influent DO was reduced from 6.8 mg/L to 3.1 mg/L while the influent DNT concentration remained at 214 mg/L, the effluent DNT concentration increased to more than 20 mg/L for the wild type bioreactor but up to only 1.7 mg/L for the YV1 bioreactor. A subsequent increase of influent DO back to 6.6 mg/L reduced the effluent DNT concentration to about 5 mg/L for the wild type bioreactor and to 0.10-0.19 mg/L for the YV1 bioreactor. These results confirm the utility of vgb technology to enhance biodegradation of aromatic compounds under hypoxic conditions and also that this enhancement can be maintained over extended periods of time as evidenced by plasmid stability in Burkholderia YV1.  相似文献   

11.
An integrated system for the biotreatment of acidic wastewaters containing both toxic metals and organics is presented. It consists of two bioprocess stages (i) an anaerobic, SRB stage (containing alkaline‐tolerant s ulfate‐ r educing b acteria) that at pH 8 (chosen to acclimatize the bacteria in the biomedium) produces high concentrations of total sulfide ions (more than 400 mg/L) which are added to the wastewater to precipitate the heavy metals out at pH 2 as metal sulfides, and (ii) an aerobic, acidophilic stage containing heterotrophic bacteria (WJB3) that degrade organic xenobiotics. The anaerobic system was comprised of a 4‐L fluidized bed bioreactor with immobilized SRB, a mixing tank, and a precipitation tank. The effluent from the bioreactor with a high concentration of sulfide ions was fed into a mixing tank where model wastewaters containing toxic metals and phenol at pH 2 were also fed at increasing loading rates until free metal ions could be detected in the precipitation tank outlet. Then the effluent from the precipitation tank outlet was fed into a 2.5‐L aerobic bioreactor in which phenol was degraded. In this research, 100 % removal efficiencies were obtained with wastewaters containing more than 400 mg/L metal ions and 900 mg/L phenol at a 6‐h HRT of the mixing tank.  相似文献   

12.
Recovery of 97.5% of the pentachlorophenol (PCP) in contaminated wood powder was obtained after extraction with 0.1% KOH solution at 60 degrees C for 75 min. Extraction with NaOH and Na2CO3 was less effective than KOH. The neutralized extract was treated using a methanogenic consortium in an upflow anaerobic fixed-film reactor. The reactor was operated at 29 degrees C for over 600 d. The best performance of the reactor was observed when the PCP liquor was supplemented with glucose and formate. Complete dechlorination of PCP and phenol removal was obtained for a PCP loading rate of 13.3-18.0 mg l(-1) of reactor volume d(-1) with recirculation of the effluent and a hydraulic retention time (HRT) of 0.5-0.6 d.  相似文献   

13.
An investigation was performed on the biological removal of ammonium nitrogen from synthetic wastewater by the simultaneous nitrification/denitrification (SND) process, using a sequencing batch biofilm reactor (SBBR). System behavior was analyzed as to the effects of sludge type used as inoculum (autotrophic/heterotrophic), wastewater feed strategy (batch/fed-batch) and aeration strategy (continuous/intermittent). The presence of an autotrophic aerobic sludge showed to be essential for nitrification startup, despite publications stating the existence of heterotrophic organisms capable of nitrifying organic and inorganic nitrogen compounds at low dissolved oxygen concentrations. As to feed strategy, batch operation (synthetic wastewater containing 100 mg COD/L and 50 mg N-NH(4)(+)/L) followed by fed-batch (synthetic wastewater with 100 mg COD/L) during a whole cycle seemed to be the most adequate, mainly during the denitrification phase. Regarding aeration strategy, an intermittent mode, with dissolved oxygen concentration of 2.0mg/L in the aeration phase, showed the best results. Under these optimal conditions, 97% of influent ammonium nitrogen (80% of total nitrogen) was removed at a rate of 86.5 mg N-NH(4)(+)/Ld. In the treated effluent only 0.2 mg N-NO(2)(-)/L,4.6 mg N-NO(3)(-)/L and 1.0 mg N-NH(4)(+)/L remained, demonstrating the potential viability of this process in post-treatment of wastewaters containing ammonium nitrogen.  相似文献   

14.
Methyl violet, a basic dye, is manufactured using phenol and dimethylaniline as the raw materials. It is, therefore likely that the waste effluent arising from such units may contain the dye and unused chemicals. Since such pollutants may be toxic, their removal becomes necessary. The studies were therefore aimed at their bioremediation using microbial species.
Four species of Pseudomonas , namely Ps. alcaligenes, Ps. mendocina, Ps. putida biovar B and Ps. stutzeri , were isolated from cattle dung enrichments and the soil samples in the premises of the factory manufacturing methyl violet, nearby Pune.
All the four species of Pseudomonas were able to remove phenol and methyl violet with simultaneous reduction in chemical oxygen demand (COD), total organic carbon (TOC) and ammoniacal nitrogen from the waste effluent and the removal was found to be optimum at the original alkaline pH (range 7.45–10.6) of the waste effluent, at ambient temperature (28 ± 2°C under aerated culture condition, at inoculum density of 1.5 × 108 cells ml−1 of the waste effluent and incubation period of 24–48 h. Thus, Pseudomonas spp. isolated from the environment of the dye industry itself and thus naturally adapted could be used for bioremediation of these pollutants.  相似文献   

15.
Summary Benzene derivatives are important constituents of certain effluents discharged by pulp and paper, petrochemical and chemical industries. The anaerobic treatment of these waste-waters can be limited due to methanogenic inhibition exerted by aromatic compounds. The objective of this study was to evaluate the effect of aromatic structure on acetoclastic methanogenic inhibition. The toxicity to acetoclastic methanogens was assayed in serum flasks utilizing granular sludge as inoculum. Among the monosubstituted benzenes, chlorobenzene, methoxybenzene and benzaldehyde were the most toxic with 50% inhibition occurring at concentrations of 3.4, 4.2 and 5.2 mm, respectively. In contrast, benzoate was the least inhibitory: concentrations up to 57.3 mm were non-toxic. In general, the toxicity of aromatic compounds increased with increasing length of aliphatic side-chains, increasing the number of alkyl or chlorine groups. The logarithm of the partition coefficient octanol/water (log P), an indicator of hydrophobicity, was observed to be positively correlated with the methanogenic inhibition. The results indicate that hydrophobicity is an important factor contributing to the high toxicity of the most inhibitory aromatic compounds.  相似文献   

16.
A tezontle-packed up-flow reactor (TPUFR) with an immobilized bacterial consortium for biological treatment of methyl-parathion and tetrachlorvinphos was evaluated. These organophosphate pesticides are widely used in Mexico for insect and mite control, respectively. With the aim of developing a tool for pesticide biodegradation, four flow rates (0.936, 1.41, 2.19, and 3.51 l/h) and four hydraulic residence times (0.313, 0.206, 0.133, and 0.083 h) were evaluated in a TPUFR. In the bioreactor, with an operating time of 8 h and a flow of 0.936 l/h, we obtained 75% efficiency in the removal of methyl-parathion and tetrachlorvinphos. Their adsorptions in the volcanic rock were 9% and 6%, respectively. It was demonstrated that the removal of pesticides was due to the biological activity of the immobilized bacterial consortium. We confirmed the decrease in toxicity in the treated effluent from the bioreactor through the application of acute toxicity tests on Eisenia foetida. Immobilization of a bacterial consortium using tezontle as a support is innovative and an economical tool for the treatment of mixtures of organophosphorus pesticide residues.  相似文献   

17.
Formaldehyde is present in several industrial wastewaters including petrochemical wastes. In this study, the toxicity and degradability of formaldehyde in anaerobic systems were investigated. Formaldehyde showed severe toxicity to an acetate enrichment methanogenic culture. As low as 10 mg/L (0.33 mM) of formaldehyde in the reactor completely inhibited acetate utilization. Formaldehyde, however, was degraded while acetate utilization was inhibited. Degradation of formaldehyde (Initial concentration /=60 mg/L), formaldehyde degradation was inhibited and partial degradation was possible. The initial formaldehyde to biomass ratio, S(0)/X(0), was useful to predict the degradation potential of high formaldehyde concentrations in batch systems. When S(0)/X(0) /= 0.29, formaldehyde at higher than 60 mg/L was only partially degraded. The inhibition of formaldehyde degradation in batch systems could be avoided by repeated additions of low concentrations of formaldehyde (up to 30 mg/L). Chemostats (14-day retention time) showed degradation of 74 mg/L-d (1110 mg/L) of influent formaldehyde with a removal capacity of 164 mg/g VSS-day. A spike of 30 mg/L (final concentration in the chemostat) formaldehyde to the chemostat caused only a small increase in effluent acetate concentration for 3 days. But a spike of 60 mg/L (final concentration in the chemostat) formaldehyde to the chemostat resulted in a dramatic increase in acetate concentration in the effluent. The results also showed that the acetate enrichment culture was not acclimated to formaldehyde even after 226 days. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 727-736, 1997.  相似文献   

18.
A bioreactor has been designed and developed for partitioning of aqueous and organic phases with a provision for aeration and stirring, a cooling system and a sampling port. The potential of a cow dung microbial consortium has been assessed for bioremediation of phenol in a single-phase bioreactor and a two-phase partitioning bioreactor. The advantages of the two-phase partitioning bioreactor are discussed. The Pseudomonas putida IFO 14671 has been isolated, cultured and identified from the cow dung microbial consortium as a high-potential phenol degrader. The methods developed in this study present an advance in bioremediation techniques for the biodegradation of organic compounds such as phenol using a bioreactor. We have also demonstrated the potential of microorganisms from cow dung as a source of biomass.  相似文献   

19.
The evaluation of two waste-derived materials used to treat compost leachate by biofiltration is described in this paper. Nine biofilters were constructed using 240 l, high density polyethylene containers. Three containers were filled without compaction with 200l of each of three types of filter media. Waste-derived filter media (compost and oversize) were compared to a mineral control (granite chips). The filters were fed with compost leachate from a typical green waste composting facility at hydraulic loading rates ranging from 0.05 m3/m3/day to 0.5 m3/m3/day over a period of twelve months. The oversize medium emerged as the most effective demonstrating characteristics of consistency of effluent quality and resilience to stress. The oversize medium produced an effluent of <10mg/l ammoniacal nitrogen on >95% of sampling occasions. The organic component of compost leachate was dominated by compounds that proved to be recalcitrant to biodegradation. The solids content of the treated effluent remained too high to be acceptable for direct discharge to a watercourse without further treatment and if discharge to a watercourse is to be considered, a polishing stage (e.g., reed bed) able to remove solids and dampen occasional peaks of ammoniacal nitrogen should be employed.  相似文献   

20.
The successful bioremediation of a phenolic wastewater by Trametes versicolor was found to be dependent on a range of factors including: fungal growth, culture age and activity and enzyme (laccase) production. These aspects were enhanced by the optimisation of the growth medium used and time of addition of the pollutant to the fungal cultures. Different media containing 'high' (20 g/L), 'low' (2 g/L) and 'sufficient' (10 g/L) concentrations of carbon and nitrogen sources were investigated. The medium containing both glucose and peptone at 10 g/L resulted in the highest Growth Related Productivity (the product of specific yield and micro) of laccase (1.46 Units of laccase activity)/gram biomass/day and was used in all further experiments. The use of the guaiacol as an inducer further increased laccase activity 780% without inhibiting growth; similarly the phenolic effluent studied boosted activity almost 5 times. The timing of the addition of the phenolic effluent was found to have important consequences in its removal and at least 8 days of prior growth was required. Under these conditions, 0.125 g phenol/g biomass and 0.231 g o-cresol/g biomass were removed from solution per day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号