首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 247 毫秒
1.
The molecular interactions between the plasminogen-staphylokinase complex, alpha 2-antiplasmin and fibrin were studied by measuring the effect of CNBr-digested fibrinogen on the inhibition rate of the plasminogen-staphylokinase complex by alpha 2-antiplasmin. The second-order rate constant for the inhibition of plasminogen-staphylokinase by alpha 2-antiplasmin was 2.7 +/- 0.3.10(6) M-1 s-1 (mean +/- S.D.; n = 7). Addition of CNBr-digested fibrinogen, but not of fibrinogen, resulted in a concentration-dependent reduction of the apparent inhibition rate constant, with a 50 percent reduction at a concentration of 5 nM CNBr-digested fibrinogen. The second-order rate constant for the inhibition of the low-Mr plasminogen-staphylokinase complex (plasminogen lacking the kringle structures comprising the lysine-binding sites) by alpha 2-antiplasmin was about 30-fold lower (9.3 +/- 0.7.10(4) M-1 s-1, mean +/- S.D.; n = 4) than that of plasminogen-staphylokinase and was not affected by addition of CNBr-digested fibrinogen. Inhibition of the plasminogen-staphylokinase complex by the chloromethylketone D-Val-Phe-Lys-Ch2Cl is 9-fold less efficient than that of plasmin (k2/Ki of 700 M-1 s-1 versus 6300 M-1 s-1). Our results confirm and establish that rapid inhibition of plasminogen-staphylokinase by alpha 2-antiplasmin requires the availability of the lysine-binding sites in the plasminogen moiety of the complex. Fibrin, but not fibrinogen, reduces the inhibition rate by alpha 2-antiplasmin by competition for interaction with the lysine-binding site. Protection of the plasminogen-staphylokinase complex bound to fibrin from rapid inhibition by alpha 2-antiplasmin thus appears to contribute to the fibrin-specificity of clot lysis with staphylokinase in a plasma milieu, by allowing preferential plasminogen activation at the fibrin surface, while the free complex is rapidly inhibited in plasma.  相似文献   

2.
Kinetics of lysis of human plasma clots immersed in plasma were studied in vitro at 37°C under the influence of recombinant staphylokinase, single-chain urokinase-type plasminogen activator (scu-PA), and their simultaneous and consecutive combinations. Staphylokinase and scu-PA caused concentration- and time-dependent lysis of the clots; 32 nM staphylokinase and 75 nM scu-PA separately caused 50% lysis in 4 h. At these equally effective concentrations staphylokinase in 4 h induced a significantly lesser exhaustion of the plasma plasminogen, 2-antiplasmin, and fibrinogen than scu-PA. Combinations of staphylokinase (<30 nM) and scu-PA (<75 nM) rendered synergic thrombolytic action on the clots. The synergy of thrombolytic action was more pronounced on the simultaneous addition of the two agents than on their consecutive addition, scu-PA 30 min after staphylokinase. In 4 h after the addition, staphylokinase (25 nM) or scu-PA (15 nM) induced 24% and 2% lysis, respectively, whereas the simultaneous and consecutive combination of the same concentrations of these agents induced 58% and 50% lysis, respectively. The simultaneous combination of 15 nM staphylokinase and 15 nM scu-PA resulted in maximal 3.8-fold increase in the thrombolytic effect as compared to the expected total effect of the individual agents. Synergic combinations of the two agents caused lesser exhaustion of plasma plasminogen, 2-antiplasmin, and fibrinogen as compared with the expected total effect of these agents used separately. Thus, simultaneous and consecutive combinations of staphylokinase and scu-PA in a relatively narrow range of their concentrations possessed synergistic fibrinselective thrombolytic action on the plasma clot in vitro.  相似文献   

3.
When the extent of plasminogen activation by staphylokinase (SAK) or streptokinase (SK) was measured in human plasma, SAK barely induced plasminogen activation, whereas SK activated plasminogen significantly. When the plasma was clotted with thrombin, the plasminogen activation by SAK was markedly enhanced, but that of SK was little enhanced. Similarly, in a purified system composed of plasminogen, fibrinogen and alpha 2-plasmin inhibitor (alpha 2-PI, alpha 2-antiplasmin), such a fibrin clot increased the activity of SAK significantly. However, when alpha 2-PI was removed from the reaction system, enhancement of the SAK reaction was not observed. In addition, SAK as distinct from SK, showed very little interference with the action of alpha 2-PI. Plasminogen activation by SAK is thus essentially inhibited by alpha 2-PI, but this reaction is not inhibited in fibrin clots. These results suggest that SAK forms a complex with plasminogen, which binds to fibrin and induces fibrinolysis.  相似文献   

4.
Using a modified procedure for measuring the time of fibrin clot lysis, the kinetics of Glu- and Lys-plasminogen activation by the tissue activator was studied. Within the plasminogen concentration range of 0.4-100 nM the rate of activation of both protein forms obeys the Michaelis-Menten kinetics. At Lys-plasminogen concentration equimolar to that of fibrin, the rate of activation of the former decreases down to that of Glu-plasminogen activation. The kinetic constants for Glu- and Lys-plasminogen activation (Km) are equal to 0.055 and 0.013 microM; k = 0.19 and 0.21 s-1, respectively. The Km values for fibrin-bound Glu- and Lys-plasminogen are equal to 0.25 nM and 8 nM, respectively (k = 0.08 and 0.26 s-1, respectively). It is assumed that the tissue activator exhibits a higher affinity for the Glu-plasminogen--fibrin complex than for the Lys-plasminogen-fibrin complex.  相似文献   

5.
The effects of purified soluble fibrin and of fibrinogen fragments (fibrin mimic) on the activation of Lys-plasminogen (i.e. plasminogen residues 77-790) to plasmin by streptokinase.plasminogen activator complex and by tissue-type plasminogen activator were studied. Dissociation constants of both activators were estimated to lie in the range 90-160 nM (fibrin) and 16-60 nM (CNBr-cleavage fragments of fibrinogen). The kinetic mechanism for both types of activator comprised non-essential enzyme activation via a Rapid Equilibrium Ordered Bireactant sequence. In order to relate the fibrin affinity of plasminogen activators to their fibrinolytic potency, the rate of lysis of supported human plasma clots formed in the presence of unmodified or active-centre-acylated precursors of plasminogen activators was studied as a function of the concentration of enzyme derivative. The concentrations of unmodified enzyme giving 50% lysis/h in this assay were 0.9, 2.0 and 11.0 nM for tissue-type plasminogen activator, streptokinase.plasmin(ogen) and urokinase respectively. However, the potencies of active-centre-acylated derivatives of these enzymes suggested that acylated-tissue plasminogen activator and streptokinase.plasminogen complexes of comparable hydrolytic stability were of comparable potency. Both types of acyl-enzyme were significantly more potent than acyl-urokinases.  相似文献   

6.
Possible interaction of alpha-2-antiplasmin with fibrinogen, fibrin and their fragments independent of factor XIII as well as the inhibitor effect on the Glu-plasminogen activation by tissue activator were studied. It was shown that alpha-2-antiplasmin is adsorbed on desAA- and desAABBfibrin films (Kd 69.0 +/- 1.0 nM 68.6 +/- 5.3 nM, respectively). Glu-Plasminogen has no effect on the inhibitor binding with desAABBfibrin. Alpha-2-antiplasmin shows strong affinity for fibrin D-dimer (Kd 65.0 +/- 4.0 nM) and D-fragment of fibrinogen (Kd 119.0 +/- 21.0 nM), but it does not interact with E-fragment. The inhibitor inside the fibrin clot decreases 10 times the activation rate of Glu-plasminogen by the tissue activator both is the presence and without factor XIII at physiological ratio of Glu-plasminogen, tissue activator, fibrin and alpha-2-antiplasmin. Thus we have shown that fibrinogen/fibrin binds alpha-2-antiplasmin independent of the factor XIII. Binding sites of the inhibitor are localized in D-fragment of fibrinogen and/or fibrin D-dimer. Alpha-2-antiplasmin inhibits the Glu-plasminogen activation by tissue activator on fibrin.  相似文献   

7.
Interaction of streptokinase and alpha-2-antiplasmin with plasmin and plasminogen fragments was compared. Binding sites on the enzyme become half-saturated, streptokinase and alpha-2-antiplasmin concentration being 8.5 and 30 nM, respectively. 6-Aminohexanoic acid in concentration of 20 mM reduces the adsorption of streptokinase and and alpha-2-antiplasmin by 20 and 60%, respectively. From all the investigated fragments, streptokinase shows the greatest affinity for mini-plasminogen and alpha-2-antiplasmin for kringles 1-3. Both proteins in the presence of 20 mM 6-aminohexanoic acid do not bind with kringle domains. Arginine dose 0.1 M does not influence streptokinase adsorption on mini-plasminogen and decreases the value of alpha-2-antiplasmin binding with mini-plasminogen by 50%. The data obtained indicate that plasminogen molecule has the sites of the highest affinity for streptokinase on the serine-proteinase domain, however for alpha-2-antiplasmin it is in the kringles 1-3. Streptokinase with equimolar quantity in respect of alpha-2-antiplasmin inhibits the adsorption of alpha-2-antiplasmin on the plasmin by 70% and in the presence of 6-aminohexanoic acid it is inhibited completely. Addition of streptokinase also increases the influence of increasing concentration of the acid. Inhibiting influence of streptokinase decreases, and that of 6-aminohexanoic acid increases, when plasmin is modified with diisopropylfluorophosphate in its active centre. At the same time maximum inhibition of streptokinase adsorption on the plasmin at different concentrations of alpha-2-antiplasmin and 6-aminohexanoic acid accounts for only 20%. We suppose that in the process of complex formation streptokinase competes with alpha-2-antiplasmin for the binding sites on the catalytic domain of the plasmin. Partial or complete blocking of the plasmin active centre contact zone by streptokinase effectively protects it from inhibition by alpha-2-antiplasmin.  相似文献   

8.
Streptokinase (SK) and staphylokinase form cofactor-enzyme complexes that promote the degradation of fibrin thrombi by activating human plasminogen. The unique abilities of streptokinase to nonproteolytically activate plasminogen or to alter the interactions of plasmin with substrates and inhibitors may be the result of high affinity binding mediated by the streptokinase beta-domain. To examine this hypothesis, a chimeric streptokinase, SKbetaswap, was created by swapping the SK beta-domain with the homologous beta-domain of Streptococcus uberis Pg activator (SUPA or PauA, SK uberis), a streptokinase that cannot activate human plasminogen. SKbetaswap formed a tight complex with microplasminogen with an affinity comparable with streptokinase. The SKbetaswap-plasmin complex also activated human plasminogen with catalytic efficiencies (k(cat)/K(m) = 16.8 versus 15.2 microm(-1) min(-1)) comparable with streptokinase. However, SKbetaswap was incapable of nonproteolytic active site generation and activated plasminogen by a staphylokinase mechanism. When compared with streptokinase complexes, SKbetaswap-plasmin and SKbetaswap-microplasmin complexes had altered affinities for low molecular weight substrates. The SKbetaswap-plasmin complex also was less resistant than the streptokinase-plasmin complex to inhibition by alpha(2)-antiplasmin and was readily inhibited by soybean trypsin inhibitor. Thus, in addition to mediating high affinity binding to plasmin(ogen), the streptokinase beta-domain is required for nonproteolytic active site generation and specifically modulates the interactions of the complex with substrates and inhibitors.  相似文献   

9.
Streptokinase reacts very rapidly with human plasmin (rate constant 5.4 S 10(7) M-1 s-1) forming a 1:1 stoichiometric complex which has a dissociation constant of 5 X 10(-11) M. This plasmin-streptokinase complex is 10(5) times less reactive towards alpha 2-antiplasmin than plasmin, the inhibition rate constant being 1.4 X 10(2) M-1 s-1. The loss of reactivity of the streptokinase-plasmin complex towards alpha 2-antiplasmin is independent of the lysine binding sites in plasmin since low-Mr plasmin, which lacks these sites, and plasmin in which the sites have been blocked by 6-aminohexanoic acid, are both equally unreactive towards alpha 2-antiplasmin on reaction with streptokinase. The plasmin-streptokinase complex binds to Sepharose-lysine and Sepharose-fibrin monomer in the same fashion as free plasmin, showing that the lysine binding sites are fully exposed in the complex. Bovine plasmin is rapidly inhibited by human alpha 2-antiplasmin (k1 = 1.6 X 10(6) M-1 s-1) and similarly loses reactivity towards the inhibitor on complex formation with streptokinase (50% binding at 0.4 microM streptokinase).  相似文献   

10.
An Mr 57,000 single-chain chimeric plasminogen activator, K12G0S32, consisting of a variable region fragment (Fv) derived from the fibrin fragment D-dimer-specific monoclonal antibody MA-15C5 and of a 33-kDa (amino acids Ala132 to Leu411) recombinant single-chain urokinase-type plasminogen activator (rscu-PA-33k) was studied. K12G0S32, secreted by infected Spodoptera frugiperda insect cells at a rate of 1.5 micrograms/10(6) cells/48 h, was purified to homogeneity by ion-exchange chromatography and gel filtration. It was obtained essentially as a single-chain molecule with a Ka = 5.5 x 10(9) M-1 for immobilized fragment D-dimer, similar to that of MA-15C5. The specific activity of both its single-chain and two-chain forms on fibrin plates was 100,000 IU/mg of urokinase-type plasminogen activator (u-PA) equivalent. Activation of plasminogen by two-chain K12G0S32 obeyed Michaelis-Menten kinetics with Km = 2.9 +/- 0.6 microM and a k2 = 3.7 +/- 0.6 s-1 (mean +/- S.D.; n = 3), as compared to Km = 12 microM and k2 = 4.8 s-1 for rtcu-PA-32k (recombinant low Mr two-chain u-PA consisting of amino acids Leu144 to Leu411). Single-chain K12G0S32 induced a dose- and time-dependent lysis of a 125I-fibrin-labeled human plasma clot immersed in citrated human plasma; 50% lysis in 2 h was obtained with 0.70 +/- 0.07 micrograms/ml (mean +/- S.D.; n = 5), as compared with 8.8 +/- 0.1 micrograms/ml for rscu-PA-32k (recombinant low Mr single-chain u-PA consisting of amino acids Leu144 to Leu411) (mean +/- S.D.; n = 3). With two-chain K12G0S32, 50% clot lysis in 2 h required 0.25 +/- 0.03 micrograms/ml (mean +/- S.D.; n = 3), as compared with only 0.62 +/- 0.04 micrograms/ml (mean +/- S.D.; n = 2) for rtcu-PA-32k. These results indicate that low Mr single-chain u-PA can be targeted to a fibrin clot with a single-chain Fv fragment of a fibrin-specific antibody, resulting in a 13-fold increase of the fibrinolytic potency of the single-chain form and a 2.5-fold increase of the potency of the two-chain form.  相似文献   

11.
Bacterial plasminogen activators differ from each other in their mechanism of plasminogen activation besides their host specificity. Three‐domain streptokinase (SK) and two‐domain PauA generate nonproteolytic active site center in their cognate partner plasminogen but their binary activator complexes are resistant to α2‐antiplasmin (a2AP) inhibition causing nonspecific plasminogen activation in plasma. In contrast, single‐domain plasminogen activator, staphylokinase (SAK), requires proteolytic cleavage of human plasminogen into plasmin for the active site generation, and this activator complex is inhibited by a2AP. The single‐domain plasminogen activator, PadA, from Streptococcus dysgalatiae, having close sequence and possible structure homology with SAK, was recently reported to activate bovine Pg in a nonproteolytic manner similar to SK. We report hereby that the binary activator complex of PadA with bovine plasminogen is inhibited by a2AP and PadA is recycled from this complex to catalyze the activation of plasminogen in the clot environment, where it is completely protected from a2AP inhibition. Catalytic efficiency of the activator complex formed by PadA and bovine plasminogen is amplified several folds in the presence of cyanogen bromide digested fibrinogen but not by intact fibrinogen indicating that PadA may be highly efficient at the fibrin surface. The present study, thus, demonstrates that PadA is a unique single‐domain plasminogen activator that activates bovine plasminogen in a fibrin‐targeted manner like SAK. The sequence optimization by PadA for acquiring the characteristics of both SK and SAK may be exploited for the development of efficient and fibrin‐specific plasminogen activators for thrombolytic therapy.  相似文献   

12.
Interaction of tissue plasminogen activator with alpha-2-antiplasmin and its influence on tissue activator binding to fibrin was studied. Alpha-2-Antiplasmin decreases the binding of tissue activator to fibrin by 20%. The inhibitor formed a complex with tissue plasminogen activator (Kd 78.2 nM) and had no effect on amidolytic activity of the activator. The tissue activator binding to alpha-2-antiplasmin decreases by 20-35% in the presence of 6-aminohexanoic acid. It indicates that not only kringle 2 of the tissue activator molecule takes part in complex formation with alpha-2-antiplasmin, but also other activator domains. Two models were proposed to explain the alpha-2-antiplasmin effect on the Glu-plasminogen activation by tissue activator on fibrin. In the first place, the inhibitor binds to fibrin in the site where the activator complex is localized. It can create steric hindrances for the proenzyme interaction with its activator on fibrin. In the second place, alpha-2-antiplasmin in a complex with tissue plasminogen activator can bring to a change in the activator conformation and a decrease of its functional activity.  相似文献   

13.
An elastase-dependent pathway of plasminogen activation   总被引:1,自引:0,他引:1  
R Machovich  W G Owen 《Biochemistry》1989,28(10):4517-4522
In reaction mixtures containing Glu-plasminogen, alpha 2-antiplasmin, and tissue plasminogen activator or urokinase, either pancreatic or leukocyte elastase enhances the rate of plasminogen activation by 2 or more orders of magnitude. This effect is the consequence of several reactions. (a) In concentrations on the order of 100 nM, elastase degrades plasminogen within 10 min to yield des-kringle1-4-plasminogen (mini-plasminogen), which is 10-fold more efficient than Glu-plasminogen as a substrate for plasminogen activators. Des-kringle1-4-plasminogen is insensitive to cofactor activities of fibrin(ogen) fragments or an endothelial cell cofactor. (b) Des-kringle1-4-plasmin is one-tenth as sensitive as plasmin to inhibition by alpha 2-antiplasmin: k" = 10(6) M-1 s-1 versus 10(7) M-1 s-1. (c) alpha 2-Antiplasmin is disabled efficiently by elastase, with a k" of 20,000 M-1 s-1. The elastase-dependent reactions are not influenced by 6-aminohexanoate. In diluted (10-fold) blood plasma, the capacity of endogenous inhibitors to block plasmin expression is suppressed by 30 microM elastase. It is proposed that elastases provide an alternative pathway for Glu-plasminogen activation and a mechanism for controlling initiation of fibrinolysis by urokinase-type plasminogen activators.  相似文献   

14.
Plasma carboxypeptidase B (PCB) is an exopeptidase that exerts an antifibrinolytic effect by releasing C-terminal Lys and Arg residues from partially degraded fibrin. PCB is produced in plasma via limited proteolysis of the zymogen, pro-PCB. In this report, we show that the K(m) (55 nM) for plasmin-catalyzed activation of pro-PCB is similar to the plasma concentration of pro-PCB (50-70 nM), whereas the K(m) for the thrombin- or thrombin:thrombomodulin-catalyzed reaction is 10-40-fold higher than the pro-PCB level in plasma. Additionally, tissue-type plasminogen activator triggers activation of pro-PCB in blood plasma in a reaction that is stimulated by a neutralizing antibody versus alpha(2)-antiplasmin. Together, these results show that plasmin-mediated activation of pro-PCB can occur in blood plasma. Heparin (UH) and other anionic glycosaminoglycans stimulate pro-PCB activation by plasmin but not by thrombin or thrombin:thrombomodulin. Pro-PCB is a more favorable substrate for plasmin in the presence of UH (16-fold increase in k(cat)/K(m)). UH also stabilizes PCB against spontaneous inactivation. The presence of UH in clots prepared with prothrombin-deficient plasma delays tissue-type plasminogen activator-triggered lysis; this effect of UH on clot lysis is blocked by a PCB inhibitor from potato tubers. These results show that UH accelerates plasmin-catalyzed activation of pro-PCB in plasma and PCB, in turn, stabilizes fibrin against fibrinolysis. We propose that glycosaminoglycans in the subendothelial extracellular matrix serve to augment the levels of PCB activity thereby stabilizing blood clots at sites where there is a breach in the integrity of the vasculature.  相似文献   

15.
The therapeutic properties of plasminogen activators are dictated by their mechanism of action. Unlike staphylokinase, a single domain protein, streptokinase, a 3-domain (alpha, beta, and gamma) molecule, nonproteolytically activates human (h)-plasminogen and protects plasmin from inactivation by alpha(2)-antiplasmin. Because a streptokinase-like mechanism was hypothesized to require the streptokinase gamma-domain, we examined the mechanism of action of a novel two-domain (alpha,beta) Streptococcus uberis plasminogen activator (SUPA). Under conditions that quench trace plasmin, SUPA nonproteolytically generated an active site in bovine (b)-plasminogen. SUPA also competitively inhibited the inactivation of plasmin by alpha(2)-antiplasmin. Still, the lag phase in active site generation and plasminogen activation by SUPA was at least 5-fold longer than that of streptokinase. Recombinant streptokinase gamma-domain bound to the b-plasminogen.SUPA complex and significantly reduced these lag phases. The SUPA-b.plasmin complex activated b-plasminogen with kinetic parameters comparable to those of streptokinase for h-plasminogen. The SUPA-b.plasmin complex also activated h-plasminogen but with a lower k(cat) (25-fold) and k(cat)/K(m) (7.9-fold) than SK. We conclude that a gamma-domain is not required for a streptokinase-like activation of b-plasminogen. However, the streptokinase gamma-domain enhances the rates of active site formation in b-plasminogen and this enhancing effect may be required for efficient activation of plasminogen from other species.  相似文献   

16.
Kinetics of fibrinolysis by plasmin and plasmin streptokinase complex have been studied using fibrin gels formed from purified fibrin and human blood plasma. The gels were placed into buffer or blood plasma. The contributions of plasminogen and alpha 2-antiplasmin present or absent in both phases to the kinetics of fibrinolysis were quantitatively estimated. In the complex catalyzed fibrinolysis, plasminogen activation reaction dominated whereas in plasmin-catalyzed fibrinolysis, the inhibitor involved reaction, suppressing the process, prevailed.  相似文献   

17.
Equimolar mixtures of recombinant single chain urokinase-type plasminogen activator (rscu-PA) and a murine monoclonal antibody (MA-15C5) directed against fragment-D dimer of human cross-linked fibrin were conjugated, using the cross-linking agent N-succinimidyl 3-(2-pyridyldithio)propionate (PySSProSu). The conjugate (rscu-PA/MA-15C5), purified by immunoadsorption on a urokinase antibody and affinity chromatography on fibrin fragment-D dimer with a yield of 42 +/- 15% (mean +/- SD, n = 3), contained an average of 1.2 +/- 0.3 IgG molecules/rscu-PA molecule. On non-reduced SDS/PAGE it migrated as a main band with apparent Mr of 200,000. Specific amidolytic activities expressed/mass of u-PA were less than 250 IU/mg for rscu-PA/MA-15C5 and rscu-PA, 140,000 +/- 13,000 IU/mg and 100,000 +/- 17,000 IU/mg for their plasmin-generated two chain derivatives rtcu-PA/MA-15C5 and rtcu-PA respectively. Specific activities on fibrin plates were 100,000 +/- 24,000 IU/mg and 130,000 +/- 49,000 IU/mg for rscu-PA/MA-15C5 and rtcu-PA/MA-15C5 respectively, as compared to 180,000 +/- 15,000 IU/mg for both rscu-PA and rtcu-PA. Activation of plasminogen with rscu-PA/MA-15C5 (Km = 0.37 +/- 0.16 microM, k2 = 0.0063 +/- 0.0030 s-1 or rtcu-PA/MA-15C5 (Km = 19 +/- 3.0 microM, k2 = 2.0 +/- 0.10 s-1) in purified systems followed Michaelis-Menten kinetics with Km and k2 values comparable to those of rscu-PA and rtcu-PA. In an in vitro system composed of a 125I-fibrin-labeled whole human plasma clot immersed in citrated human plasma, dose- and time-dependent lysis was obtained; 50% lysis in 2 h required 1.4 microgram/ml of rscu-PA or 0.33 microgram/ml of rtcu-PA, but only 0.22 microgram u-PA/ml of rscu-PA/MA-15C5 or 0.15 microgram u-PA/ml of rtcu-PA/MA-15C5. Addition of purified fragment-D dimer reversed the increased fibrinolytic potency of rscu-PA/MA-15C5 in a concentration-dependent way (50% inhibition at 7.2 micrograms fragment-D dimer/ml). Thus, conjugation of u-PA moieties with the fibrin-specific antibody MA-15C5 targets the plasminogen activator to the clot, resulting in a significant increase of their fibrinolytic potencies as compared to their unconjugated counterparts: 6.4-fold for rscu-PA and 2.2-fold for rtcu-PA.  相似文献   

18.
A chimeric plasminogen activator (t-PA/scu-PA-s), consisting of amino acids 1-263 of tissue-type plasminogen activator (t-PA) and 144-411 of single-chain urokinase-type plasminogen activator (scu-PA), was previously shown to maintain the enzymatic properties of scu-PA but to have only partially acquired the fibrin affinity of t-PA, possibly as a result of steric interaction between the functional domains of t-PA and scu-PA (Nelles, L., Lijnen, H. R., Collen, D., and Holmes, W.E. (1987) J. Biol. Chem. 262, 10855-10862). Therefore, we now have constructed an extended chimeric t-PA/scu-PA protein, consisting of amino acids 1-274 of t-PA and 138-411 of scu-PA, which thus has an additional sequence of 17 residues in the region joining the two proteins. The highly purified extended chimeric protein (t-PA/scu-PA-e) was found to have similar specific activity on fibrin film (65,000 IU/mg), kinetic constants for the activation of plasminogen (Km = 1 microM, k2 = 0.0026 s-1), fibrin affinity (50% binding at a fibrin concentration of 3.3 g/liter), and fibrin specificity of clot lysis in a plasma environment (50% lysis in 2 h with 8 nM of the chimer) as the previously characterized chimeric protein (t-PA/scu-PA-s). Thus, unexpectedly, the fibrin affinity of t-PA is also only partially expressed in this extended chimeric protein. Therefore, the NH2-terminal chains (A-chains) of the plasmin-generated two-chain derivatives t-PA/tcu-PA-e, t-PA/tcu-PA-s, and of t-PA were isolated. These A-chain structures of the chimers were found to have lost most of their fibrin affinity, whereas the fibrin affinity of the A-chain of native t-PA was maintained. Differential reactivity of the A-chain structures of both chimeric molecules with monoclonal antibodies directed against the A-chain of t-PA suggested that they were conformationally altered. Sequential fibrin binding experiments with t-PA/scu-PA-e and t-PA/scu-PA-s yielded 45 +/- 8 (n = 11) and 43 +/- 5% (n = 8), respectively, binding in the first cycle and 44 +/- 7 (n = 11) and 27 +/- 10% (n = 8), respectively, binding in the second cycle. This suggests that the low affinity of the chimeric molecules for fibrin is not due to the occurrence of subpopulations of molecules with different fibrin affinity but, instead, to a uniformly decreased fibrin affinity in all molecules.  相似文献   

19.
A low Mr form (Mr 32,000) of single-chain urokinase-type plasminogen activator (scu-PA) was isolated from conditioned culture medium of a human lung adenocarcinoma cell line, CALU-3 (ATCC, HTB-55). The purified material (scu-PA-32k) consists of a single polypeptide chain and is immunologically similar to Mr 33,000 urokinase. Its NH2-terminal sequence is identical to that beginning at Leu-144 of Mr 54,000 urokinase. Whereas low Mr urokinase is derived from mature Mr 54,000 scu-PA by limited hydrolysis by plasmin first of the Lys-158-Ile-159 peptide bond and then of the Lys-136-Lys-137, scu-PA-32k is generated by specific hydrolysis of the Glu-143-Leu-144 peptide bond by an unidentified protease. scu-PA-32k resembles its Mr 54,000 scu-PA counterpart by its very low activity on chromogenic substrates for urokinase, by plasminogen-dependent fibrinolytic activity on fibrin plates, and by the lack of specific binding to fibrin. It activates plasminogen directly with high affinity, Km = 0.9 microM, but low turnover number, kcat = 0.0028 s-1. It is converted to fully active two-chain urokinase by plasmin with Km = 12 microM and kcat = 0.3 s-1. Like Mr 54,000 scu-PA, it causes significant lysis of a 125I-labeled fibrin clot in human plasma with relatively less fibrinogen breakdown as compared to urokinase. scu-PA-32k, which also has conserved fibrin specificity, represents a molecular variant which may be more suitable for large scale production as a fibrin-specific thrombolytic agent by recombinant DNA technology.  相似文献   

20.
To develop a fast-acting clot dissolving agent, a clot-targeting domain derived from the Kringle-1 domain in human plasminogen was fused to the C-terminal end of staphylokinase with a linker sequence in between. Production of this fusion protein in Bacillus subtilis and Pichia pastoris was examined. The Kringle domain in the fusion protein produced from B. subtilis was improperly folded because of its complicated disulfide-bond profile, whereas the staphylokinase domain produced from P. pastoris was only partially active because of an N-linked glycosylation. A change of the glycosylation residue, Thr-30, to alanine resulted in a non-glycosylated biologically active fusion. The resulting mutein, designated SAKM3-L-K1, was overproduced in P. pastoris. Each domain in SAKM3-L-K1 was functional, and this fusion showed fibrin binding ability by binding directly to plasmin-digested clots. In vitro fibrin clot lysis in a static environment and plasma clot lysis in a flow-cell system demonstrated that the engineered fusion outperformed the non-fused staphylokinase. The time required for 50% clot lysis was reduced by 20 to 500% under different conditions. Faster clot lysis can potentially reduce the degree of damage to occluded heart tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号