首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we demonstrated that angiotensin-(1–7) (Ang-(1–7)) stimulates the Na+-ATPase activity through a losartan-sensitive angiotensin receptor, whereas bradykinin inhibits the enzyme activity through the B2 receptor [Regul. Pept. 91 (2000) 45; Pharmacol. Rev. 32 (1980) 1]. In the present paper, the effect of bradykinin (BK) on Ang-(1–7)-stimulated Na+-ATPase activity was evaluated. Preincubation of Na+-ATPase with 10−9 M Ang-(1–7) increases enzyme activity from 7.9±0.9 to 14.1±1.5 nmol Pi mg−1 min−1, corresponding to an increase of 79% (p<0.05). This effect is reverted by bradykinin in a dose-dependent manner (10−14–10−8 M), reaching maximal inhibitory effect at 10−9 M. Des-Arg9 bradykinin (DABK), an agonist of B1 receptor, at the concentrations of 10−9–10−7 M, does not mimic the BK inhibitory effect, and des-Arg9-[Leu8]-BK (DALBK), a B1 receptor antagonist, at the concentrations of 10−10–10−7 M, does not prevent the inhibitory effect of BK on Ang-(1–7)-stimulated enzyme. On the other hand, HOE 140, an antagonist of B2 receptor, abolishes the inhibitory effect of BK on the Ang-(1–7)-stimulated enzyme in a dose-dependent manner, reaching maximal effect at 10−7 M. Taken together, these data indicate that stimulation of B2 receptors by BK can counteract the stimulatory effect of Ang-(1–7) on the proximal tubule Na+-ATPase activity.  相似文献   

2.
3.
Angiotensin (Ang)-(1–7) is an endogenous peptide hormone of the renin–angiotensin system which exerts diverse biological actions, some of them counterregulate Ang II effects. In the present study potential effect of Ang-(1–7) on phosphoinositide (PI) turnover was evaluated in neonatal rat brain. Cerebral cortex prisms of seven-day-old rats were preloaded with [3H]myoinositol, incubated with additions during 30 min and later [3H]inositol-phosphates (IPs) accumulation quantified. It was observed that PI hydrolysis enhanced 30% to 60% in the presence of 0.01 nM to 100 nM Ang-(1–7). Neither 10 nM [D-Ala7]Ang-(1–7), an Ang-(1–7) specific antagonist, nor 10 nM losartan, an angiotensin II type 1 (AT1) receptor antagonist, blocked the effect of 0.1 nM Ang-(1–7) on PI metabolism. The effect of 0.1 nM Ang-(1–7) on PI hydrolysis was not reduced but it was even significantly increased in the simultaneous presence of [D-Ala7]Ang-(1–7) or losartan. PI turnover enhancement achieved with 0.1 nM Ang-(1–7) decreased roughly 30% in the presence of 10 nM PD 123319, an angiotensin II type 2 (AT2) receptor antagonist. The antagonists alone also enhanced PI turnover. Present findings showing an increase in PI turnover by Ang-(1–7) represent a novel action for this peptide and suggest that it exerts a function in this signaling system in neonatal rat brain, an effect involving, at least partially, angiotensin AT2 receptors.  相似文献   

4.
Steroid 21-hydroxylase activity has been identified in many tissues, including liver. But it is possible that the enzyme found in the liver is different from adrenal 21-hydroxylase. In the adrenal cortex, steroid 21-hydroxylase activity is increased by corticotropin (ACTH); the effect of ACTH is mediated by cyclic AMP (cAMP), and presumably involves a cAMP-dependent protein kinase (PKA). It is not yet clear, however, how extra-adrenal steroid 21-hydroxylase activity is regulated. In the present study, we examined the effect of N6, 2′-O-dibutyryl adenosine 3′,5′-cyclic monophosphate (dbcAMP), forskolin, N-[2-(methylamino)ethyl]5-isoquinolinesulfonamide (H-8) and 12-O-tetradecanoylphorbol-13-acetate (TPA) on steroid 21-hydroxylase activity in primary cultures of rat hepatocytes to determine the nature of regulation of extra-adrenal steroid 21-hydroxylase activity. Steroid 21-hydroxylase activity in hepatocytes incubated with 10−11M dbcAMP for 24 h was 1.6 times higher than that in control hepatocytes untreated with dbcAMP. On the other hand, steroid 21-hydroxylase activity decreased by 20 and 50% when the cells were incubated with 10−5 and 10−3 M dbcAMP, respectively. The stimulatory effect of 10−11 M dbcAMP was not blocked by 10−5 M H-8 (PKA inhibitor), but the inhibitory effect of 10−5 or 10−3 M cAMP was. TPA did not alter the activity of steroid 21-hydroxylase. These findings indicate that the steroid 21-hydroxylase in rat liver is regulated by mechanisms different from those in the adrenal glands.  相似文献   

5.
Both prostaglandins (PGs) and nitric oxide (NO) have cytoprotective and hyperemic effects in the stomach. However, the effect of NO on PG synthesis in gastric mucosal cells is unclear. We examined whether sodium nitroprusside (SNP), a releaser of NO, stimulates PG synthesis in cultured rabbit gastric mucus-producing cells. These cells did not release NO themselves. Co-incubation with SNP (2 × 10−4, 5 × 10−4, 10−3 M) increased PGE2 synthesis, and SNP (10−3 M) increased PGI2 synthesis in these cells. Hemoglobin, a scavenger of NO, (10−5 M) eliminated the increase in PGE2 synthesis by SNP, but methylene blue, an inhibitor of soluble guanylate cyclase, (5 × 10−5 M) did not affect the increase in PGE2 synthesis by SNP. 8-bromo guanosine 3′ : 5′-cyclic monophosphate (8-bromo cGMP), a cGMP analogue, (10−6, 10−5, 10−4, 10−3 M) did not affect PGE2 synthesis. These findings suggest that NO increased PGE2 and PGI2 synthesis via a cGMP-independent pathway in cultured rabbit gastric cells.  相似文献   

6.
C. Görlach  M. Wahl 《Peptides》1996,17(8):1373-1378
Ring segments of rat middle cerebral artery (MCA) were prepared for measurement of isometric force and precontracted with 10−4 M uridine triphosphate (UTP). Concentration-effect curves (CEC) were constructed for bradykinin (BK, 10−8–10−5 M) in segments with functionally intect (E+) or denuded (E−) endothelium. E− segments did not dilate to BK. The BK receptor was characterized by application of specific B1 or B2 antagonists [des-Arg9-Leu8] BK (10−5 M) and [ -Arg0-Hyp3-Thi5- -Tic7-Oic8] BK (HOE140,3 × 10−7 M), respectively, or B1 agonist [des-Arg9] BK (10−8–10−4 M). Involvement of nitric oxide (NO) was tested with NG-nitro- -arginine (LNNA, 10−4 M). BK induced concentration-dependent relaxation with a maximal effect (Emax) of 40.86 ± 1.50% at 10−6 M and a pD2 (−log10 EC50) of 6.818 ± 0.044. This relaxation could be prevented with HOE140 or LNNA, but was not influenced by [des-Arg9-Leu8] BK. [des-Arg9] BK did not induce any effect. These results demonstrate that BK induced relaxation via endothelial B2 receptors and release of NO in isolated rat MCA.  相似文献   

7.
Biological properties of amino-terminal PTHrP analogues modified in the region 11–13 were examined using ROS 17/2.8 cells. [Leu11,D-Trp12,Arg13,Tyr36]PTHrP(1–36)amide had a 17-fold lower binding affinity for the receptor (apparent Kd: 5 × 10−8 M) than [Tyr36]PTHrP(1–36)amide or [Arg11,13,Tyr36]PTHrP(1–36)amide (apparent Kd for both: 2 × 10−9 M). Moreover, it is only a weak partial agonist despite completely inhibiting radioligand binding. [Leu11,D-Trp12,Arg13,Tyr36,Cys38]PTHrP(7–38) and PTHrP(7–34)amide had similar receptor affinities (apparent Kds: 5 × 10−8 M and 8 × 10−8 M), while that of [Nle8,18,Tyr34]bPTH(7–34)amide was more than 10-fold lower (apparent Kd: 2 × 10−6 M). These changes in biological properties suggest that high affinity receptor binding requires both amino- and carboxyl-terminal domains of the PTHrP(1–36) sequence and/or intramolecular interactions which are impaired by the D-Trp substitution for Gly12.  相似文献   

8.
Differential UV spectroscopy and thermal denaturation were used to study the Mg2+ ion effect on the conformational equilibrium in poly A · 2 poly U (A2U) and poly A · poly U (AU) solutions at low (0.01 M Na+) and high (0.1 M Na+) ionic strengths. Four complete phase diagrams were obtained for Mg2+–polynucleotide complexes in ranges of temperatures 20–96 °C and concentrations (10−5–10−2) M Mg2+. Three of them have a ‘critical’ point at which the type of the conformational transition changes. The value of the ‘critical’ concentration ([Mgt2+]cr=(4.5±1.0)×10−5 M) is nearly independent of the initial conformation of polynucleotides (AU, A2U) and of Na+ contents in the solution. Such a value is observed for Ni2+ ions too. The phase diagram of the (A2U+Mg2+) complex with 0.01 M Na+ has no ‘critical’ point: temperatures of (3→2) and (2→1) transitions increase in the whole Mg2+ range. In (AU+Mg2+) phase diagram at 0.01 M Na+ the temperature interval in which triple helices are formed and destroyed is several times larger than at 0.1 M Na+. Using the ligand theory, a qualitative thermodynamic analysis of the phase diagrams was performed.  相似文献   

9.
Amperometric choline biosensors were fabricated by the covalent immobilization of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO/horseradish peroxidase (ChO/HRP) onto poly-5,2′:5′,2″-terthiophene-3′-carboxylic acid (poly-TTCA) modified electrodes (CPMEs). A sensor modified with ChO utilized the oxidation process of enzymatically generated H2O2 in a choline solution at +0.6 V. The other one modified with ChO/HRP utilized the reduction process of H2O2 in a choline solution at −0.2 V. Experimental parameters affecting the sensitivity of sensors, such as pH, applied potential, and temperature were optimized. A performance comparison of two sensors showed that one based on ChO/HRP/CPME had a linear range from 1.0×10−6 to 8.0×10−5 M and the other based on ChO/CPME from 1.0×10−6 to 5.0×10−5 M. The detection limits for choline employing ChO/HRP/CPME and ChO/CPME were determined to be about 1.0×10−7 and 4.0×10−7 M, respectively. The response time of sensors was less than 5 s. Sensors showed good selectivity to interfering species. The long-term storage stability of the sensor based on ChO/HRP/CPME was longer than that based on ChO/CPME.  相似文献   

10.
We have designed and synthesized a series of small peptides containing a perfluoroalkyl ketone group at the C-terminal position of the angiotensin I sequence as inhibitors of human renin. From this series of compounds, 8 and 10 showed strong inhibition of human renin (IC50 = 3 × 10−9, 7 × 10−9 M, respectively). Compound 10 did not inhibit pepsin and cathepsin D at 10−4 M. Comparison of the IC50 of compound 8 and compound 11 (8.7 × 10−7 M) demonstrated the marked effect of the perfluoropropyl group on the potency of inhibition on renin, presumably due to the strong electron-withdrawing effect causing the ketone in 8 to exist predominantly as the hydrate — thus mimicking the tetrahedral transition state during hydrolysis of the scissile Leu10—Val11 amide bond.  相似文献   

11.
T. C. Morton  R. W. Henderson 《BBA》1972,267(3):485-492
1. Haem c was synthesized and purified. It was shown unequivocally that the method gives a product with the cysteine residues on the -carbon atoms at the 2 and 4 positions of the haem.

2. Redox potentials of haem c in the presence of 2.5 M pyridine were determined in the pH range 1.5–13; it was found necessary to add cetyl trimethyl ammonium bromide (CTAB) to prevent precipitation in the acid range below about pH 4. The Em vs pH curve shows three slopes (−dE/dpH) of value, 0.18, 0.01 and 0.06 with points of inflexion at pH 3.8 and 10.6. The potentials are intermediate between those of protohaem and mesohaem obtained under similar conditions.

3. With constant haem c concentration (a) 10−4 M and (b) 10−5 M and varying pyridine concentration (0.12–5 M) it was found at pH 9.0 that Em values increased as the pyridine concentration was increased and there was a tendency to reach a plateau value. The explanation appears to be that pyridine binds more firmly to ferroporphyrin c than to ferriporhyrin c.

4. When the pyridine concentration was kept constant (2.5 M) and the haem c concentration was varied in the range 7 · 10−4–7 · 10−6 M, it was found that a decrease in haem c concentration brought about an increase in redox potential. The results are explained as being due to dimerization of the oxidized form.

5. The results are discussed in comparison with a number of related haem systems.  相似文献   


12.
It is well recognized that estradiol (E2) is one of the most important hormones supporting the growth and evolution of breast cancer. Consequently, to block this hormone before it enters the cancer cell or in the cell itself, has been one of the main targets in recent years. In the present study we explored the effect of the progestin, nomegestrol acetate, on the estrone sulfatase and 17β-hydroxy-steroid dehydrogenase (17β-HSD) activities of MCF-7 and T-47D human breast cancer cells. Using physiological doses of estrone sulfate (E1S: 5 × 10−9 M), nomegestrol acetate blocked very significantly the conversion of E1S to E2. In the MCF-7 cells, using concentrations of 5 × 10−6 M and 5 × 10−5 M of nomegestrol acetate, the decrease of E1S to E2 was, respectively, −43% and −77%. The values were, respectively, −60% and −71% for the T-47D cells. Using E1S at 2 × 10−6 M and nomegestrol acetate at 10−5 M, a direct inhibitory effect on the enzyme of −36% and −18% was obtained with the cell homogenate of the MCF-7 and T-47D cells, respectively. In another series of studies, it was observed that after 24 h incubation of a physiological concentration of estrone (E1: 5 × 10−9 M) this estrogen is converted in a great proportion to E2. Nomegestrol acetate inhibits this transformation by −35% and −85% at 5 × 10−7 M and 5 × 10−5 M, respectively in T-47D cells; whereas in the MCF-7 cells the inhibitory effect is only significant, −48%, at 5 × 10−5 M concentration of nomegestrol acetate. It is concluded that nomegestrol acetate in the hormone-dependent MCF-7 and T-47D breast cancer cells significantly inhibits the estrone sulfatase and 17β-HSD activities which converts E1S to the biologically active estrogen estradiol. This inhibition provoked by this progestin on the enzymes involved in the biosynthesis of E2 can open new clinical possibilities in breast cancer therapy.  相似文献   

13.
The kinetics of the changes in the cytoplasmic Ca2+ concentration (Cai2+) and amylase release were measured in fura-2-loaded pancreatic acinar cells and perifused pancreatic acini, respectively. Cholecystokinin octapeptide (CCK-8) and its amphibian analogue caerulein induced similar dose-related increases of Cai2+ and amylase secretion with threshold concentrations of 2–6·10−12 M, and maximal effects at 2·10−10 M. The action of CCK/caerulein on Cai2+ was complex and similar to that of carbachol and bombesin with a prompt several-fold increase within seconds followed by a gradual decline over more than 5 min to a new sustained suprabasal level. The kinetics of amylase release in response to CCK and carbachol correlated with the changes in Cai2+. Additions of the antagonists N2,O2-dibutyrylguanosine 3′:5′-cyclic monophosphate and atropine after 30 min of CCK-8 and carbachol stimulation, respectively, were associated with prompt lowerings of Cai2+ and inhibitions of amylase secretion. The patterns observed with substance P (SP) and eledoisin were different with high concentrations (10−8–10−7 M) giving monophasic increases of Cai2+ and amylase release. An initial stimulation of cells with a high dose of CCK eliminated the Cai2+ response to further stimulation with CCK, carbachol, bombesin and SP, whereas cells subjected to initial stimulation with SP responded to subsequent exposure to CCK with prolonged elevation of Cai2+. The data indicate that stimulation with CCK, carbachol and bombesin may be associated with intracellular mobilization of calcium from more than one pool, and that an increase of Cai2+ is involved even in threshold stimulation of amylase release.  相似文献   

14.
We describe the syntheses, physicochemical properties and biological evaluation of a novel series of complexones containing bis- or biazoles moieties and two iminodiacetic acid units as novel ligands for paramagnetic lanthanides. The complexones were prepared by reaction of the corresponding 1,1′-bishaloethylbi- or bispyrazoles with methyl iminodiacetate and subsequent NaOH hydrolysis. 1,1′-Bisbromoethyl precursors were obtained by direct alkylation with an excess of 1,2-dibromoethane, or by heating the corresponding alcohol in HCl. Sigmoidal binding isotherms and MO calculations supported as most stable structures in solution, those containing two Gd(III) atoms bound per molecule of complexone with half saturation values S0.5 (M−1, 22 °C, pH 7.2) in the range 6.5 10−60.5<36.1 10−6. Relaxivity properties [r1, r2, s−1 mM−1 Gd(III)] determined at 1.5 Tesla gave values (12.0<r1<17.7, 12.2<r2<20), improving significantly the relaxivities of reference compounds such as Gd(III)EDTA (5.2, 5.6) or Gd(III)DTPA (4.30, 4.30). These improvements involve mainly increased hydration and slower rotational motions. In vitro toxicity experiments are reported.  相似文献   

15.
Various sulfidic anions and the oxidizing cations [Ru(NH3)6]3+ and N,N′-dimethyl-4,4′-bipyridinium2+ (paraquat2+) form ion pairs in aqueous solutions which display outer-sphere charge-transfer (CT) absorptions. The CT energies are used to establish a series of sulfidic anions with increasing CT donor strength: SCN2O3 2−4 3−3S3−2 −2S2 −4 2−.  相似文献   

16.
The effect of various ions on [3H] -glutamic acid (Glu) binding was examined using crude synaptic membrane preparations from the rat brain. In vitro addition of sodium acetate (1–100 mM) exhibited a significant enhancement of the binding in a concentration dependent manner. Ammonium chloride (20 mM) prevented the potentiation by sodium acetate at 2°C, whereas sodium acetate exerted an inhibitory action on the ammonium chloride-induced augmentation of the binding at 30°C. Ammonium chloride (1–100 mM) itself elicited a temperature dependent stimulation of the binding, which was invariably attenuated by an antagonist for the anion channels such as picrotoxinin (10−3 M) as well as by inhibitors of anion transport including ethacrynic acid (10−3 M) and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (10−4−10−3 M), respectively. The later two inhibitors also caused a significant additional raise of the sodium acetate-induced enhancement of the binding. A significant augmentation of the binding resulted from the addition (20 mM) of various anions known to penetrate the anion channels such as bromide, iodide, nitrate, bicarbonate and thiocyanate in a permeability related manner, while that of non-permeable anions including fluoride, sulfate, acetate, formate, phosphate, oxalate, lactate, succinate and tartarate had no such a profound effect on the binding. Addition of -aspartic acid resulted in the complete abolition of the Na+-dependent binding while sparing the Cl-dependent binding. Scatchard analysis revealed that Cl ions induced a two-fold increase in the number of the binding sites without affecting their affinity, whereas Na+ ions reduced the affinity with a concomitant increase of the number of the binding sites. Addition of quisqualic acid (10−5−10−3 M) inhibited the Cl-dependent binding of [3H]Glu to a significantly greater extent than the inhibition on Na+-dependent binding. acid and kainic acid exerted no preventive action on the basal, Cl-dependent and Na+-dependent binding. respectively. The highest basal binding activity was found in the retina among various central structures examined. A significant basal binding activity of [3H]Glu was also detected in the pituitary and adrenal but not in the kidney. Chloride ions exhibited a significant facilitation of [3H]Glu binding to central regions without altering that to peripheral tissues such as pituitary and adrenal. In contrast, Na+ ions induced significant attenuation of the binding to the pituitary, adrenal and retina despite the occurrence of augmentation of the binding to other central structures.

These results suggest the Glu binding sites may be linked to the anion channels in the rat central nervous system and that this linkage may be absent from the pituitary, adrenal and retina.  相似文献   


17.
The aim of our study was to determine whether a meal modifies the antisecretory response induced by PYY and the structural requirements to elicit antisecretory effects of analogue PYY(22–36) for potential antidiarrhea therapy. The variations in short-circuit current (Isc) due to the modification of ionic transport across the rat intestine were assessed in vitro, using Ussing chambers. In fasted rats, PYY induced a dose- and time-dependent reduction in Isc, with a sensitivity threshold at 5 × 10−11 M (ΔIsc −2 ± 0.5 μA/cm2). The reduction was maximal at 10−7 M (Isc −23 ± 2 μA/cm2), and the concentration producing half-maximal inhibition was 10−9 M. At 10−7 M, reduction of Isc by PYY reached 90% of response to 5 × 10−5 M bumetanide. The PYY effect was partly reversed by 10−5 M forskolin (Isc +13.43 ± 2.91 μA/h·cm2, p < 0.05) or 10−3 M dibutyryl adenosine 3′,5′ cyclic monophosphate (Isc +12 ± 1.69 μA/cm2, p < 0.05). Naloxone and tetrodotoxin did not alter the effect of PYY. In addition, PYY and its analogue P915 reduced net chloride ion secretion to 2.85 and 2.29 μEq/cm2 (p < 0.05), respectively. The antisecretory effect of PYY was accompanied by dose- and time-dependent desensitization when jejunum was prestimulated by a lower dose of peptide. The antisecretory potencies exhibited by PYY analogues required both a C-terminal fragment (22–36) and an aromatic amino acid residue (Trp or Phe) at position 27. At 10−7 M the biological activity of PYY was lower in fed than fasted rats (p < 0.001). Our results confirm the antisecretory effect of PYY, but show that the fed period is accompanied by desensitization, similar to the transient desensitization observed in the fasted period with cumulative doses. This suggests that PYY may act as a physiological mediator that reduces intestinal secretion.  相似文献   

18.
R.J.W. De Wit 《FEBS letters》1982,150(2):445-448
Folic acid is degraded too fast by Dictyostelium discoideum to study binding of this ligand to cell surface binding proteins. Folate deaminase activity was inhibited in the presence of 3.3 × 10−4 M 8-azaguanine. This inhibitor enabled us to detect two folate binding proteins. One type bound folic acid and deamino-folic acid with the same affinity (K0.5 = 3–6 × 10−7 M) and apparently negative cooperativity. Binding to only this type was observed if 8-azaguanine was omitted. The second type bound folic acid noncooperatively with Kd = 7 × 10−7 M. Deamino-folic acid did not compete even at a 1000-fold excess. This type may correspond to the chemotactic receptor.  相似文献   

19.
The rat pineal gland is known to release melatonin in response to noradrenergic stimulation. Since vasopressin (VP)- and oxytocin (OT)-containing fibers innervate the pineal gland, the effects of VP and OT on melatonin release from perifused rat pineal glands were investigated. VP (10−7 M) and OT (10−6 M) decreased the basal melatonin secretion. No dose-dependent effect was observed. At high concentrations (10−5) these peptides potentiated the isoproterenol-induced increase of melatonin secretion. Below 10−5 M no potentiation was observed. Fragments of VP {[pGlu4,Cys6]VP(4–9)} and OT {[pGlu4,Cys6]OT(4–9)} did not display any effect on the isoproterenol-induced melatonin secretion.  相似文献   

20.
Reactions of cis-diamminedichloroplatinum(II) with phosphonoformic acid (PFA), phosphonoacetic acid (PAA), and methylenediphosphonic acid (MDP) yield various phosphonatoplatinum(II) chelates which were characterized by phosphorus-31 NMR spectroscopy. The P-31 resonances for the chelates appear at 6–12 ppm downfield as compared to the uncomplexed ligands. All complexes exhibit monoprotic acidic behavior in the pH range 2–10. The chemical shift-pH profiles yielded acidity constants, 1.0 × 10−4, 1.5 × 10−4, and 1.3 × 10−6 M−1, for the PFA, PAA, and MDP chelates. In addition to the monomeric chelate, MDP formed a bridged diplatinum(II,II) complex when it reacted with cis-Pt (NH3)2(H2O)22+. The P-31 resonance for this binuclear complex appears at 22 ppm downfield from the unreacted ligand.

Rate data for the complexation reactions of the phosphonate ligands with the dichloroplatinum complex are consistent with a mechanism in which a monodentate complex is formed initially through rate-limiting aquation process of the platinum complex, followed by a rapid chelation. For the PFA and PAA complexes, initial binding sites are the carboxylato oxygens. Implications of the various binding modes of the phosphonates in relationship to their antiviral activities are discussed.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号