首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
α-Synuclein (a-Syn), a protein implicated in Parkinson disease, contributes significantly to dopamine metabolism. a-Syn binding inhibits the activity of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis. Phosphorylation of TH stimulates its activity, an effect that is reversed by protein phosphatase 2A (PP2A). In cells, a-Syn overexpression activates PP2A. Here we demonstrate that a-Syn significantly inhibited TH activity in vitro and in vivo and that phosphorylation of a-Syn serine 129 (Ser-129) modulated this effect. In MN9D cells, a-Syn overexpression reduced TH serine 19 phosphorylation (Ser(P)-19). In dopaminergic tissues from mice overexpressing human a-Syn in catecholamine neurons only, TH-Ser-19 and TH-Ser-40 phosphorylation and activity were also reduced, whereas PP2A was more active. Cerebellum, which lacks excess a-Syn, had PP2A activity identical to controls. Conversely, a-Syn knock-out mice had elevated TH-Ser-19 phosphorylation and activity and less active PP2A in dopaminergic tissues. Using an a-Syn Ser-129 dephosphorylation mimic, with serine mutated to alanine, TH was more inhibited, whereas PP2A was more active in vitro and in vivo. Phosphorylation of a-Syn Ser-129 by Polo-like-kinase 2 in vitro reduced the ability of a-Syn to inhibit TH or activate PP2A, identifying a novel regulatory role for Ser-129 on a-Syn. These findings extend our understanding of normal a-Syn biology and have implications for the dopamine dysfunction of Parkinson disease.  相似文献   

2.
Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, is inhibited in vitro by catecholamines binding to two distinct sites on the enzyme. The N-terminal regulatory domain of TH contributes to dopamine binding to the high affinity site of the enzyme. We prepared an N-terminal deletion mutant of TH to examine the role of the N-terminal domain in dopamine binding to the low affinity site. Deletion of the N-terminus of TH removes the high affinity dopamine binding site, but does not affect dopamine binding to the low affinity site. The role of the low affinity site in situ was examined by incubating PC12 cells with L-DOPA to increase the cytosolic catecholamine concentration. This resulted in an inhibition of TH activity in situ under both basal conditions and conditions that promoted the phosphorylation of Ser40. Therefore the low affinity site is active in situ regardless of the phosphorylation status of Ser40.  相似文献   

3.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the synthesis of catecholamines. It is dephosphorylated by protein phosphatase (PP) 2A and PP2C. In this study we used a fixed amount of bacterially expressed rat TH (5 microM), phosphorylated only at serine 40 (pSer40TH), to determine the PP activities against this site that are present in extracts from the bovine adrenal cortex, adrenal medulla, adrenal chromaffin cells and rat striatum. We found that PP2C was the main TH phosphatase activity in extracts from the adrenal medulla and adrenal chromaffin cells. In adrenal cortex extracts PP2C and PP2A activities toward pSer40TH did not differ significantly. PP2A was the main TH phosphatase activity in extracts from rat striatum. Kinetic studies with extracts from adrenal chromaffin cells showed that when higher concentrations of pSer40TH (> 5 microM) were used the activity of PP2C increased more than the activity of PP2A. PP2C was maximally activated by 1.25 mM Mn2+ and by 5 mM Mg2+ but was inhibited by calcium. Our data suggest a more important role for PP2C than was previously suggested in the dephosphorylation of serine 40 on TH.  相似文献   

4.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine synthesis. Its activity is controlled by PACAP, acutely by phosphorylation at Ser40 and chronically by protein synthesis. Using bovine adrenal chromaffin cells we found that PACAP, acting via the continuous activation of PACAP 1 receptors, sustained the phosphorylation of TH at Ser40 and led to TH activation for up to 24 h in the absence of TH protein synthesis. The sustained phosphorylation of TH at Ser40 was not mediated by hierarchical phosphorylation of TH at either Ser19 or Ser31. PACAP caused sustained activation of PKA, but did not sustain activation of other protein kinases including ERK, p38 kinase, PKC, MAPKAPK2 and MSK1. The PKA inhibitor H89 substantially inhibited the acute and the sustained phosphorylation of TH mediated by PACAP. PACAP also inhibited the activity of PP2A and PP2C at 24 h. PACAP therefore sustained TH phosphorylation at Ser40 for 24 h by sustaining the activation of PKA and causing inactivation of Ser40 phosphatases. The PKA activator 8-CPT-6Phe-cAMP also caused sustained phosphorylation of TH at Ser40 that was inhibited by the PKA inhibitor H89. Using cyclic AMP agonist pairs we found that sustained phosphorylation of TH was due to both the RI and the RII isotypes of PKA. The sustained activation of TH that occurred as a result of TH phosphorylation at Ser40 could maintain the synthesis of catecholamines without the need for further stimulus of the adrenal cells or increased TH protein synthesis.  相似文献   

5.
In this study we investigated the effects of insulin-induced hypoglycaemia on tyrosine hydroxylase (TH) protein and TH phosphorylation in the adrenal gland, C1 cell group, locus coeruleus (LC) and midbrain dopaminergic cell groups that are thought to play a role in response to hypoglycaemia and compared the effects of different concentrations of insulin in rats. Insulin (1 and 10 U/kg) treatment caused similar reductions in blood glucose concentration (from 7.5–9 to 2–3 mmol/L); however, plasma adrenaline concentration was increased 20–30 fold in response to 10 U/kg insulin and only 14 fold following 1 U/kg. Time course studies (at 10 U/kg insulin) revealed that in the adrenal gland, Ser31 phosphorylation was increased between 30 and 90 min (4–5 fold), implying that TH was activated to increase catecholamine synthesis in adrenal medulla to replenish the stores. In the brain, Ser19 phosphorylation was limited to certain dopaminergic groups in the midbrain, while Ser31 phosphorylation was increased in most catecholaminergic regions at 60 min (1.3–2 fold), suggesting that Ser31 phosphorylation may be an important mechanism to maintain catecholamine synthesis in the brain. Comparing the effects of 1 and 10 U/kg insulin revealed that Ser31 phosphorylation was increased to similar extent in the adrenal gland and C1 cell group in response to both doses whereas Ser31 and Ser19 phosphorylation were only increased in response to 1 U/kg insulin in LC and in response to 10 U/kg insulin in most midbrain regions. Thus, the adrenal gland and some catecholaminergic brain regions become activated in response to insulin administration and brain catecholamines may be important for initiation of physiological defences against insulin-induced hypoglycaemia.  相似文献   

6.
Nucleotide excision repair of DNA in mammalian cells uses more than 20 polypeptides to remove DNA lesions caused by UV light and other mutagens. To investigate whether reversible protein phosphorylation can significantly modulate this repair mechanism we studied the effect of specific inhibitors of Ser/Thr protein phosphatases. The ability of HeLa cell extracts to carry out nucleotide excision repair in vitro was highly sensitive to three toxins (okadaic acid, microcystin-LR and tautomycin), which block PP1- and PP2A-type phosphatases. Repair was more sensitive to okadaic acid than to tautomycin, suggesting the involvement of a PP2A-type enzyme, and was insensitive to inhibitor-2, which exclusively inhibits PP1-type enzymes. In a repair synthesis assay the toxins gave 70% inhibition of activity. Full activity could be restored to toxin-inhibited extracts by addition of purified PP2A, but not PP1. The p34 subunit of replication protein A was hyperphosphorylated in cell extracts in the presence of phosphatase inhibitors, but we found no evidence that this affected repair. In a coupled incision/synthesis repair assay okadaic acid decreased the production of incision intermediates in the repair reaction. The formation of 25-30mer oligonucleotides by dual incision during repair was also inhibited by okadaic acid and inhibition could be reversed with PP2A. Thus Ser/Thr- specific protein phosphorylation plays an important role in the modulation of nucleotide excision repair in vitro.  相似文献   

7.
In bovine adrenal chromaffin cells (BACC) histamine promotes a rapid increase in the intracellular levels of Ca2+ together with the release of catecholamines and the phosphorylation of the catecholamine biosynthetic enzyme tyrosine hydroxylase (TH). In this study we investigated the role of the mitogen-activated protein kinases (MAPK) extracellular signal-regulated kinases (ERK1/2), stress activated protein kinase (p38) and Jun N-terminal kinases (JNK) on the histamine-induced activation and phosphorylation of TH. We found that in BACC histamine produced a rapid, long lasting and histamine type-1 (H1) receptor-dependent increase in the phosphorylation levels of ERK1/2, p38 and JNK which was accompanied by a H1 receptor-dependent increase in TH activity. This increase in TH activity was partially blocked by the MEK1/2 inhibitor U0126 but was unaffected by the p38 antagonist SB203580 or the JNK blocker JNKI1. To study the effect of MAPK inhibition on histamine-induced TH phosphorylation, we generated phospho-specific antibodies against the different phosphorylated forms of TH. Treatment with U0126 totally inhibited the histamine-induced phosphorylation of TH at Ser31, without affecting the phosphorylation of either Ser40 or Ser19. Neither SB203580 nor JNKI1 treatments produced any significant modification of the histamine-induced TH phosphorylation. Our data support the hypothesis that the up-regulation of the ERK1/2 pathway, but not that of p38 or JNK, promoted by histamine is involved in the phosphorylation of TH at Ser31 and that this phosphorylation event is required for the full activation of this enzyme.  相似文献   

8.
The prototypical form of the Ser/Thr phosphatase PP2A is a heterotrimeric complex consisting of catalytic subunit (C), and A and B regulatory subunits. C-terminal methylation of PP2A-C influences holoenzyme assembly. Using late gestation development in the rat as an in vivo model of liver growth, we found that PP2A-C protein and activity levels were higher in fetal compared to adult liver extracts. However, unmethylated PP2A-C was much higher in the adult extracts. In MonoQ fractionation, unmethylated C eluted separately from methylated C, which was present predominantly in ABC heterotrimers. Gel filtration chromatography revealed that some unmethylated C was present as free catalytic subunit in adult liver. In addition, a significant proportion of PP2A was in inactive forms that may involve novel regulatory subunits. Our results indicate that methylation of PP2A-C appears to be a primary determinant for the biogenesis of PP2A heterotrimers.  相似文献   

9.
We previously reported that protein kinase D2 (PKD2) in T cells is promptly activated after T-cell receptor (TCR) stimulation and involved in the activation of interleukin-2 promoter and T cell death, and that one of its candidate substrate is SET protein, a natural inhibitor for protein phosphatase 2A (PP2A). In this study, we investigated the target amino acid residues of SET phosphorylated by PKD2 and the effects of phosphorylation of SET on PP2A phosphatase activity. In vitro kinase assay using various recombinant SET mutants having Ser/Thr to Ala substitutions revealed that Ser171 of SET is one of the sites phosphorylated by PKD2. Recombinant SET with phosphorylation-mimic Ser171 to Glu substitution reduced its inhibitory effects on PP2A phosphatase activity compared with Ser171 to Ala substituted or wild-type SET. In addition, knockdown of PKD2 in Jurkat cells by RNAi or treatment of human CD4+ T cell clone with the PKD2 inhibitor Gö6976 resulted in reduced PP2A activity after TCR-stimulation judged from phosphorylation status of Tyr307 of the catalytic subunit of PP2A. These results suggest that PKD2 is involved in the regulation of PP2A activity in activated T cells through phosphorylation of Ser171 of SET.  相似文献   

10.
Heterotrimeric protein phosphatase 2A (PP2A) is a major Ser/Thr phosphatase composed of catalytic, structural, and regulatory subunits. Here, we characterize Bbeta2, a novel splice variant of the neuronal Bbeta regulatory subunit with a unique N-terminal tail. Bbeta2 is expressed predominantly in forebrain areas, and PP2A holoenzymes containing Bbeta2 are about 10-fold less abundant than those containing the Bbeta1 (previously Bbeta) isoform. Bbeta2 mRNA is dramatically induced postnatally and in response to neuronal differentiation of a hippocampal progenitor cell line. The divergent N terminus of Bbeta2 does not affect phosphatase activity but encodes a subcellular targeting signal. Bbeta2, but not Bbeta1 or an N-terminal truncation mutant, colocalizes with mitochondria in neuronal PC12 cells. Moreover, the Bbeta2 N-terminal tail is sufficient to target green fluorescent protein to this organelle. Inducible or transient expression of Bbeta2, but neither Bbeta1, Bgamma, nor a Bbeta2 mutant defective in holoenzyme formation, accelerates apoptosis in response to growth factor deprivation. Thus, alternative splicing of a mitochondrial localization signal generates a PP2A holoenzyme involved in neuronal survival signaling.  相似文献   

11.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine synthesis. Its activity is known to be controlled acutely (minutes) by phosphorylation and chronically (days) by protein synthesis. Using bovine adrenal chromaffin cells we found that nicotine, acting via nicotinic receptors, sustained the phosphorylation of TH at Ser40 for up to 48 h. Nicotine also induced sustained activation of TH, which for the first 24 h was completely independent of TH protein synthesis, and the phosphorylation of TH at Ser31. Imipramine did not inhibit the acute phosphorylation of TH at Ser40 or TH activation induced by nicotine, but did inhibit the sustained responses to nicotine seen at 24 h. The protein kinase(s) responsible for TH phosphorylation at Ser40 switched from being protein kinase C (PKC) independent in the acute phase to PKC dependent in the sustained phase. Sustained phosphorylation and activation of TH were also observed with histamine and angiotensin II. Sustained phosphorylation of TH at Ser40 provides a novel mechanism for increasing TH activity and this leads to increased catecholamine synthesis. Sustained phosphorylation of TH may be a selective target for drugs or pathology in neurons that contain TH and synthesize dopamine, noradrenaline or adrenaline.  相似文献   

12.
The predominant forms of protein phosphatase 2A (PP2A), one of the major Ser/Thr phosphatases, are dimers of catalytic (C) and scaffolding (A) subunits and trimers with an additional variable regulatory subunit. In mammals, catalytic and scaffolding subunits are encoded by two genes each (alpha/beta), whereas three gene families (B, B', and B') with a total of 12 genes contribute PP2A regulatory subunits. We generated stable PC12 cell lines in which the major scaffolding Aalpha subunit can be knocked down by inducible RNA interference (RNAi) to study its role in cell viability. Aalpha RNAi decreased total PP2A activity as well as protein levels of C, B, and B' but not B' subunits. Inhibitor experiments indicate that monomeric C and B subunits are degraded by the proteosome. Knock-down of Aalpha triggered cell death by redundant apoptotic and non-apoptotic mechanisms because the inhibition of RNAi-associated caspase activation failed to stall cell death. PP2A holoenzymes positively regulate survival kinase signaling, because RNAi reduced basal and epidermal growth factor-stimulated Akt phosphorylation. RNAi-resistant Aalpha cDNAs rescued RNAi-induced loss of the C subunit, and Aalpha point mutants prevented regulatory subunit degradation as predicted from each mutant's binding specificity. In transient, stable, and stable-inducible rescue experiments, both wild-type Abeta and Aalpha mutants capable of binding to at least one family of regulatory subunits were able to delay Aalpha RNAi-induced death of PC12 cells. However, only the expression of wild-type Aalpha restored viability completely. Thus, heterotrimeric PP2A holoenzymes containing the Aalpha subunit and members of all three regulatory subunit families are necessary for mammalian cell viability.  相似文献   

13.
Short-term regulation of catecholamine biosynthesis involves reversible phosphorylation of several serine residues in the N-terminal regulatory domain of tyrosine hydroxylase. The MAP kinases ERK1/2 have been identified as responsible for phosphorylation of Ser31. As an initial step in elucidating the effects of phosphorylation of Ser31 on the structure and activity of tyrosine hydroxylase, the kinetics of phosphorylation of the rat enzyme by recombinant rat ERK2 have been characterized. Complete phosphorylation results in incorporation of 2mol of phosphate into each subunit of tyrosine hydroxylase. The S8A and S31A enzymes only incorporate a single phosphate, while the S19A and S40A enzymes incorporate two. Phosphorylation of S8A tyrosine hydroxylase is nine times as rapid as phosphorylation of the S31A enzyme, consistent with a ninefold preference of ERK2 for Ser31 over Ser8.  相似文献   

14.
Abstract: We have found that modification of rat PC12 cells with pertussis toxin resulted in an ∼50% inhibition of a protein phosphatase 2A-like phosphatase. Protein phosphatase 2A (PP2A) is a major cellular serine/threonine-specific protein phosphatase. Treatment of extracts from pertussis toxin-modified PC12 cells with either immobilized alkaline phosphatase or Ca2+ reversed this inhibition. Reactivation of the PP2A-like phosphatase in Ca2+ appears to result from the dephosphorylation of a protein by the Ca2+/calmodulin-dependent protein phosphatase calcineurin. The PP2A-like phosphatase in extracts from pertussis toxin-modified PC12 cells eluted from a Mono Q column at a higher ionic strength than did the PP2A-like phosphatase in extracts from control cells. After incubation in Ca2+, the PP2A-like phosphatase in extracts from pertussis toxin-modified cells eluted from a Mono Q column at the same ionic strength as did the PP2A-like phosphatase in extracts from control cells. These results indicate that the effect of pertussis toxin on this PP2A-like activity results from the phosphorylation of either one of the subunits of the PP2A-like phosphatase or a protein that when phosphorylated binds to and inhibits this phosphatase. Pertussis toxin modification did not result in the phosphorylation of the catalytic subunit of PP2A. Because phosphorylation regulates the activities of many enzymes and cell surface receptors, a pertussis toxin-induced decrease in PP2A activity could alter signaling pathways and other cellular processes in which G proteins are not directly involved.  相似文献   

15.
Tyrosine hydroxylase (TH) has been reported to require binding of 14-3-3 proteins for optimal activation by phosphorylation. We examined the effects of phosphorylation at Ser19, Ser31 and Ser40 of bovine TH and human TH isoforms on their binding to the 14-3-3 proteins BMH1/BMH2, as well as 14-3-3 zeta and a mixture of sheep brain 14-3-3 proteins. Phosphorylation of Ser31 did not result in 14-3-3 binding, however, phosphorylation of TH on Ser40 increased its affinity towards the yeast 14-3-3 isoforms BMH1/BMH2 and sheep brain 14-3-3, but not for 14-3-3 zeta. On phosphorylation of both Ser19 and Ser40, binding to the 14-3-3 zeta isoform also occurred, and the binding affinity to BMH1 and sheep brain 14-3-3 increased. Both phosphoserine-specific antibodies directed against the 10 amino acids surrounding Ser19 or Ser40 of TH, and the phosphorylated peptides themselves, inhibited the association between phosphorylated TH and 14-3-3 proteins. This was also found when heparin was added, or after proteolytic removal of the N-terminal 37 amino acids of Ser40-phosphorylated TH. Binding of BMH1 to phosphorylated TH decreased the rate of dephosphorylation by protein phosphatase 2A, but no significant change in enzymatic activity was observed in the presence of BMH1. These findings further support a role for 14-3-3 proteins in the regulation of catecholamine biosynthesis and demonstrate isoform specificity for both TH and 14-3-3 proteins.  相似文献   

16.
Sphingosine kinase 1 (SK1) is an important regulator of cellular signaling that has been implicated in a broad range of cellular processes. Cell exposure to a wide array of growth factors, cytokines, and other cell agonists can result in a rapid and transient increase in SK activity via an activating phosphorylation. We have previously identified extracellular signal-regulated kinases 1 and 2 (ERK1/2) as the kinases responsible for the phosphorylation of human SK1 at Ser(225), but the corresponding phosphatase targeting this phosphorylation has remained undefined. Here, we provide data to support a role for protein phosphatase 2A (PP2A) in the deactivation of SK1 through dephosphorylation of phospho-Ser(225). The catalytic subunit of PP2A (PP2Ac) was found to interact with SK1 using both GST-pulldown and coimmunoprecipitation analyses. Coexpression of PP2Ac with SK1 resulted in reduced Ser(225) phosphorylation of SK1 in human embryonic kidney (HEK293) cells. In vitro phosphatase assays showed that PP2Ac dephosphorylated both recombinant SK1 and a phosphopeptide based on the phospho-Ser(225) region of SK1. Finally, both basal and tumor necrosis factor-alpha-stimulated cellular SK1 activity were regulated by molecular manipulation of PP2Ac activity. Thus, PP2A appears to function as an endogenous regulator of SK1 phosphorylation.  相似文献   

17.
(i) The major sites on bovine adrenal tyrosine hydroxylase (TH) phosphorylated by calmodulin-dependent multiprotein kinase (CaM-MPK) and cyclic AMP-dependent protein kinase were shown to be Ser-19 and Ser-40, respectively, while Ser-40 was also phosphorylated slowly by CaM-MPK. (ii) Type 2A and type 2C phosphatases accounted for approximately 90% and approximately 10% of TH phosphatase activity, respectively, in extracts of adrenal medulla and corpus striatum assayed at near physiological free Mg2+ (1 mM), while type 1 and type 2B phosphatases had negligible activity towards TH. (iii) Incubation of adrenal chromaffin cells with okadaic acid increased TH phosphorylation by 206% and activity by 77%, establishing that type 2A phosphatases play a major role in regulating TH in vivo.  相似文献   

18.
Protein phosphatase 1 (PP1) is one of the major phosphatases responsible for protein dephosphorylation in eukaryotes. So far, only few specific phosphorylation sites of PP1 regulatory subunit 12A (PPP1R12A) have been shown to regulate the PP1 activity. The effect of insulin on PPP1R12A phosphorylation is largely unknown. Utilizing a mass spectrometry based phosphorylation identification and quantification approach, we identified 21 PPP1R12A phosphorylation sites (7 novel sites, including Ser20, Thr22, Thr453, Ser478, Thr671, Ser678, and Ser680) and quantified 16 of them under basal and insulin stimulated conditions in hamster ovary cells overexpressing the insulin receptor (CHO/IR), an insulin sensitive cell model. Insulin stimulated the phosphorylation of PPP1R12A significantly at Ser477, Ser478, Ser507, Ser668, and Ser695, while simultaneously suppressing the phosphorylation of PPP1R12A at Ser509 (more than 2-fold increase or decrease compared to basal). Our data demonstrate that PPP1R12A undergoes insulin stimulated/suppressed phosphorylation, suggesting that PPP1R12A phosphorylation may play a role in insulin signal transduction. The novel PPP1R12A phosphorylation sites as well as the new insulin-responsive phosphorylation sites of PPP1R12A in CHO/IR cells provide targets for investigation of the regulation of PPP1R12A and the PPP1R12A-PP1cδ complex in insulin action and other signaling pathways in other cell models, animal models, and humans.  相似文献   

19.
The protein phosphatases which dephosphorylate native, sarcoplasmic reticulum (SR)-associated phospholamban were studied in cardiac muscle extracts and in a Triton fraction prepared by detergent extraction of myofibrils, the latter fraction containing 70-80% of the SR-associated proteins present in the tissue. At physiological concentrations of free Mg2+ (1 mM), protein phosphatase 1 (PP1) accounted for approximately 70% of the total phospholamban phosphatase activity in these fractions towards either Ser-16 (the residue labelled by cAMP-dependent protein kinase, PK-A) or Thr-17 (the residue phosphorylated by an SR-associated Ca2+/calmodulin-dependent protein kinase). Protein phosphatase 2A (PP2A) and protein phosphatase 2C (PP2C) accounted for the remainder of the activity. A major form of cardiac PP1, present in comparable amounts in both the extract and Triton fraction, was similar, if not identical, to skeletal muscle protein phosphatase 1G (PP1G), which is composed of the PP1 catalytic (C) subunit complexed to a G subunit of approximately 160 kDa, responsible for targeting PP1 to both the SR and glycogen particles of skeletal muscle. This conclusion was based on immunoblotting experiments using antibody to the G subunit, ability to bind to glycogen and the release of PP1 activity from glycogen upon incubation with PK-A and MgATP. PP1 accounted for approximately 90% of the phospholamban (Ser-16 or Thr-17) phosphatase activity in the material sedimented by centrifugation at 45,000 x g, a fraction prepared from cardiac extracts which is enriched in SR membranes. The G subunit in this fraction could be solubilised by Triton X-100, but not with 0.5 M NaCl or digestion with alpha-amylase, indicating that it is bound to membranes and not to glycogen. By analogy with the situation in skeletal muscle, the PK-A catalysed phosphorylation of the G subunit, with ensuing release of the C subunit from the SR, may prevent PP1 from dephosphorylating SR-bound substrates and represent one of the mechanisms by which adrenalin increases the phosphorylation of cardiac phospholamban (Ser-16 and Thr-17) in vivo. Hearts left in situ post mortem lose 85-95% of their PP1 activity within 20-30 min. This remarkable disappearance of PP1 may partly explain why the importance of this enzyme in cardiac muscle metabolism has not been recognized previously.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号