首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
为了在酵母中高通量、高效率地对外源基因进行克隆和表达,本研究以酵母表达载体pYES2为基础,构建高效克隆表达T载体。pYES2是酿酒酵母的一种高效表达载体,在其多克隆位点处设计插入XcmⅠ-Intron-XcmⅠ片段,同时将其载体中URA3基因中原有的XcmⅠ酶切位点进行定点突变,构建出pYES2-T酿酒酵母高效表达T载体。利用XcmⅠ酶切载体pYES2-T,使其产生两个突出的T末端,一方面可以通过PCR产物加A的方式直接进行TA克隆;另一方面可在半乳糖诱导启动子的调控下,对TA克隆后的外源基因在酵母中诱导表达。利用该系统高通量地对人工合成耐盐系列基因NLEAs进行筛选,研究结果表明,该系统可以在酿酒酵母中一步式完成片段克隆及耐盐基因的筛选。本研究构建的酵母表达T载体使用方便、效率高、成本低,应用前景广阔。  相似文献   

2.
摘要:【目的】建立一种适用于圆红冬孢酵母代谢工程的磷酸盐饥饿诱导表达系统。【方法】对圆红冬孢酵母pho89基因5'侧翼序列进行生物信息学分析,设计相应引物,PCR扩增pho89基因启动子(pPHO89)和hsp70基因终止子(tHSP),利用RF克隆方法置换出发载体上的pPGK组成型启动子和tNOS终止子,以潮霉素磷酸转移酶基因hyg为报告基因,得到响应磷酸盐饥饿诱导的单表达盒载体pZPK-pPHO89-hyg-tHSP,利用ATMT方法转化圆红冬孢酵母,通过转化子潮霉素抗性表型鉴定pPHO89和tHSP的启动子和终止子活 性。在此基础上,构建了适合外源基因表达的双表达盒诱导表达载体pZPK-HYG-pPHO89-MCS-tHSP,并利用该载体构建了苹果酸酶重组表达菌株。【结果】成功构建了响应磷酸盐饥饿的圆红冬孢酵母诱导性表达载体,该载体在圆红冬孢酵母中可表现出启动子和终止子活性。【结论】该启动子受磷酸盐浓度的严谨调节,响应度高,操作简单,无需额外诱导剂,经济便捷,为后续圆红冬孢酵母代谢工程研究提供了基本材料。  相似文献   

3.
巴斯德毕赤酵母表达体系研究及进展   总被引:29,自引:0,他引:29  
毕赤酵母表达体系是近十年发展起来的真核表达体系。作为一种成功的表达体系,有好几种因素促进了它的快速推广。主要包括如下几方面:    毕赤酵母醇氧化酶(Alcohol oxidase,AOXl)基因的强启动子特别适合于外源基因的调控表达;毕赤酵母基因操作技术和酿酒酵母Sccharomyces cerevisiae非常相似,后者是现代分子生物学中研究得透彻和应用很广的酵母表达体系;毕赤酵母对需氧生长有强的偏好,这一生理学特性使得它既能高密度发酵生长,亦有利于工业放大生产;毕赤酵母自身分泌到培养基中的…  相似文献   

4.
为了简化解脂耶氏酵母表达载体构建过程、消除抗生素污染,将mel基因(编码酪氨酸酶)作为新型报告基因用于构建新型酵母表达载体,利用组装PCR人工合成基因mel,并用重叠PCR将其与同源组成型强启动子p TEF、分泌性信号肽XPR2pre及强终止区LIP2t融合,构建新型胞外及胞内表达载体,并利用其在解脂耶氏酵母野生菌株中表达人源癌基因rho.成功获得mel全基因并将其与启动子、信号肽和终止区融合,得到融合片段TXML,用其替换原有表达载体的筛选标记基因ura3d4,构建得到新型胞外及胞内表达载体pINA1297-M和pINA1297-a-M,转化后的酵母阳性转化子性状明显,随后利用此新型表达系统获得可溶性异源蛋白Rho.首次实现了将mel作为一种便捷、价廉、无污染的新型筛选标记基因运用于非常规酵母表达系统中,更为mel在其它真核表达系统中的运用奠定了技术基础;获得的可溶性Rho蛋白可为研究其性质、结构、功能及与Rho癌基因家族其它成员的相互作用提供条件.  相似文献   

5.
新型酵母表达系统的研究   总被引:6,自引:0,他引:6  
酵母表达系统是在酿酒酵母质粒的发现和酵母转化技术的成熟基础上建立起来的真核生物表达系统。许多有应用价值的外源基因成功地在其中表达,但也存在一些局限性。为了开发新的酵母表达系统,人们在酿酒酵母以外的酵母中寻找合适的宿主以建立新的载体-宿主系统。本文综述了建立新的酵母表达系统涉及的有关问题和近几年来的研究进展。  相似文献   

6.
代谢木糖和葡萄糖的重组酿酒酵母的构建   总被引:2,自引:0,他引:2  
为使酿酒酵母(Saccharomyces cerevisiae)YS58代谢木糖产乙醇,采用PCR方法克隆得到树干毕赤酵母(Pichia stipitis)木糖醇脱氢酶基因xy12,并将该基因和克隆得到的休哈塔假丝酵母(Candida shehatae)缺终止子的木糖还原酶基因xyl1一起连接到酵母表达载体pYES2的强启动子GAL下,得到融合表达载体pYES2-P12。通过醋酸锂转化的方法将pY-ES2-P12转入S.cerevisiae YS58中,得到S.cerevisiae YS58-12。利用所构建的重组酿酒酵母进行术糖发酵实验,结果表明该重组酵母能发酵木糖,使木糖利用率得到进一步提高,最高达到81.3%,而且能代谢木糖产生乙醇。  相似文献   

7.
目的:构建以带自身启动子的蔗糖转化酶基因(suc2)为选择标记的载体,用于外源基因在巴斯德毕赤酵母中的正确分泌表达。方法:根据已发表的蔗糖转化酶基因序列设计并合成1对引物,应用PCR技术,以啤酒酵母INVSC1总DNA为模板,扩增出包含自身启动子和终止区序列的suc2基因。将该基因与毕赤酵母表达载体pPIC9K连接,构建了以suc2为选择标记的表达载体pPIC12K。将甘露聚糖酶基因man克隆入载体pPIC12K,用PEG/LiCl法转化毕赤酵母GS115菌株。以蔗糖为惟一碳源筛选转化子,利用底物平板检测筛选到的转化子中man基因的表达,并对重组表达菌株进行连续传代实验。结果:部分转化子周围产生明显的水解圈,证明甘露聚糖酶已经得到分泌表达;对重组表达菌株的连续传代实验证实了该表达载体具有良好的遗传稳定性。结论:以带自身启动子的suc2基因为选择标记的表达载体构建成功,并且这个新型表达载体能够对外源基因进行稳定有效的分泌表达。  相似文献   

8.
近年来巴斯德毕赤氏酵母(Pichiapastoris)已被广泛用于商业化生产外源蛋白的基因工程菌[1]。与常用的酿酒酵母表达系统相比,该系统具有以下优点:1有强有力的、受甲醇严格诱导调控的启动子;2表达蛋白高分泌;3表达菌株稳定;4适合于高密度培养。但目前使用的系统也有其不足之处,当利用该系统的载体将外源基因通过双交换整合到染色体中AOX1基因位置时,AOX1基因被破坏[2]。已知醇氧化酶是细胞利用甲醇的关键酶,该酶分别由AOX1基因和AOX2基因编码合成[3]。虽然AOX2与AOX1的…  相似文献   

9.
核型多角体病毒(Nuclear Polyhedrosis Virus,简称NPV)的核多角体蛋白(Polyhedrin)基因具有一个非常强的启动子和基因调控序列。目前利用这一基因的上述序列已组建了多种表达载体,高效地表达了十几种外源基因产物,成为当前最有前途的新的表达系统。但是,在组建这一病毒载体过程中,为了使插入的外源基因靠近病毒启动子序列,各  相似文献   

10.
通过同源重组构建酿酒酵母新型表达质粒   总被引:2,自引:0,他引:2  
利用同源重组的方法, 构建了具有高拷贝数和高稳定性的新型酿酒酵母表达质粒. 对酵母附加体型载体pHC11进行一系列改造, 得到质粒pHC11R, 并用适当的酶切线性化; 利用PCR反应得到人IFNα2b表达单元片段, 它的两端和线性化的pHC11R的两端具有50 bp左右的同源区段. 上述两个片段共转化酿酒酵母, 在酵母体内经同源重组后得到表达质粒pHC11R-IFNα2b, 该表达质粒与 pHC11-IFNα2b相比去除了质粒上用于在大肠杆菌中复制和筛选所需的序列, 在宿主菌中的稳定性和拷贝数均有明显提高, 同时外源基因的表达量也获得了一定程度的提高. 在此基础上, 进一步构建了带有不同表达元件的pHR系列载体, 使得外源基因能够通过同源重组在酿酒酵母中快速、方便地克隆和表达.  相似文献   

11.
The osmotolerant yeast Zygosaccharomyces rouxii is sensitive to the toxic L-proline analogue, L-azetidine-2-carboxylate (AZC). The possibility of use of the Saccharomyces cerevisiae MPR1 gene (ScMPR1) encoding the AZC-detoxifying enzyme as a dominant selection marker in Z. rouxii was examined. The heterologous expression of ScMPR1 in two Z. rouxii strains resulted in AZC-resistant colonies, but that of ScMPR1 as a dominant marker gene in vectors was affected by a high frequency of spontaneously resistant colonies. The same was found for an AZC-sensitive S. cerevisiae strain in which the ScMPR1 was expressed. In both yeasts, ScMPR1 can be used only as an auxiliary marker gene.  相似文献   

12.
PCR-based disruption cassettes are one of the most commonly used strategies for gene targeting in Saccharomyces cerevisiae . The efficiencies of gene disruption using this conventional method are highly variable among species, and often quite low with nonconventional yeasts. Here we describe an improved strategy to obtain deletion mutants in baker's yeast Torulaspora delbrueckii , one of the most abundant non- Saccharomyces species, present in home-made corn and rye bread dough.  相似文献   

13.
This review describes the transformation systems including vectors, replicons, genetic markers, transformation methods, vector stability, and copy numbers of 13 genera and 31 species of non-Saccharomyces yeasts. Schizosaccharomyces pombe was the first non-Saccharomyces yeast studied for transformation and genetics. The replicons of non-Saccharomyces yeast vectors are from native plasmids, chromosomal DNA, and mitochondrial DNA of Saccharomyces cerevisiae, non-Saccharomyces yeasts, protozoan, plant, and animal. Vectors such as YAC, YCp, YEp, YIp, and YRp were developed for non-Saccharomyces yeasts. Forty-two types of genes from bacteria, yeasts, fungi, and plant were used as genetic markers that could be classified into biosynthetic, dominant, and colored groups to construct non-Saccharomyces yeasts vectors. The LEU2 gene and G418 resistance gene are the two most popular markers used in the yeast transformation. All known transformation methods such as spheroplast-mediating method, alkaline ion treatment method, electroporation, trans-kingdom conjugation, and biolistics have been developed successfully for non-Saccharomyces yeasts, among which the first three are most widely used. The highest copy number detected from non-Saccharomyces yeasts is 60 copies in Kluyveromyces lactis. No general rule is known to illustrate the transformation efficiency, vector stability, and copy number, although factors such as vector composition, host strain, transformation method, and selective pressure might influence them.  相似文献   

14.
The two model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe appear to have diverged 1000 million years ago. Here, we describe that S.?pombe vectors can be propagated efficiently in S.?cerevisiae as pUR19 derivatives, and the pREP and pJR vector series carrying the S.?cerevisiae LEU2 or the S.?pombe ura4(+) selection marker are maintained in S.?cerevisiae cells. In addition, genes transcribed from the S.?pombe nmt1(+) promoter and derivatives are expressed in budding yeast. Thus, S.?pombe vectors can be used as shuttle vectors in S.?cerevisiae and S.?pombe. Our finding greatly facilitates the testing for functional orthologs of protein families and simplifies the cloning of new S.?pombe plasmids by using the highly efficient in vivo homologous recombination activity of S.?cerevisiae.  相似文献   

15.
Transformation with exogenous deoxyribonucleic acid (DNA) now appears to be possible with all fungal species, or at least all that can be grown in culture. This field of research is at present dominated by Saccharomyces cerevisiae and two filamentous members of the class Ascomycetes, Aspergillus nidulans and Neurospora crassa, with substantial contributions also from fission yeast (Schizosaccharomyces pombe) and another filamentous member of the class Ascomycetes, Podospora anserina. However, transformation has been demonstrated, and will no doubt be extensively used, in representatives of most of the main fungal classes, including Phycomycetes, Basidiomycetes (the order Agaricales and Ustilago species), and a number of the Fungi Imperfecti. The list includes a number of plant pathogens, and transformation is likely to become important in the analysis of the molecular basis of pathogenicity. Transformation may be maintained either by using an autonomously replicating plasmid as a vehicle for the transforming DNA or through integration of the DNA into the chromosomes. In S. cerevisiae and other yeasts, a variety of autonomously replicating plasmids have been used successfully, some of them designed for use as shuttle vectors for Escherichia coli as well as for yeast transformation. Suitable plasmids are not yet available for use in filamentous fungi, in which stable transformation is dependent on chromosomal integration. In Saccharomyces cerevisiae, integration of transforming DNA is virtually always by homology; in filamentous fungi, in contrast, it occurs just as frequently at nonhomologous (ectopic) chromosomal sites. The main importance of transformation in fungi at present is in connection with gene cloning and the analysis of gene function. The most advanced work is being done with S. cerevisiae, in which the virtual restriction of stable DNA integration to homologous chromosome loci enables gene disruption and gene replacement to be carried out with greater precision and efficiency than is possible in other species that show a high proportion of DNA integration events at nonhomologous (ectopic) sites. With a little more trouble, however, the methodology pioneered for S. cerevisiae can be applied to other fungi too. Transformation of fungi with DNA constructs designed for high gene expression and efficient secretion of gene products appears to have great commercial potential.  相似文献   

16.
Transformation in fungi.   总被引:40,自引:0,他引:40       下载免费PDF全文
Transformation with exogenous deoxyribonucleic acid (DNA) now appears to be possible with all fungal species, or at least all that can be grown in culture. This field of research is at present dominated by Saccharomyces cerevisiae and two filamentous members of the class Ascomycetes, Aspergillus nidulans and Neurospora crassa, with substantial contributions also from fission yeast (Schizosaccharomyces pombe) and another filamentous member of the class Ascomycetes, Podospora anserina. However, transformation has been demonstrated, and will no doubt be extensively used, in representatives of most of the main fungal classes, including Phycomycetes, Basidiomycetes (the order Agaricales and Ustilago species), and a number of the Fungi Imperfecti. The list includes a number of plant pathogens, and transformation is likely to become important in the analysis of the molecular basis of pathogenicity. Transformation may be maintained either by using an autonomously replicating plasmid as a vehicle for the transforming DNA or through integration of the DNA into the chromosomes. In S. cerevisiae and other yeasts, a variety of autonomously replicating plasmids have been used successfully, some of them designed for use as shuttle vectors for Escherichia coli as well as for yeast transformation. Suitable plasmids are not yet available for use in filamentous fungi, in which stable transformation is dependent on chromosomal integration. In Saccharomyces cerevisiae, integration of transforming DNA is virtually always by homology; in filamentous fungi, in contrast, it occurs just as frequently at nonhomologous (ectopic) chromosomal sites. The main importance of transformation in fungi at present is in connection with gene cloning and the analysis of gene function. The most advanced work is being done with S. cerevisiae, in which the virtual restriction of stable DNA integration to homologous chromosome loci enables gene disruption and gene replacement to be carried out with greater precision and efficiency than is possible in other species that show a high proportion of DNA integration events at nonhomologous (ectopic) sites. With a little more trouble, however, the methodology pioneered for S. cerevisiae can be applied to other fungi too. Transformation of fungi with DNA constructs designed for high gene expression and efficient secretion of gene products appears to have great commercial potential.  相似文献   

17.
The control of promoter activity by oxygen availability appears to be an intriguing system for heterologous protein production. In fact, during cell growth in a bioreactor, an oxygen shortage is easily obtained simply by interrupting the air supply. The purpose of our work was to explore the possible use of hypoxic induction of the KlPDC1 promoter to direct heterologous gene expression in yeast. In the present study, an expression system based on the KlPDC1 promoter was developed and characterized. Several heterologous proteins, differing in size, origin, localization, and posttranslational modification, were successfully expressed in Kluyveromyces lactis under the control of the wild type or a modified promoter sequence, with a production ratio between 4 and more than 100. Yields were further optimized by a more accurate control of hypoxic physiological conditions. Production of as high as 180 mg/liter of human interleukin-1beta was obtained, representing the highest value obtained with yeasts in a lab-scale bioreactor to date. Moreover, the transferability of our system to related yeasts was assessed. The lacZ gene from Escherichia coli was cloned downstream of the KlPDC1 promoter in order to get beta-galactosidase activity in response to induction of the promoter. A centromeric vector harboring this expression cassette was introduced in Saccharomyces cerevisiae and in Zygosaccharomyces bailii, and effects of hypoxic induction were measured and compared to those already observed in K. lactis cells. Interestingly, we found that the induction still worked in Z. bailii; thus, this promotor constitutes a possible inducible system for this new nonconventional host.  相似文献   

18.
Yeast Saccharomyces cerevisiae cells generally cannot synthesize biotin, a vitamin required for many carboxylation reactions. Although sake yeasts, which are used for Japanese sake brewing, are classified as S. cerevisiae, they do not require biotin for their growth. In this study, we identified a novel open reading frame (ORF) in the genome of one strain of sake yeast that we speculated to be involved in biotin synthesis. Homologs of this gene are widely distributed in the genomes of sake yeasts. However, they are not found in many laboratory strains and strains used for wine making and beer brewing. This ORF was named BIO6 because it has 52% identity with BIO3, a biotin biosynthesis gene of a laboratory strain. Further research showed that yeasts without the BIO6 gene are auxotrophic for biotin, whereas yeasts holding the BIO6 gene are prototrophic for biotin. The BIO6 gene was disrupted in strain A364A, which is a laboratory strain with one copy of the BIO6 gene. Although strain A364A is prototrophic for biotin, a BIO6 disrupted mutant was found to be auxotrophic for biotin. The BIO6 disruptant was able to grow in biotin-deficient medium supplemented with 7-keto-8-amino-pelargonic acid (KAPA), while the bio3 disruptant was not able to grow in this medium. These results suggest that Bio6p acts in an unknown step of biotin synthesis before KAPA synthesis. Furthermore, we demonstrated that expression of the BIO6 gene, like that of other biotin synthesis genes, was upregulated by depletion of biotin. We conclude that the BIO6 gene is a novel biotin biosynthesis gene of S. cerevisiae.  相似文献   

19.
20.
The gene responsible for the malolactic fermentation of wine was cloned from the bacterium Lactobacillus delbrueckii into Escherichia coli and the yeast Saccharomyces cerevisiae. This gene codes for the malolactic enzyme which catalyzes the conversion of l-malate to l-lactate. A genetically engineered yeast strain with this enzymatic capability would be of considerable value to winemakers. L. delbrueckii DNA was cloned in E. coli on the plasmid pBR322, and two E. coll clones able to convert l-malate to l-lactate were selected. Both clones contained the same 5-kilobase segment of L. delbrueckii DNA. The DNA segment was transferred to E. coli-yeast shuttle vectors, and gene expression was analyzed in both hosts by using enzymatic assays for l-lactate and l-malate. When grown nonaerobically for 5 days, E. coli cells harboring the malolactic gene converted about 10% of the l-malate in the medium to l-lactate. The best expression in S. cerevisiae was attained by transfer of the gene to a shuttle vector containing both a yeast 2-mum plasmid and yeast chromosomal origin of DNA replication. When yeast cells harboring this plasmid were grown nonaerobically for 5 days, ca. 1.0% of the l-malate present in the medium was converted to l-lactate. The L. delbrueckii controls grown under these same conditions converted about 25%. A laboratory yeast strain containing the cloned malolactic gene was used to make wine in a trial fermentation, and about 1.5% of the l-malate in the grape must was converted to l-lactate. Increased expression of the malolactic gene in wine yeast will be required for its use in winemaking. This will require an increased understanding of the factors governing the expression of this gene in yeasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号