首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 288 毫秒
1.
2.
3.
The human gut microbe Bacteroides fragilis can alter the expression of its surface molecules, such as capsular polysaccharides and SusC/SusD family outer membrane proteins, through reversible DNA inversions. We demonstrate here that DNA inversions at 12 invertible regions, including three gene clusters for SusC/SusD family proteins, were controlled by a single tyrosine site-specific recombinase (Tsr0667) encoded by BF0667 in B. fragilis strain YCH46. Genetic disruption of BF0667 diminished or attenuated shufflon-type DNA inversions at all three susC/susD genes clusters, as well as simple DNA inversions at nine other loci, most of which colocalized with susC/susD family genes. The inverted repeat sequences found within the Tsr0667-regulated invertible regions shared the consensus motif sequence AGTYYYN4GDACT. Tsr0667 specifically mediated the DNA inversions of 10 of the 12 regions, even under an Escherichia coli background when the invertible regions were exposed to BF0667 in E. coli cells. Thus, Tsr0667 is an additional globally acting DNA invertase in B. fragilis, which probably involves the selective expression of SusC/SusD family outer membrane proteins.The human gut harbors an abundant and diverse microbiota. Bacteroides is one of the most abundant genera of human gut microflora (10, 17, 20), and the biological activities of Bacteroides species are deeply integrated into human physiology through nutrient degradation, the production of short-chain fatty acids, or immunomodulatory molecules (11-14, 24). Recent genomic analyses of Bacteroides have revealed that the bacteria possess redundant abilities not only to bind and degrade otherwise indigestible dietary polysaccharides but also to produce vast arrays of capsular polysaccharide (5, 19, 38, 39). These functional redundancies have been established by the extensive duplication of various genes that encode molecules such as glycosylhydrolases, glycosyltransferases, and outer membrane proteins of the SusC/SusD family (starch utilization system) known to be involved in polysaccharide recognition and transport (7, 27, 28, 30). It has been assumed that these functional redundancies of Bacteroides contribute to the stability of the gut ecosystem (3, 21, 23, 32, 39).Another characteristic feature common in Bacteroides species is that the expression of some of the genes is altered in an on-off manner by reversible DNA inversions at gene promoters or within the protein-coding regions (5, 9, 19, 38, 39). These phase-variable phenotypes are associated with surface architectures such as capsular polysaccharides and SusC/SusD family proteins (5, 6, 16, 19). Our previous genomic analyses of Bacteroides fragilis strain YCH46 revealed that it contained as many as 31 invertible regions in its chromosome (19). These invertible regions can be grouped into six classes according to the internal motif sequences within inverted repeat sequences (IRs) (Table (Table1).1). The DNA inversions within these regions are thought to be controlled by site-specific DNA invertases specific to each class. B. fragilis strain YCH46 contains 33 tyrosine site-specific recombinases (Tsr) genes and four serine site-specific recombinases (Ssr) genes. Generally, DNA invertases mediate DNA inversions at adjacent regions, such as FimB and FimE, that flip their immediate downstream promoters to generate a phase-variable phenotype of type I pili in Escherichia coli (15). B. fragilis is unique in that this anaerobe possesses not only locally acting DNA invertases but also globally acting DNA invertases that mediate DNA inversions at distant loci (8, 29). It has been reported that B. fragilis possesses at least two types of master DNA invertase that regulate DNA inversions at multiple loci simultaneously (8, 29). One is Mpi, an Ssr that mediates the on-off switching of 13 promoter regions (corresponding to class I regions in B. fragilis strain YCH46), including seven promoter regions for capsular polysaccharide biosynthesis in B. fragilis strain NCTC9343 (8). The other master DNA invertase is Tsr19, a Tsr that regulates DNA inversions at two distantly located promoter regions (corresponding to class IV regions in B. fragilis strain YCH46) associated with the large encapsulation phenotype (6, 26, 29). The invertible regions contain specific consensus motifs within the IRs corresponding to each DNA invertase and constitute a regulatory unit. We designated this type of regulatory unit as an “inverlon,” which consists of at least two invertible regions controlled by a single master DNA invertase.

TABLE 1.

Classification of the invertible regions in B. fragilis strain YCH46 based on internal motif sequences within IRs
ClassaNo.Consensus motif sequencesbMaster DNA invertase genecRegulated genesSource or reference(s)
I14ARACGTWCGTBF2765 (mpi)Capsular polysaccharide biosynthesis genes8
II10AGTTC{N5}GAACTBF0667susC/susD paralogsThis study
III3GTTAC{N7}GTAACBF3038, BF4033, BF4283Putative outer membrane protein genes36
IV2TACTTANTAGGTAANAGAABF2766Extracellular polysacharide biosynthesis genes6, 26, 29
V1TCTGCAAAGNCTTTGCAGABF0667susC/susD paralogsThis study
VI1ACTAAGTTCTATCGGBF0667susC/susD paralogsThis study
Open in a separate windowaOur previous classification of the invertible regions identified in B. fragilis strain YCH46 genome (19).bConsensus motif sequences found within IRs are shown. R = A or G, W = A or T, and N = A, G, C, or T.cThe gene identifications in B. fragilis strain YCH46 genome are shown.Our previous studies indicated that an additional inverlon other than the Mpi- and Tsr19-regulated inverlons is present in B. fragilis, based on the finding that at least 10 invertible regions (corresponding to class II regions in B. fragilis strain YCH46) contain a particular consensus motif sequence (AAGTTCN5GAACTT) within their IRs (19) but do not appear to colocalize with a DNA invertase gene. The majority of the class II regions were associated with the selective switching of a particular set of susC/susD family genes. Since the SusC/SusD family of outer membrane proteins play an important role in polysaccharide utilization by Bacteroides (3, 23, 32), the inverlon associated with the phase variation of SusC/SusD family proteins would likely be involved in the survival of this anaerobe in the distal gut.In the present study, we sought to identify the DNA invertase regulating the additional inverlon in B. fragilis. Our results indicated that the Tsr encoded by BF0667 is a master DNA invertase for this inverlon (designated the Tsr0667-inverlon) in B. fragilis.  相似文献   

4.
The biological, serological, and genomic characterization of a paramyxovirus recently isolated from rockhopper penguins (Eudyptes chrysocome) suggested that this virus represented a new avian paramyxovirus (APMV) group, APMV10. This penguin virus resembled other APMVs by electron microscopy; however, its viral hemagglutination (HA) activity was not inhibited by antisera against any of the nine defined APMV serotypes. In addition, antiserum generated against this penguin virus did not inhibit the HA of representative viruses of the other APMV serotypes. Sequence data produced using random priming methods revealed a genomic structure typical of APMV. Phylogenetic evaluation of coding regions revealed that amino acid sequences of all six proteins were most closely related to APMV2 and APMV8. The calculation of evolutionary distances among proteins and distances at the nucleotide level confirmed that APMV2, APMV8, and the penguin virus all were sufficiently divergent from each other to be considered different serotypes. We propose that this isolate, named APMV10/penguin/Falkland Islands/324/2007, be the prototype virus for APMV10. Because of the known problems associated with serology, such as antiserum cross-reactivity and one-way immunogenicity, in addition to the reliance on the immune response to a single protein, the hemagglutinin-neuraminidase, as the sole base for viral classification, we suggest the need for new classification guidelines that incorporate genome sequence comparisons.Viruses from the Paramyxoviridae family have caused disease in humans and animals for centuries. Over the last 40 years, many paramyxoviruses isolated from animals and people have been newly described (16, 17, 22, 29, 31, 32, 36, 42, 44, 46, 49, 58, 59, 62-64). Viruses from this family are pleomorphic, enveloped, single-stranded, nonsegmented, negative-sense RNA viruses that demonstrate serological cross-reactivity with other paramyxoviruses related to them (30, 46). The subfamily Paramyxovirinae is divided into five genera: Respirovirus, Morbillivirus, Rubulavirus, Henipavirus, and Avulavirus (30). The Avulavirus genus contains nine distinct avian paramyxovirus (APMV) serotypes (Table (Table1),1), and information on the discovery of each has been reported elsewhere (4, 6, 7, 9, 12, 34, 41, 50, 51, 60, 68).

TABLE 1.

Characteristics of prototype viruses APMV1 to APMV9 and the penguin virus
StrainHostDiseaseDistributionFusion cleavagecGI accession no.
APMV1/Newcastle disease virus>250 speciesHigh mortalityWorldwideGRRQKRF45511218
InapparentWorldwideGGRQGRLa11545722
APMV2/Chicken/CA/Yucaipa/1956Turkey, chickens, psittacines, rails, passerinesDecrease in egg production and respiratory diseaseWorldwideDKPASRF169144527
APMV3/Turkey/WI/1968TurkeyMild respiratory disease and moderate egg decreaseWorldwidePRPSGRLa209484147
APMV3/Parakeet/Netherlands/449/1975Psittacines, passerines, flamingosNeurological, enteric, and respiratory diseaseWorldwideARPRGRLa171472314
APMV4/Duck/Hong Kong/D3/1975Duck, geese, chickensNone knownWorldwideVDIQPRF210076708
APMV5/Budgerigar/Japan/Kunitachi/1974Budgerigars, lorikeetsHigh mortality, enteric diseaseJapan, United Kingdom, AustraliaGKRKKRFa290563909
APMV6/Duck/Hong Kong/199/1977Ducks, geese, turkeysMild respiratory disease and increased mortality in turkeysWorldwidePAPEPRLb15081567
APMV7/Dove/TN/4/1975Pigeons, doves, turkeysMild respiratory disease in turkeysUnited States, England, JapanTLPSSRF224979458
APMV8/Goose/DE/1053/1976Ducks, geeseNone knownUnited States, JapanTYPQTRLa226343050
APMV9/Duck/NY/22/1978DucksNone knownWorldwideRIREGRIa217068693
APMV10/Penguin/Falkland Islands/324/2007Rockhopper penguinsNone KnownFalkland IslandsDKPSQRIa300432141
Open in a separate windowaRequires the addition of an exogenous protease.bProtease requirement depends on the isolate examined.cPutative.Six of these serotypes were classified in the latter half of the 1970s, when the most reliable assay available to classify paramyxoviruses was the hemagglutination inhibition (HI) assay (61). However, there are multiple problems associated with the use of serology, including the inability to classify some APMVs by comparing them to the sera of the nine defined APMVs alone (2, 8). In addition, one-way antigenicity and cross-reactivity between different serotypes have been documented for many years (4, 5, 14, 25, 29, 33, 34, 41, 51, 52, 60). The ability of APMVs, like other viruses, to show antigenic drift as it evolves over time (37, 43, 54) and the wide use and availability of precise molecular methods, such as PCR and genome sequencing, demonstrate the need for a more practical classification system.The genetic diversity of APMVs is still largely unexplored, as hundreds of avian species have never been surveyed for the presence of viruses that do not cause significant signs of disease or are not economically important. The emergence of H5N1 highly pathogenic avian influenza (HPAI) virus as the cause of the largest outbreak of a virulent virus in poultry in the past 100 years has spurred the development of surveillance programs to better understand the ecology of avian influenza (AI) viruses in aquatic birds around the globe, and in some instances it has provided opportunities for observing other viruses in wild bird populations (15, 53). In 2007, as part of a seabird health surveillance program in the Falkland Islands (Islas Malvinas), oral and cloacal swabs and serum were collected from rockhopper penguins (Eudyptes chrysocome) and environmental/fecal swab pools were collected from other seabirds.While AI virus has not yet been isolated from penguins in the sub-Antarctic and Antarctic areas, there have been two reports of serum antibodies positive to H7 and H10 from the Adélie species (11, 40). Rare isolations of APMV1, both virulent (45) and of low virulence (8), have been reported from Antarctic penguins. Sera positive for APMV1 and AMPV2 have also been reported (21, 24, 38, 40, 53). Since 1981, paramyxoviruses have been isolated from king penguins (Aptenodytes patagonicus), royal penguins (Eudyptes schlegeli), and Adélie penguins (Pygoscelis adeliae) from Antarctica and little blue penguins (Eudyptula minor) from Australia that cannot be identified as belonging to APMV1 to -9 and have not yet been classified (8, 11, 38-40). The morphology, biological and genomic characteristics, and antigenic relatedness of an APMV recently isolated from multiple penguin colonies on the Falkland Islands are reported here. Evidence that the virus belongs to a new serotype (APMV10) and a demonstration of the advantages of a whole genome system of analysis based on random sequencing followed by comparison of genetic distances are presented. Only after all APMVs are reported and classified will epidemiological information be known as to how the viruses are moving and spreading as the birds travel and interact with other avian species.  相似文献   

5.
Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a−/− but not in control or Par-1b−/− mice. The intercrossing of Par-1a−/− with Par-1b−/− mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a−/− mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b−/− mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice.Cellular polarity is a fundamental principle in biology (6, 36, 62). The prototypical protein kinase originally identified as a regulator of polarity was termed partitioning defective (Par-1) due to early embryonic defects in Caenorhabditis elegans (52). Subsequent studies revealed that Par-1 is required for cellular polarity in worms, flies, frogs, and mammals (4, 17, 58, 63, 65, 71, 89). An integral role for Par-1 kinases in multiple signaling pathways has also been established, and although not formally addressed, multifunctionality for individual Par-1 family members is implied in reviews of the list of recognized upstream regulators and downstream substrates (Table (Table1).1). Interestingly, for many Par-1 substrates the phosphorylated residues generate 14-3-3 binding sites (25, 28, 37, 50, 59, 61, 68, 69, 78, 95, 101, 103). 14-3-3 binding in turn modulates both nuclear/cytoplasmic as well as cytoplasmic/membrane shuttling of target proteins, thus allowing Par-1 activity to establish intracellular spatial organization (15, 101). The phosphorylation of Par-1 itself promotes 14-3-3 binding, thereby regulating its subcellular localization (37, 59, 101).

TABLE 1.

Multifunctionality of Par-1 polarity kinase pathwaysa
Regulator or substrateFunctionReference(s)
Regulators (upstream function)
    LKB1Wnt signaling, Peutz-Jeghers syndrome, insulin signal transduction, pattern formation2, 63, 93
    TAO1MEK3/p38 stress-responsive mitogen-activated protein kinase (MAPK) pathway46
    MARKKNerve growth factor signaling in neurite development and differentiation98
    aPKCCa2+/DAG-independent signal transduction, cell polarity, glucose metabolism14, 37, 40, 45, 59, 75, 95
    nPKC/PKDDAG-dependent, Ca2+-independent signal transduction (GPCR)101
    PAR-3/PAR-6/aPKC(−); regulates Par-1, assembly of microtubules, axon-dendrite specification19
    GSK3β(−); tau phosphorylation, Alzheimer''s dementia, energy metabolism, body patterning54, 97
    Pim-1 oncogene(−); G2/M checkpoint, effector of cytokine signaling and Jak/STAT(3/5)5
    CaMKI(−); Ca2+-dependent signal transduction, neuronal differentiation99
Substrates (downstream function)
    Cdc25CRegulation of mitotic entry by activation of the cdc2-cyclin B complex25, 72, 78, 103
    Class II HDACControl of gene expression and master regulator of subcellular trafficking28, 50
    CRTC2/TORC2Gluconeogenesis regulator via LKB1/AMPK/TORC2 signaling, PPARγ1a coactivator49
    Dlg/PSD-95Synaptogenesis and neuromuscular junction, tumor suppressor (102)104
    DisheveledWnt signaling, translocation of Dsh from cytoplasmic vesicles to cortex73, 94
    KSR1Regulation of the Ras-MAPK pathway68, 69
    MAP2/4/TAUDynamic instability (67, 83) of microtubules, Alzheimer''s dementia (30)11, 31-33, 47, 70, 96
    Mib/NotchMind bomb (Mib degradation and repression of Notch signaling results in neurogenesis)57, 74, 81
    Par3/OSKAR/LglCytoplasmic protein segregation, cell polarity, and asymmetric cell division7, 10
    Pkp2Desmosome assembly and organization; nuclear shuttling68, 69
    PTPH1Linkage between Ser/Thr and Tyr phosphorylation-dependent signaling103
    Rab11-FIPRegulation of endocytosis (23), trafficking of E-cadherin (64)34
Open in a separate windowaLKB1 also is known as Par-4; MARKK also is known as Ste20-like; (−), inhibitory/negative regulation has been shown; GPCR, G protein-coupled receptors. MARKK is highly homologous to TAO-1 (thousand-and-one amino acid kinase) (46).The mammalian Par-1 family contains four members (Table (Table2).2). Physiological functions of the Par-1b kinase have been studied using targeted gene knockout approaches in mice (9, 44). Two independently derived mouse lines null for Par-1b have implicated this protein kinase in diverse physiological processes, including fertility (9), immune system homeostasis (44), learning and memory (86), the positioning of nuclei in pancreatic beta cells (35, 38), and growth and metabolism (43).

TABLE 2.

Terminology and localization of mammalian Par-1 family members
SynonymsaSubcellular localization
Par-1a, MARK3, C-TAK1, p78/KP78, 1600015G02Rik, A430080F22Rik, Emk2, ETK-1, KIAA4230, mKIAA1860, mKIAA4230, M80359Basolateralb/apicalc
Par-1b, EMK, MARK2, AU024026, mKIAA4207Basolateral
Par1c, MARK1Basolateral
Par1d, MARK4, MARKL1Not asymmetricd
Open in a separate windowaPar should not to be confused with protease-activated receptor 1 (PAR1 [29]); C-TAK1, Cdc twenty-five C-associated kinase 1; MARK, microtubule affinity regulating kinase; MARKL, MAP/microtubule affinity-regulating kinase-like 1.bBasolateral to a lesser degree than Par-1b (37).cHuman KP78 is asymmetrically localized to the apical surface of epithelial cells (76).dVariant that does not show asymmetric localization in epithelial cells when overexpressed (95).Beyond Par-1b, most information regarding the cell biological functions of the Par-1 kinases comes from studies of Par-1a. Specifically, Par-1a has been implicated in pancreatic (76) and hepatocarcinogenesis (51), as well as colorectal tumors (77), hippocampal function (100), CagA (Helicobacter pylori)-associated epithelial cell polarity disruption (82), and Peutz-Jeghers syndrome (48), although the latter association has been excluded recently (27). As a first step toward determining unique and redundant functions of Par-1 family members, mice disrupted for a second member of the family (Par-1a/MARK3/C-TAK1) were generated. We report that Par-1a−/− mice are viable and develop normally, and adult mice are hypermetabolic, have decreased white and brown adipose tissue mass, and unaltered glucose/insulin handling. However, when challenged by a high-fat diet (HFD), Par-1a−/− mice exhibit resistance to hepatic steatosis, resistance to glucose intolerance, and the delayed onset of obesity relative to that of control littermates. Strikingly, overnight starvation results in a complete depletion of glycogen and lipid stores along with an increase in autophagic vacuoles in the liver of Par-1a−/− but not Par-1b−/− mice. Correspondingly, Par-1a−/− mice develop hypoketotic hypoglycemia. These findings reveal unique metabolic functions of two Par-1 family members.  相似文献   

6.
Predator-prey relationships among prokaryotes have received little attention but are likely to be important determinants of the composition, structure, and dynamics of microbial communities. Many species of the soil-dwelling myxobacteria are predators of other microbes, but their predation range is poorly characterized. To better understand the predatory capabilities of myxobacteria in nature, we analyzed the predation performance of numerous Myxococcus isolates across 12 diverse species of bacteria. All predator isolates could utilize most potential prey species to effectively fuel colony expansion, although one species hindered predator swarming relative to a control treatment with no growth substrate. Predator strains varied significantly in their relative performance across prey types, but most variation in predatory performance was determined by prey type, with Gram-negative prey species supporting more Myxococcus growth than Gram-positive species. There was evidence for specialized predator performance in some predator-prey combinations. Such specialization may reduce resource competition among sympatric strains in natural habitats. The broad prey range of the Myxococcus genus coupled with its ubiquity in the soil suggests that myxobacteria are likely to have very important ecological and evolutionary effects on many species of soil prokaryotes.Predation plays a major role in shaping both the ecology and evolution of biological communities. The population and evolutionary dynamics of predators and their prey are often tightly coupled and can greatly influence the dynamics of other organisms as well (1). Predation has been invoked as a major cause of diversity in ecosystems (11, 12). For example, predators may mediate coexistence between superior and inferior competitors (2, 13), and differential trajectories of predator-prey coevolution can lead to divergence between separate populations (70).Predation has been investigated extensively in higher organisms but relatively little among prokaryotes. Predation between prokaryotes is one of the most ancient forms of predation (27), and it has been proposed that this process may have been the origin of eukaryotic cells (16). Prokaryotes are key players in primary biomass production (44) and global nutrient cycling (22), and predation of some prokaryotes by others is likely to significantly affect these processes. Most studies of predatory prokaryotes have focused on Bdellovibrionaceae species (e.g., see references 51, 55, and 67). These small deltaproteobacteria prey on other Gram-negative cells, using flagella to swim rapidly until they collide with a prey cell. After collision, the predator cells then enter the periplasmic space of the prey cell, consume the host cell from within, elongate, and divide into new cells that are released upon host cell lysis (41). Although often described as predatory, the Bdellovibrionaceae may also be considered to be parasitic, as they typically depend (apart from host-independent strains that have been observed [60]) on the infection and death of their host for their reproduction (47).In this study, we examined predation among the myxobacteria, which are also deltaproteobacteria but constitute a monophyletic clade divergent from the Bdellovibrionaceae (17). Myxobacteria are found in most terrestrial soils and in many aquatic environments as well (17, 53, 74). Many myxobacteria, including the model species Myxococcus xanthus, exhibit several complex social traits, including fruiting body formation and spore formation (14, 18, 34, 62, 71), cooperative swarming with two motility systems (64, 87), and group (or “wolf pack”) predation on both bacteria and fungi (4, 5, 8, 9, 15, 50). Using representatives of the genus Myxococcus, we tested for both intra- and interspecific variation in myxobacterial predatory performance across a broad range of prey types. Moreover, we examined whether prey vary substantially in the degree to which they support predatory growth by the myxobacteria and whether patterns of variation in predator performance are constant or variable across prey environments. The latter outcome may reflect adaptive specialization and help to maintain diversity in natural populations (57, 59).Although closely related to the Bdellovibrionaceae (both are deltaproteobacteria), myxobacteria employ a highly divergent mode of predation. Myxobacteria use gliding motility (64) to search the soil matrix for prey and produce a wide range of antibiotics and lytic compounds that kill and decompose prey cells and break down complex polymers, thereby releasing substrates for growth (66). Myxobacterial predation is cooperative both in its “searching” component (6, 31, 82; for details on cooperative swarming, see reference 64) and in its “handling” component (10, 29, 31, 32), in which secreted enzymes turn prey cells into consumable growth substrates (56, 83). There is evidence that M. xanthus employs chemotaxis-like genes in its attack on prey cells (5) and that predation is stimulated by close contact with prey cells (48).Recent studies have revealed great genetic and phenotypic diversity within natural populations of M. xanthus, on both global (79) and local (down to centimeter) scales (78). Phenotypic diversity includes variation in social compatibility (24, 81), the density and nutrient thresholds triggering development (33, 38), developmental timing (38), motility rates and patterns (80), and secondary metabolite production (40). Although natural populations are spatially structured and both genetic diversity and population differentiation decrease with spatial scale (79), substantial genetic diversity is present even among centimeter-scale isolates (78). No study has yet systematically investigated quantitative natural variation in myxobacterial predation phenotypes across a large number of predator genotypes.Given the previous discovery of large variation in all examined phenotypes, even among genetically extremely similar strains, we anticipated extensive predatory variation as well. Using a phylogenetically broad range of prey, we compared and contrasted the predatory performance of 16 natural M. xanthus isolates, sampled from global to local scales, as well as the commonly studied laboratory reference strain DK1622 and representatives of three additional Myxococcus species: M. flavescens (86), M. macrosporus (42), and M. virescens (63) (Table (Table1).1). In particular, we measured myxobacterial swarm expansion rates on prey lawns spread on buffered agar (31, 50) and on control plates with no nutrients or with prehydrolyzed growth substrate.

TABLE 1.

List of myxobacteria used, with geographical origin
Organism abbreviation used in textSpeciesStrainGeographic originReference(s)
A9Myxococcus xanthusA9Tübingen, Germany78
A23Myxococcus xanthusA23Tübingen, Germany78
A30Myxococcus xanthusA30Tübingen, Germany78
A41Myxococcus xanthusA41Tübingen, Germany78
A46Myxococcus xanthusA46Tübingen, Germany78
A47Myxococcus xanthusA47Tübingen, Germany78
A75Myxococcus xanthusA75Tübingen, Germany78
A85Myxococcus xanthusA85Tübingen, Germany78
TVMyxococcus xanthusTvärminneTvärminne, Finland79
PAKMyxococcus xanthusPaklenicaPaklenica, Croatia79
MADMyxococcus xanthusMadeira 1Madeira, Portugal79
WARMyxococcus xanthusWarwick 1Warwick, UK79
TORMyxococcus xanthusToronto 1Toronto, Ontario, Canada79
SUL2Myxococcus xanthusSulawesi 2Sulawesi, Indonesia79
KALMyxococcus xanthusKalalauKalalau, HI79
DAVMyxococcus xanthusDavis 1ADavis, CA79
GJV1Myxococcus xanthusGJV 1Unknown35, 72
MXFL1Myxococcus flavescensMx fl1Unknown65
MXV2Myxococcus virescensMx v2Unknown65
CCM8Myxococcus macrosporusCc m8Unknown65
Open in a separate window  相似文献   

7.
Rotaviruses, the single most important agents of acute severe gastroenteritis in children, are nonenveloped viruses formed by a three-layered capsid that encloses a genome formed by 11 segments of double-stranded RNA. The mechanism of entry of these viruses into the host cell is not well understood. The best-studied strain, RRV, which is sensitive to neuraminidase (NA) treatment of the cells, uses integrins α2β1 and αvβ3 and the heat shock protein hsc70 as receptors and enters MA104 cells through a non-clathrin-, non-caveolin-mediated pathway that depends on a functional dynamin and on the presence of cholesterol on the cell surface. In this work, using a combination of pharmacological, biochemical, and genetic approaches, we compared the entry characteristics of four rotavirus strains known to have different receptor requirements. We chose four rotavirus strains that represent all phenotypic combinations of NA resistance or sensitivity and integrin dependence or independence. We found that even though all the strains share their requirements for hsc70, dynamin, and cholesterol, three of them differ from the simian strain RRV in the endocytic pathway used. The human strain Wa, porcine strain TFR-41, and bovine strain UK seem to enter the cell through clathrin-mediated endocytosis, since treatments that inhibit this pathway block their infectivity; consistent with this entry route, these strains were sensitive to changes in the endosomal pH. The inhibition of other endocytic mechanisms, such as macropinocytosis or caveola-mediated uptake, had no effect on the internalization of the rotavirus strains tested here.Endocytosis is a cellular process that involves the formation of a vesicle whose cargo is transported from the extracellular milieu to the interior of the cell. Several endocytic pathways have been described, and all of them have been shown to be used by viruses during cell entry. These pathways include clathrin-mediated endocytosis, uptake via caveolae, macropinocytosis, phagocytosis, and a novel non-clathrin-, non-caveola-mediated pathway that is currently not well characterized (32). While detailed information about the entry of several enveloped viruses is now available (4, 35, 49, 53, 56), the mechanism by which nonenveloped viruses enter cells is not well understood. Two general mechanisms have been proposed to be used by these viruses to reach the cell''s cytoplasm: direct penetration at the cell surface, during which the viral particles are directly translocated from the external milieu into the cytoplasm, or internalization through endocytic processes (55).Rotaviruses, members of the family Reoviridae, are the leading etiologic agent of viral gastroenteritis in infants and young children worldwide, being responsible for an estimated 500,000 deaths each year (41). These nonenveloped viruses are formed by three concentric layers of protein that surround the viral genome, formed by 11 segments of double-stranded RNA. The outermost layer of the virion is formed by two proteins, VP4 and VP7, which are involved in the early interactions of the virus with its host cell (7, 27). VP4 is involved in receptor binding and cell penetration. The role of VP7 is less clear, although it has been shown that it interacts with the cell surface molecules at a postattachment step (17). After binding to the cell surface, the virus penetrates the plasma membrane to productively infect the cell. This penetration depends on the trypsin treatment of the virus, which results in the specific cleavage of VP4 to polypeptides VP8 and VP5. This cleavage promotes VP4 rearrangements in the viral particles that rigidify the spikes (7, 11).Despite the fact that, in vivo, rotaviruses primarily infect the mature enterocytes of the small intestine, studies of the infection of this type of cells have been limited due to the lack of established intestinal cell lines of small intestine origin. Given the absence of a better model, most of the studies on the entry and replication cycle of rotavirus have been conducted either in the epithelial monkey kidney cell line MA104 or in the human colon carcinoma cell line Caco-2, which are highly permissible to these viruses.Using as a model MA104 cells and the simian rotavirus RRV, we have proposed that rotavirus cell entry is a complex multistep process that involves the two virus surface proteins and several cell receptors, including sialic acids, gangliosides, integrins α2β1, α4β1, αvβ3, and αxβ2, and the heat shock cognate protein hsc70 (22). We have also shown that depletion of cholesterol from the cellular membrane severely impairs the infectivity of rotavirus (19, 50) and have suggested that sphingolipid- and cholesterol-enriched membrane lipid microdomains might be involved in rotavirus cell entry, since the virus and its receptors associate with these domains at early times during infection (23). However, there are some rotavirus strains that may not use all these molecules; some rotavirus strains are resistant to the neuraminidase (NA) treatment of the cell, and thus, they have been classified as NA resistant (6, 34). Additionally, the infectivity of some viral strains is not blocked by anti-integrin antibodies, suggesting the existence of rotavirus strains that are integrin independent (Table (Table1)1) (17).

TABLE 1.

Cellular receptor requirements of different rotavirus strains
StrainOriginNeuraminidase sensitivityIntegrin dependentReferences
RRVSimianYesYes5, 6, 17
TFR-41PorcineYesNo6, 17
UKBovineNoNo6, 17
WaHumanNoYes5, 17, 34
Open in a separate windowThe precise mechanism utilized by rotavirus to enter the cell is, however, not yet defined. Recently, we reported that the entry of the simian rotavirus strain RRV is independent of clathrin- and caveola-mediated endocytosis; however, it is dependent on dynamin (a protein involved in the scission of the endocytic vesicles from the cellular membrane) and requires the presence of cholesterol in the cell membrane (50). In this work, using a combination of pharmacological, biochemical, and genetic approaches, we compared the entry characteristics of four rotavirus strains known to have different receptor requirements. We found that all the strains tested share the requirement for hsc70, cholesterol, and dynamin. Unexpectedly, we found that there were differences in the type of endocytic route utilized by three of the strains compared to that of simian strain RRV. Bovine strain UK, porcine strain TFR-41, and human strain Wa more likely enter the cell through a clathrin-dependent mechanism, since treatments that inhibit this process block the infectivity of these rotavirus strains; in contrast, the entry of RRV, as previously shown (50), is independent of this pathway. The inhibition of other endocytic mechanisms, such as macropinocytosis or caveola-mediated uptake, had no effect on the entry of the rotavirus strains tested here.  相似文献   

8.
9.
10.
11.
Recent studies indicate that sexual transmission of human immunodeficiency virus type 1 (HIV-1) generally results from productive infection by only one virus, a finding attributable to the mucosal barrier. Surprisingly, a recent study of injection drug users (IDUs) from St. Petersburg, Russia, also found most subjects to be acutely infected by a single virus. Here, we show by single-genome amplification and sequencing in a different IDU cohort that 60% of IDU subjects were infected by more than one virus, including one subject who was acutely infected by at least 16 viruses. Multivariant transmission was more common in IDUs than in heterosexuals (60% versus 19%; odds ratio, 6.14; 95% confidence interval [CI], 1.37 to 31.27; P = 0.008). These findings highlight the diversity in HIV-1 infection risks among different IDU cohorts and the challenges faced by vaccines in protecting against this mode of infection.Elucidation of virus-host interactions during and immediately following the transmission event is one of the great challenges and opportunities in human immunodeficiency virus (HIV)/AIDS prevention research (14-16, 31, 34, 45). Recent innovations involving single-genome amplification (SGA), direct amplicon sequencing, and phylogenetic inference based on a model of random virus evolution (18-20, 43) have allowed for the identification of transmitted/founder viruses that actually cross from donor to recipient, leading to productive HIV type 1 (HIV-1) infection. Our laboratory and others have made the surprising finding that HIV-1 transmission results from productive infection by a single transmitted/founder virus (or virally infected cell) in ∼80% of HIV-infected heterosexuals and in ∼60% of HIV-infected men who have sex with men (MSM) (1, 13, 18, 24). These studies thus provided a precise quantitative estimate for the long-recognized genetic bottleneck in HIV-1 transmission (6, 11-13, 17, 25, 28, 30, 35, 38, 42, 47-49) and a plausible explanation for the low acquisition rate per coital act and for graded infection risks associated with different exposure routes and behaviors (15, 36).In contrast to sexual transmission of HIV-1, virus transmission resulting from injection drug use has received relatively little attention (2, 3, 29, 42) despite the fact that injection drug use-associated transmission accounts for as many as 10% of new infections globally (26, 46). We hypothesized that SGA strategies developed for identifying transmitted/founder viruses following mucosal acquisition are applicable to deciphering transmission events following intravenous inoculation and that, due to the absence of a mucosal barrier, injection drug users (IDUs) exhibit a higher frequency of multiple-variant transmission and a wider range in numbers of transmitted viruses than do acutely infected heterosexual subjects. We obtained evidence in support of these hypotheses from the simian immunodeficiency virus (SIV)-Indian rhesus macaque infection model, where we showed that discrete low-diversity viral lineages emanating from single or multiple transmitted/founder viruses could be identified following intravenous inoculation and that the rectal mucosal barrier to infection was 2,000- to 20,000-fold greater than with intravenous inoculation (19). However, we also recognized potentially important differences between virus transmission in Indian rhesus macaques and virus transmission in humans that could complicate an IDU acquisition study. For example, in the SIV macaque model, the virus inocula can be well characterized genetically and the route and timing of virus exposure in relation to plasma sampling precisely defined, whereas in IDUs, the virus inoculum is generally undefined and the timing of virus infection only approximated based on clinical history and seroconversion testing (8). In addition, IDUs may have additional routes of potential virus acquisition due to concomitant sexual activity. Finally, there is a paucity of IDU cohorts for whom incident infection is monitored sufficiently frequently and clinical samples are collected often enough to allow for the identification and enumeration of transmitted/founder viruses. To address these special challenges, we proposed a pilot study of 10 IDU subjects designed to determine with 95% confidence if the proportion of multivariant transmissions in IDUs was more than 2-fold greater than the 20% frequency established for heterosexual transmission (1, 13, 18, 24). A secondary objective of the study was to determine whether the range in numbers of transmitted/founder viruses in IDUs exceeded the 1-to-6 range observed in heterosexuals (1, 13, 18, 24). To ensure comparability among the studies, we employed SGA-direct amplicon sequencing approaches, statistical methods, and power calculations identical to those that we had used previously to enumerate transmitted/founder viruses in heterosexual and MSM cohorts (1, 13, 18, 20, 24).We first surveyed investigators representing acute-infection cohorts in the United States, Canada, Russia, and China; only one cohort—the Montreal Primary HIV Infection Cohort (41)—had IDU clinical samples and clinical data available for study. The Montreal cohort of subjects with acute and early-stage HIV-1 infection was established in 1996 and recruits subjects from both academic and private medical centers throughout the city. Injection drug use is an important contributing factor to Montreal''s HIV burden, with IDUs comprising approximately 20% of the city''s AIDS cases and 35% of the cohort (21, 40, 41). A large proportion of Montreal''s IDUs use injection cocaine, with 50 to 69% of subjects reporting cocaine as their injection drug of choice (4, 5, 9, 22, 23).Subjects with documented serological evidence of recent HIV-1 infection and a concurrent history of injection drug use were selected for study. These individuals had few or no reported risk factors for sexual HIV-1 acquisition. Clinical history and laboratory tests of HIV-1 viremia and antibody seroconversion were used to determine the Fiebig clinical stage (8) and to estimate the date of infection (Table (Table1).1). One subject was determined to be in Fiebig stage III, one subject was in Fiebig stage IV, five subjects were in Fiebig stage V, and three subjects were in Fiebig stage VI. We performed SGA-direct amplicon sequencing on stored plasma samples and obtained a total of 391 3′ half-genomes (median, 25 per subject; range, 19 to 167). Nine of these sequences contained large deletions or were G-to-A hypermutated and were excluded from subsequent analysis. Sequences were aligned, visually inspected using the Highlighter tool (www.hiv.lanl.gov/content/sequence/HIGHLIGHT/highlighter.html), and analyzed by neighbor-joining (NJ) phylogenetic-tree construction. A composite NJ tree of full-length gp160 env sequences from all 10 subjects (Fig. (Fig.1A)1A) revealed distinct patient-specific monophyletic lineages, each with high bootstrap support and separated from the others by a mean genetic distance of 10.79% (median, 11.29%; range, 3.00 to 13.42%). Maximum within-patient env gene diversity ranged from 0.23% to 3.34% (Table (Table1).1). Four subjects displayed distinctly lower within-patient maximum env diversities (0.23 to 0.49%) than the other six subjects (1.48% to 3.34%). The lower maximum env diversities in the former group are consistent with infection either by a single virus or by multiple closely related viruses, while the higher diversities can be explained only by transmission of more than one virus based on empirical observations (1, 13, 18, 24) and mathematical modeling (18, 20).Open in a separate windowFIG. 1.NJ trees and Highlighter plots of HIV-1 gp160 env sequences. (A) Composite tree of 382 gp160 env sequences from all study subjects. The numerals at the nodes indicate bootstrap values for which statistical support exceeded 70%. (B) Subject ACT54869022 sequences suggest productive infection by a single virus (V1). (C) Subject HDNDRPI032 sequences suggest productive infection by as many as three viruses. (D) Subject HDNDRPI001 sequences suggest productive infection by at least five viruses with extensive interlineage recombination. Sequences are color coded to indicate viral progeny from distinct transmitted/founder viruses. Recombinant virus sequences are depicted in black. Methods for SGA, sequencing, model analysis, Highlighter plotting, and identification of transmitted/founder virus lineages are described elsewhere (18, 20, 24, 44). The horizontal scale bars represent genetic distance. nt, nucleotide.

TABLE 1.

Subject demographics and HIV-1 envelope analysis results
Subject identifierAge (yr)SexaFiebig stageEstimated no. of days postinfectionbCD4 countPlasma viral load (log)No. of SGA ampliconsDiversity of env genes (%)c
No. of transmitted/ founder viruses
MeanInterquartile rangeMaximumdModel predictionePhylogenetic estimatef
HDNDRPI03447MIII292407.881631.070.553.34>116
HDNDRPI02918FIV484404.34290.160.150.4911
HTM38524MV624065.37220.120.080.2711
CQLDR0342MV66NDg5.01210.080.080.2311
HDNDRPI00136MV286905.94250.900.631.91>15
HTM31939MV685204.43250.770.461.54>13
HDNDRPI03237MV731,0403.53191.482.993.34>13
ACTDM58020839MVI933874.53301.170.972.64>13
ACT5486902228MVI687233.43270.070.040.2411
PSL02446MVI823404.46210.820.631.57>13
Open in a separate windowaM, male; F, female.bNumbers of days postinfection were estimated on the basis of serological markers, clinical symptoms, or a history of a high-risk behavior leading to virus exposure.cDiversity measurements determined by PAUP* analysis.dThe model prediction of the maximum achievable env diversity 100 days after transmission is 0.60% (95% CI, 0.54 to 0.68%). Diversity values exceeding this range imply transmission and productive infection by more than one virus. Diversity values less than 0.54% can be explained by transmission of one virus or of multiple closely related viruses (18).eModel described in Keele et al. (18).fMinimum estimate of transmitted/founder viruses.gND, not determined.An example of productive clinical infection by a single virus is shown in phylogenetic tree and Highlighter plots from subject ACT54869022 (Fig. (Fig.1B).1B). A similar phylogenetic pattern of single-variant transmission was found in 4 of 10 IDU subjects (Table (Table1).1). Examples of multivariant transmission are shown for subject HDNDRPI032, for whom there was evidence of infection by 3 transmitted/founder viruses (Fig. (Fig.1C)1C) and for subject HDNDRPI001, for whom there was evidence of infection by at least 5 transmitted/founder viruses (Fig. (Fig.1D).1D). One IDU subject, HDNDRPI034, had evidence of multivariant transmission to an extent not previously seen in any of 225 subjects who acquired their infection by mucosal routes (1, 13, 18, 24) or in any of 13 IDUs, as recently reported by Masharsky and colleagues (29). We greatly extended the depth of our analysis in this subject to include 163 3′ half-genome sequences in order to increase the sensitivity of detection of low-frequency viral variants. Power calculations indicated that a sample size of 163 sequences gave us a >95% probability of sampling minor variants comprising as little as 2% of the virus population. By this approach, we found evidence of productive infection by at least 16 genetically distinct viruses (Fig. (Fig.2).2). Fourteen of these could be identified unambiguously based on the presence of discrete low-diversity viral lineages, each consisting of between 2 and 48 sequences. Two additional unique viral sequences with long branch lengths (3F8 and G10) exhibited diversity that was sufficiently great to indicate a distinct transmission event as opposed to divergence from other transmitted/founder lineages (see the legend to Fig. Fig.2).2). It is possible that still other unique sequences from this subject also represented transmitted/founder viruses, but we could not demonstrate this formally. We also could not determine if all 16 (or more) transmission events resulted from a single intravenous inoculation or from a series of inoculations separated by hours or days; however, it is likely that all transmitted viruses in this subject resulted from exposure to plasma from a single infected individual, since the maximum env diversity was only 3.34% (Fig. (Fig.1A).1A). It is also likely that transmission occurred within a brief window of time, since the period from transmission to the end of Fiebig stage III is typically only about 25 days (95% CI, 22 to 37 days) (18, 20) and the diversity observed in all transmitted/founder viral lineages in subject HDNDRPI034 was exceedingly low, consistent with model predictions for subjects with very recent infections (18, 20).Open in a separate windowFIG. 2.NJ tree and Highlighter plot of HIV-1 3′ half-genome sequences from subject HDNDRPI034. Sequences emanating from 16 transmitted/founder viruses are color coded. Fourteen transmitted/founder viral lineages comprised of 2 or more identical or nearly identical sequences could be readily distinguished from recombinant sequences (depicted in black), which invariably appeared as unique sequences containing interspersed segments shared with other transmitted/founder virus lineages. The two sequences with the longest branch lengths (3F8 and G10) were interpreted to represent rare progeny of discrete transmitted/founder viruses because their unique polymorphisms far exceeded the maximum diversity estimated to occur in the first 30 days of infection (0.22%; CI, 0.15 to 0.31%) (18) and far exceeded the diversity observed within the other transmitted/founder virus lineages. The horizontal scale bar represents genetic distance.Lastly, we compared the multiplicity of HIV-1 transmission in the Montreal IDU subjects with that of non-IDU subjects for whom identical SGA methods had been employed. In this combined-cohort analysis, we found the frequency of multiple-variant transmission in heterosexuals to be 19% (34 of 175) and in MSM 38% (19 of 50) (Table (Table2)2) (24). The current study was powered to detect a >2-fold difference in multivariant transmission between IDUs and heterosexual subjects; in fact, we observed a 3-fold-higher frequency of multiple-variant transmission in Montreal IDUs (6 of 10 subjects [60%]) than in heterosexuals (odds ratio, 6.14; 95% CI, 1.37 to 31.27; Fisher exact test, P = 0.008) and a 1.5-fold-higher frequency in Montreal IDUs than in MSM (odds ratio, 2.41; 95% CI, 0.50 to 13.20; P = 0.294, not significant). In addition, we found that the range of numbers of transmitted/founder viruses was greater in IDUs (range, 1 to 16 viruses; median, 3) than in either heterosexuals (range, 1 to 6 viruses; median, 1) or MSM (range, 1 to 10 viruses; median, 1). The finding of larger numbers of transmitted/founder viruses in IDUs was not simply the result of more intensive sampling, since the numbers of sequences analyzed in all studies were comparable. Moreover, it is notable that in studies reported elsewhere, we sampled as many as 239 sequences by SGA or as many as 500,000 sequences by 454 pyrosequencing from four acutely infected MSM subjects and in each case found evidence of productive clinical infection by only a single virus (24; W. Fischer, B. Keele, G. Shaw, and B. Korber, unpublished). These results thus suggest that IDUs may be infected by more viruses and by a greater range of viruses than is the case following mucosal transmission. On this count, our findings differ from those reported by Masharsky and coworkers for an IDU cohort from St. Petersburg, Russia (29). Their study found a low frequency of multiple virus transmissions (31%), not significantly different from that of acutely infected heterosexuals, and a low number of transmitted/founder viruses (range, 1 to 3 viruses; median, 1). Because the SGA methods employed in both studies were identical, the numbers of sequences analyzed per subject were comparable (median of 25 sequences in Montreal versus 33 in St. Petersburg), and because the discriminating power of the SGA-direct sequencing method was sufficient to distinguish transmitted/founder viruses differing by as few as 3 nucleotides, or <0.1% of nucleotides (Fig. (Fig.2,2, compare lineages V4 and V5), it is unlikely that differences in the genetic diversity of HIV-1 in the two IDU populations explain the differences in findings between the two studies. Instead, we suspect that the explanation lies in the small cohort sizes (10 versus 13 subjects) and the particular risk behaviors of the IDUs in each cohort. The Russian cohort is heavily weighted toward heroine use, whereas the Montreal cohort is weighted toward injection cocaine use, the latter being associated with more frequent drug administration and the attendant infection risks of needle sharing (4).

TABLE 2.

Multiplicity of HIV-1 infection in IDU, heterosexual, and MSM subjects
CohortReferenceVirus subtypeTotal no. of subjectsSingle-variant transmission
Multiple-variant transmission
P valueOdds ratio95% CIMedianRange
No. of subjects% of totalNo. of subjects% of total
HeterosexualsKeele et al. (18)B796582.301417.7011-4
Abrahams et al. (1)C695478.301521.7011-5
Haaland et al. (13)A or C272281.50518.5011-6
Total17514180.603419.400.008a6.141.37-31.2711-6
MSMKeele et al. (18)B221359.10940.9011-6
Li et al. (24)B281864.301035.7011-10
Total503162.001938.000.294b2.410.50-13.2011-10
IDUsBarB10440.00660.0031-16
Open in a separate windowaFisher''s exact test of multiple-variant transmission in heterosexuals versus in IDUs.bFisher''s exact test of multiple-variant transmission in MSM versus in IDUs.The results from the present study indicate that transmission of HIV-1 to IDUs can be associated with a high frequency of multiple-variant transmission and a broad range in the numbers of transmitted viruses. This wide variation in the multiplicity of HIV-1 infection in IDUs is likely due to the absence of a mucosal barrier to virus transmission (12, 19) and differences in the virus inocula (27, 29, 32, 39). The findings substantiate concerns raised in recent HIV-1 vaccine efficacy trials that different vaccine candidates may be more efficacious in preventing infection by some exposure routes than by others (7, 10, 33, 37). They further suggest that biological comparisons of molecularly cloned transmitted/founder viruses responsible for vaginal, rectal, penile, and intravenous infection could facilitate a mechanistic understanding of HIV-1 transmission and vaccine prevention (24, 44).  相似文献   

12.
The three-dimensional structure of adeno-associated virus (AAV) serotype 6 (AAV6) was determined using cryo-electron microscopy and image reconstruction and using X-ray crystallography to 9.7- and 3.0-Å resolution, respectively. The AAV6 capsid contains a highly conserved, eight-stranded (βB to βI) β-barrel core and large loop regions between the strands which form the capsid surface, as observed in other AAV structures. The loops show conformational variation compared to other AAVs, consistent with previous reports that amino acids in these loop regions are involved in differentiating AAV receptor binding, transduction efficiency, and antigenicity properties. Toward structure-function annotation of AAV6 with respect to its unique dual glycan receptor (heparan sulfate and sialic acid) utilization for cellular recognition, and its enhanced lung epithelial transduction compared to other AAVs, the capsid structure was compared to that of AAV1, which binds sialic acid and differs from AAV6 in only 6 out of 736 amino acids. Five of these residues are located at or close to the icosahedral 3-fold axis of the capsid, thereby identifying this region as imparting important functions, such as receptor attachment and transduction phenotype. Two of the five observed amino acids are located in the capsid interior, suggesting that differential AAV infection properties are also controlled by postentry intracellular events. Density ordered inside the capsid, under the 3-fold axis in a previously reported, conserved AAV DNA binding pocket, was modeled as a nucleotide and a base, further implicating this capsid region in AAV genome recognition and/or stabilization.Adeno-associated viruses (AAVs) are nonpathogenic single-stranded DNA (ssDNA) parvoviruses that belong to the Dependovirus genus and require helper viruses, such as Adenovirus or Herpesvirus, for lytic infection (4, 8, 22, 67). These viruses package a genome of ∼4.7 kb inside an icosahedral capsid (∼260 Å in diameter) with a triangulation number equal to 1 assembled from a total of 60 copies of their overlapping capsid viral protein (VP) 1 (VP1), VP2, and VP3 in a predicted ratio of 1:1:8/10 (10). The VPs are encoded from a cap open reading frame (ORF). VP3 is 61 kDa and constitutes 90% of the capsid''s protein composition. The less abundant VPs, VP1 (87 kDa) and VP2 (73 kDa), share the same C-terminal amino acid sequence with VP3 but have additional N-terminal sequences. A rep ORF codes for four overlapping proteins required for replication and DNA packaging.To date, more than 100 AAV isolates have been identified (21). Among the human and nonhuman primate AAVs isolated, 12 serotypes (AAV serotype 1 [AAV1] to AAV12) have been described and are classified into six phylogenetic clades on the basis of their VP sequences and antigenic reactivities, with AAV4 and AAV5 considered to be clonal isolates (21). AAV1 and AAV6, which represent clade A, differ by only 6 out of 736 VP1 amino acids (5 amino acids within VP3) and are antigenically cross-reactive. Other clade representatives include AAV2 (clade B), AAV2-AAV3 hybrid (clade C), AAV7 (clade D), AAV8 (clade E), and AAV9 (clade F) (21).The AAVs are under development as clinical gene delivery vectors (e.g., see references 5, 9, 12, 13, 24, 25, 53, and 61), with AAV2, the prototype member of the genus, being the most extensively studied serotype for this application. AAV2 has been successfully used to treat several disorders, but its broad tissue tropism makes it less effective for tissue-specific applications and the prevalence of preexisting neutralizing antibodies in the human population (11, 43) limits its utilization, especially when readministration is required to achieve a therapeutic outcome. Efforts have thus focused on characterizing the capsid-associated tissue tropism and transduction properties conferred by the capsid of representative serotypes of other clades (21). Outcomes of these studies include the observation that AAV1 and AAV6, for example, transduce liver, muscle, and airway epithelial cells more efficiently (e.g., up to 200-fold) than AAV2 (27, 28, 30). In addition, the six residues (Table (Table1)1) that differ between the VPs of AAV1 and AAV6 (a natural recombinant of AAV1 and AAV2 [56]) confer functional disparity between these two viruses. For example, AAV6 shows ∼3-fold higher lung cell epithelium transduction than AAV1 (27), and AAV1 and AAV6 bind terminally sialylated proteoglycans as their primary receptor, whereas AAV6 additionally binds to heparan sulfate (HS) proteoglycans with moderate affinity (70, 71). Therefore, a comparison of the AAV1 and AAV6 serotypes and, in particular, their capsid structures can help pinpoint the capsid regions that confer differences in cellular recognition and tissue transduction.

TABLE 1.

Amino acid differences between AAV1 and AAV6 and their reported mutants
AAVAmino acid at positiona:
Glycan targetbReference
129418531532584598642
AAV1LEEDFANS70
AAV1-E/KLEKDFANHS+ (and S)c70
AAV6FDKDLVHHS and S70
AAV6.1FDEDLVHHS (and S)c40, 70
AAV6.2LDKDLVHHS (and S)c40, 70
AAV6R2LDEDLVHHS (and S)c40
HAE1LEEDLVN(HS and S)d39
HAE2LDKDLVN(HS and S)d39
shH10FDKNLVNHS (and S-inde)33
Open in a separate windowaMutant residues in boldface have an AAV6 parental original; those underlined have an AAV1 parental origin.bS, sialic acid; HS, heparan sulfate; HS+, HS positive.cThe sialic acid binding phenotypes of these mutants were not discussed in the respective publications but are assumed to be still present.dThe glycan targets for these mutants were not discussed in this publication; thus, the phenotypes indicated are assumed.eThis mutant is sialic acid independent (S-ind) for cellular transduction.The structures of AAV1 to AAV5 and AAV8 have been determined by X-ray crystallography and/or cryo-electron microscopy and image reconstruction (cryo-EM) (23, 36, 47, 52, 66, 73; unpublished data), and preliminary characterization of crystals has also been reported for AAV1, AAV5, AAV7, and AAV9 (15, 45, 46, 55). The capsid VP structures contain a conserved eight-stranded (βB to βI) β-barrel core and large loop regions between the strands that form the capsid surface. The capsid surface is characterized by depressions at the icosahedral 2-fold axes of symmetry, finger-like projections surrounding the 3-fold axes, and canyon-like depressions surrounding the 5-fold axes. A total of nine variable regions (VRs; VRI to VRIX) were defined when the two most disparate structures, AAV2 and AAV4, were compared (23). The VRs contain amino acids that contribute to slight differences in surface topologies and distinct functional phenotypes, such as in receptor binding, transduction efficiency, and antigenic reactivity (10, 23, 37, 47).The structure of virus-like particles (VLPs) of AAV6, produced in a baculovirus/Sf9 insect cell expression system, has been determined by two highly complementary approaches, cryo-EM and X-ray crystallography. The AAV6 VP structure contains the general features already described for the AAVs and has conformational differences in the VRs compared to the VRs of other AAVs. The 9.7-Å-resolution cryoreconstructed structure enabled the localization of the C-α positions of five of the six amino acids that differ between highly homologous AAV6 and AAV1 but did not provide information on the positions of the side chains or their orientations. The X-ray crystal structure determined to 3.0-Å resolution enabled us to precisely map the atomic positions of these five residues at or close to the icosahedral 3-fold axes of the capsid. Reported mutagenesis and biochemical studies had functionally annotated the six residues differing between AAV1 and AAV6 with respect to their roles in receptor attachment and differential cellular transduction. Their disposition identifies the 3-fold capsid region as playing essential roles in AAV infection.  相似文献   

13.
14.
15.
16.
Glycopeptidolipids (GPLs) are one of the major glycolipid components present on the surface of Mycobacterium avium complex (MAC) that belong to opportunistic pathogens distributed in the natural environment. The serovars of MAC, up to around 30 types, are defined by the variable oligosaccharide portions of the GPLs. Epidemiological studies show that serovar 4 is the most prevalent type, and the prognosis of pulmonary disease caused by serovar 4 is significantly worse than that caused by other serovars. However, little is known about the biosynthesis of serovar 4-specific GPL, particularly the formation of the oligosaccharide portion that determines the properties of serovar 4. To investigate the biosynthesis of serovar 4-specific GPL, we focused on one segment that included functionally unknown genes in the GPL biosynthetic gene cluster of a serovar 4 strain. In this segment, a putative hemolytic protein gene, hlpA, and its downstream gene were found to be responsible for the formation of the 4-O-methyl-rhamnose residue, which is unique to serovar 4-specific GPL. Moreover, functional characterization of the hlpA gene revealed that it encodes a rhamnosyltransferase that transfers a rhamnose residue via 1→4 linkage to a fucose residue of serovar 2-specific GPL, which is a key pathway leading to the synthesis of oligosaccharide of serovar 4-specific GPL. These findings may provide clues to understanding the biological role of serovar 4-specific GPL in MAC pathogenicity and may also provide new insights into glycosyltransferase, which generates structural and functional diversity of GPLs.The genus Mycobacterium has a unique feature in the cell envelope that contains a multilayered structure consisting of peptidoglycan, mycolyl-arabinogalactan complex, and surface glycolipids (8, 12). It is known that these components play a role in protection from environmental stresses, such as antimicrobial agents and host immune responses (8, 12). Some of them are recognized as pathogenic factors related to mycobacterial diseases, such as tuberculosis and leprosy (8, 12). In case of nontuberculous mycobacteria that are widely distributed in the natural environment as opportunistic pathogens, glycopeptidolipids (GPLs) are abundantly present on the cell envelope as surface glycolipids (34). GPLs have a core structure in which a fatty acyl-tetrapeptide is glycosylated with 6-deoxy-talose (6-d-Tal) and O-methyl-rhamnose (O-Me-Rha) (2, 5, 13). This structure is common to all types of GPLs, and GPLs with this structure that have not undergone further glycosylation are termed non-serovar-specific GPLs (nsGPLs) (2, 5, 13). Structural diversity generated by further glycosylations, such as rhamnosylation, fucosylation, and glucosylation, is observed for the oligosaccharide portion linked to the 6-d-Tal residue of nsGPLs from Mycobacterium avium complex (MAC), a member of the nontuberculous mycobacteria consisting of two species, M. avium and M. intracellulare (2, 5, 34). Consequently, these nsGPLs with varied oligosaccharides lead to the formation of the serovar-specific GPLs (ssGPLs) that define around 30 types of MAC serovars (10).The properties of MAC serovars are known to be notably different from each other and also to be closely associated with the pathogenicity of MAC (3, 6, 18, 30, 31, 32). Various epidemiological studies indicate that serovar 4 is the most prevalent type and is also one of the serovars frequently isolated from AIDS patients (1, 20, 33, 36). Additionally, pulmonary MAC disease caused by serovar 4 is shown to exhibit a poorer prognosis than that caused by other serovars (23). With respect to host immune responses to MAC infection, serovar 4-specific GPL is reported to have characteristic features that are in contrast to those of other ssGPLs (21, 30). Structurally, serovar 4-specific GPL contains a unique oligosaccharide in which the oligosaccharide of serovar 2-specific GPL is further glycosylated with 4-O-methyl-rhamnose (4-O-Me-Rha) residue through a 1→4 linkage (Table (Table1)1) (24). Therefore, it is thought that the presence of 4-O-Me-Rha and its linkage position are important in exhibiting the specificity of biological activities. The biosynthesis of the oligosaccharide portion in several ssGPLs is currently being clarified (15, 16, 17, 25, 26), while that of serovar 4-specific GPL is still unresolved. In this study, we have focused on the genomic region predicted to be associated with GPL biosynthesis in the serovar 4 strain and explored the key genes responsible for the formation of 4-O-Me-Rha that might determine the specific properties of MAC serovar 4.

TABLE 1.

Oligosaccharide structures of serovar 2- and 4-specific GPLs
SerovarOligosaccharideReference
22,3-di-O-Me-α-l-Fuc-(1→3)-α-l-Rha-(1→2)-l-6-d-Tal9
44-O-Me-α-l-Rha-(1→4)-2-O-Me-α-l-Fuc-(1→3)-α-l-Rha-(1→2)-l-6-d-Tal24
Open in a separate window  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号