首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
白腰文鸟发声行为的神经发育   总被引:5,自引:0,他引:5  
本文研究了 5~ 15 0日龄雄性白腰文鸟 (Lonchurastriataswinhoei)不同年龄段的声谱变化以及这种变化的神经调制机制。结果如下 :(1)HVC、RA和AreaX三个发声核团的神经联系基本接近成年鸟的水平后 ,幼鸟才开始学习鸣叫 (约 45日龄 ) ;(2 )HVC、RA和AreaX达到成年核团体积时 (约 80日龄 ) ,幼鸟才具有成年雄鸟的鸣叫模式 ;(3)发声控制核团的发育与核团间的神经支配有关 ,而基本不受鸣唱行为的影响 ,HVC、RA和AreaX的最快增长时间段各不相同 ,三个核团随年龄增长而呈现体积增长的显著变化 (one wayANOVA ,P <0 0 5 ) ,但各核团在任意两个时间段的体积差异并不都显著。结果提示 :发声行为产生的时间和发展与发声控制核团的发育、核团间的神经联系有关 ,最终的体积发育程度受内在遗传力的作用 ,同时可能还受神经核团建立正常神经联系时间的影响  相似文献   

2.
首先研究了5-120日龄雌雄白腰文鸟(Lonchura striata swinhoei)4个主要发声核团(RA,LMAN,AreaX和HVC)的体积变化,再通过神经示踪技术研究这些核团与其他核团神经联系的建立时间,以了解发声核团发育及性别分化的神经机制,结果表明:(1)雌雄RA体积均在20,30日龄前后表现出急剧的变化和雌雄差异;雌雄RA在15和25日龄分别接受LMAN和HVC的神经支配,(2)雌雄LMAN体积分别在20,30日龄前先增长,之后均缩小,雌雄LMAN的神经元大小均在15和20日龄间急剧增长,但在该时段之后,不再发生明显变化,雌雄LMAN均在15日龄接受RA的神经支配。(3)AreaX核体积,神经元大小最明显的变化位于20-25日龄间;雌雄AreaX核均在15日龄时接受HVC的神经支配,(4)AreaX核体积,神经元大小最明显的变化位于20-25日龄间;雌雄AreaX核均在15日龄时接受HVC的神经支配,(4)雌雄HVC体积变化的最大值在20和30日龄前后,雄乌HVC的神经元大小在20,30日龄前后,雌鸟在15-20日龄发生较大的变化,其余组间变化小或不明显,雌雄HVC分别在15,25日龄同AreaX核,RA建立神经联系,因此,4个发声核团组织学的明显变化与核团间神经联系的建立相关,说明发声核团间的神经联系可能影响和决定了核团体积在发育中的变化。  相似文献   

3.
鸣禽白腰文鸟前脑古纹状体粗核性双态发育的神经机制   总被引:6,自引:0,他引:6  
曾少举  张信文  左明雪 《动物学报》2001,47(5):535-541,T001
对鸣禽白腰文鸟 (Lonchurastriata)发声控制核团古纹状体粗核 (robustnucleusofarchistriatum ,RA)的性双态分化过程进行了组织学研究 ,并应用双向神经示踪剂 (biotinylateddextranamine ,BDA) ,追踪新纹状体外侧巨细胞核 (lateralnucleusmagnocellularisofanteriorneostriatum ,LMAN)和高级发声中枢 (highvocalcenter,HVC)与RA建立纤维联系的时间和过程。结果发现 :5~ 3 5日龄段为雌雄RA体积、神经元大小和神经元密度变化最集中的时间。在该时段内 ,RA体积、神经元大小均增加 3~ 4倍 ,而RA神经元密度减少约 4倍。这些变化在雌雄间无显著差异 (P >0 0 5 ,非配对 ,双尾t 检验 ) ,但与RA同LMAN、HVC建立神经联系的时间一致。RA同LMAN、HVC建立联系的时间分别为 5~ 15和 15~ 3 5日龄。 4 5日龄后 ,RA体积大小在雌、雄间出现显著差别 (P <0 0 5 )。 4 5~ 60日龄为雌鸟神经元凋亡数量最多时期 ,4 5和 60日龄神经元凋亡数分别为 19 4± 8 0和 17 9± 8 2 (× 10 3/mm3)。结果提示 :4 5日龄后雌雄鸟RA体积和神经元凋亡的变化可能是鸣禽发声核团性双态产生的主要原因。  相似文献   

4.
白腰文鸟发声行为的性别差异及其机制   总被引:2,自引:1,他引:2  
通过声谱分析,研究了5-120日龄雌、雄白腰文鸟(Lonchura striata swinhoei)的声谱变化,及该时段3个主要发声控制核团)HVC、RA、Area X)体积、睾丸(睾酮)的相应改变。结果如下:①45日龄以前,雌雄鸟只能发出简单鸣叫(call),鸣声基本不会鸣唱。②雄性HVC,RA,AreaX体积均比雌性大2-6部。3个核团的大小发育不完全一致。各核团的快速生长期与鸣唱学习的主要时段(60-120日龄)不同步,说明核团的个体发育可能不完全受发声行为的影响。③睾丸的充分发育(120日龄后)及血液中具有较高的睾酮水平是雄鸟发出成熟鸣唱语句的重要条件。  相似文献   

5.
6.
20 0 2年 1 1月~ 2 0 0 4年 4月在四川省南充市区内对白腰文鸟 (Lonchurastriata)的繁殖习性进行了研究。结果表明 ,白腰文鸟 2月下旬开始繁殖 ;影响巢址选择的主要因素 9种 ;雌雄参与筑巢 ,营巢期 5~ 6d;雌雄轮流孵卵 ,孵卵期 1 3~ 1 5d ,整个种群的孵卵高峰期在 4~ 6月 ,窝卵数 (5 .61± 0 . 78) (n =1 8)枚 ,孵化率 86 0 7% ;雌雄均参与育雏 ,育雏期 1 8~ 2 1d ,雏离巢率 82 43 % ,繁殖生产力 3. 0 1 ,育雏两个高峰期 :上午 8:0 0~ 1 0 :0 0时和下午 1 6:0 0~ 1 8:0 0时 ,日育雏次数 (1 2 . 77± 6 .0 7) (n =3 4) ,育雏时间间隔(0 . 96± 0 . 42 )h(n =1 61 ) ;雏鸟形态生长曲线呈“S”型。  相似文献   

7.
鸣禽白腰文鸟前脑发声控制核团的性双态性   总被引:12,自引:0,他引:12  
左明雪  曾少举 《动物学报》1998,44(3):302-307
应用神经示踪、放射免疫测定及组织学方法,对成体鸣禽白腰文鸟前脑发声控制核团的性双态性及血中的睾酮水平进行了研究。结果发现,前脑高级发声中枢、古纹状体粗核和X区三个发声控制核团均存在明显的性双态性,雄性的上述三个发声控制核团体积分别比雌性大5.31、4.01和1.92倍,在三个选定的平面上,雄性个体的前两个核团神经元数量超过雌性,但神经元分布的密度则小于雌性,差异均显著(P〈0.05)。从高级发声中  相似文献   

8.
用生物素示踪法和P物质(SP)免疫组化技术研究表明:黄喉Jiu的高级发声中枢(HVc) 接受端脑听区(L)、新纹状体中部界面核、新纹状体巨细胞核(MAN)、丘脑葡萄形核、桥脑蓝斑核的传入,并有神经纤维投射到古纹状体栎核(RA)和嗅叶X区(X);HVc壳投射到RA壳并接受L的传入。听觉控制与学习通路与发声中枢之间有许多神经联系,提示黄喉Jiu发声学习依赖于听觉反馈。在HVc、RA和MAN有SP阳性细胞体,在X、中脑背内侧核和延髓舌下神经核气管鸣管部、丘脑卵圆核壳区、中脑背我 核壳区及中脑丘间核有SP阳性纤维和终末。SP广泛分布于发声-听觉中枢,可能参与了它们的活动。  相似文献   

9.
用BrdU标记DNA的ABC免疫细胞化学方法,观察雌性蒙古百灵端脑神经前体细胞的产生和分布特点,并与白腰文鸟作比较。结果如下:1.在百灵和白腰文鸟胸肌注射BrdU短时程组(存活1天),在端脑室带区外侧壁(LVZ)有大量的标记细胞,新生神经细胞起源于端脑室带区(VZ)中的增殖细胞层,并在纹状体腹侧的VZ形成标记细胞增殖热点,如在百灵和白腰文鸟靠近中缝线处的外侧纹状体(LSt)与内侧纹状体(MSt)腹侧的LVZ形成标记最多的‘第1增殖热点’区;在靠近中缝线处LVZ的头端形成密集的新生标记细胞,形成‘第2增殖热点’区;在百灵LSt尾端的LVZ标记细胞形成‘第3增殖热点’,但白腰文鸟此脑区的标记细胞较少。2.在百灵胸肌注射BrdU长时程组中5天起,大量的LVZ的标记细胞开始迁移,存活5-30天期间在高级发声中枢(HVc)和高位发声运动中枢-古纹状体栎核(RA)有新生标记细胞,在端脑靠近LVZ的区域有较多的标记细胞。但在雌性白腰文鸟胸肌注射BrdU存活30天期间,在HVC、RA内未见到标记细胞。结果提示雌百灵端脑HVc和RA不断地产生新生神经细胞,这可能与雌性需要不断地感知、识别雄百灵鸣唱的新语句有关,而白腰文鸟不需要这种功能。  相似文献   

10.
用生物素示踪法和P物质(SP)免疫组化技术研究表明:黄喉wu的高级发声中枢(HVc)接受端脑听区(L)、新纹状体中部界面核、新纹状体巨细胞核(MAN)、丘脑葡萄形核、桥脑蓝斑核的传入,并有神经纤维投射到古纹状体栎核(RA)和嗅叶X区(X);HVc壳投射到RA壳并接受L的传入。听觉控制与学习通路与发声中枢之间有许多神经联系,提示黄喉wu发声学习依赖于听觉反馈。在HVc、RA和MAN有SP阳性细胞体,在X、中脑背内侧核和延髓舌下神经核气管鸣管部、丘脑卵圆核壳区、中脑背外侧核壳区及中脑丘间核有SP阳性纤维和终末。SP广泛分布于发声-听觉中枢,可能参与了它们的活动。  相似文献   

11.
本文究了雌、雄白腰文鸟(Lonchura striata swinhoei)不同发育时期前脑四个控制发声重要核团古纹状体栎核(RA)、新纹状体前部巨细胞核外侧部(LMAN)、X区(Area X)和高级发声中枢(HVC)中神经元数量、体积和体内雌二醇(E2)和睾酮(T)浓度的变化,以揭示性激素对鸣禽发声核团性双态性分化的影响。结果发现:(1)HVC、LMAN和X区在发育早期神经元数量和体积均呈显著性双态性差异,而RA神经元直至30日龄(P30)后才显示出明显性别差异(P<0.05);(2)除RA外,HVC、LMAN和X区神经元体积的显著性双态性差异均发生在P20左右,P20后雌、雄核团内的神经元体积仅有较小范围的波动;(3)RA和LMAN神经元数量随年龄增长而逐渐减少;雌、雄鸟HVC和雄鸟X区的神经元数量在P20—30间均增长,雄鸟HVC的增长幅度显著大于雌鸟。P30后HVC和X区的神经元数量不再增加,开始小幅度减少;(4)四个发声核团的神经元数量和体积在P5-120期间均出现1—2个急剧变化期,此变化期与体内雌激素水平开始出现显著性差异的临界期及核团间神经联系开始建立的时期相对应;(5)雌、雄鸟血清中E2的水平在核团发育初期(P5)差异显著,雌鸟为雄鸟的7.45倍,P5后则呈相反方向变化趋势,在P15时雄鸟中的E2水平反超过雌鸟,差异显著(P<0.05)。睾酮仅在发育P50后的雄鸟体内被检测出,雌鸟中始终未能检测出T的存在。结果提示:雌、雄白腰文鸟发育早期体内E2浓度的变化启动了HVC、LMAN和X区早期神经元性双态性的分化和持续发育;睾酮对雌、雄鸣禽发声控制核团中早期神经元的性双态性分化作用较小[动物学报49(3):353—361,2003]。  相似文献   

12.
巢址选择对保证鸟类生存和繁殖成功、降低被捕食率和种间竞争至关重要。2016—2017年,在中国科学院西双版纳热带植物园选取3个研究区域对同域分布的斑文鸟Lonchura punctulata和白腰文鸟Lonchura striata进行调查。在记录的15个巢址特征因子中,14个数值型因子用于拟合Logistic回归模型,找出影响文鸟巢址选择的关键因子;使用独立样本t检验和Mann-Whitney U检验比较2种文鸟在巢址特征因子选择上的差异性;置换检验(Permutation test)用于检验2种文鸟对营巢树种选择偏好的差异性。研究发现,2种文鸟的巢址分布模式在3个研究区域中的差异很大。异种鸟巢间最小间距、营巢树胸径、营巢树与水源最近距离以及巢位高度都是影响巢址选择的关键因子。与白腰文鸟相比,斑文鸟通常选择在胸径更小、位置更高、距离异种鸟巢更远、距离水源更近的地方营巢。斑文鸟多选择枝条紧密的树,而白腰文鸟多选择枝干带刺的树营巢,这可能是二者不同的对抗捕食者的防御策略。  相似文献   

13.
    
Eight polymorphic microsatellite loci were isolated and characterized from the Bengalese finch (Lonchura striata var. domestica). In analyses of 25 individuals, the number of alleles ranged from two to four, and observed heterozygosity ranged between 0.05 and 0.73. At four loci, the observed heterozygosity of the Bengalese finches was significantly different from the expected heterozygosity. Primer sets were also tested in Javan munia (Lonchura leucogastroides), and the same eight loci were successfully amplified. In analyses of 20 unrelated individuals, the number of alleles ranged from one to seven, and the observed heterozygosity ranged from 0 to 0.56. In Javan munia, the observed heterozygosity differed significantly from the expected heterozygosity in only one locus.  相似文献   

14.
本实验用免疫细胞化学技术观察了不同年龄金黄地鼠视皮层和上丘中P物质(SP)阳性神经元数量和分布的变化,同时观察了不同年龄金黄地鼠视皮层SP阳性神经元的形态和类型。结果表明,出生后10天小鼠视皮层SP阳性神经元为36%,Ⅱ—Ⅳ层密度最大,约占40%。上丘中SP阳性神经元约为37%。出生后20天,视皮层及上丘中SP阳性神经元分别减少到23%和16%。视皮层Ⅱ—Ⅳ层减少最明显,Ⅴ层和Ⅵ层变化不大。成年鼠视皮层及上丘中偶见SP神经元,但出现一些SP阳性纤维。出生10天及20天鼠视皮层中SP阳性神经元的形态及类型没有差别。  相似文献   

15.
用生物素示踪法和P物质(SP)免疫组化技术研究表明:黄喉(巫鸟)的高级发声中枢(HVc)接受端脑听区(L)、新纹状体中部界面核、新纹状体巨细胞核(MAN)、丘脑葡萄形核、桥脑蓝斑核的传入,并有神经纤维投射到古纹状体栎核(RA)和嗅叶X区(X);HVc壳投射到RA壳并接受L的传入.听觉控制与学习通路与发声中枢之间有许多神经联系,提示黄喉(巫鸟)发声学习依赖于听觉反馈.在HVc、RA和MAN有SP阳性细胞体,在X、中脑背内侧核和延髓舌下神经核气管鸣管部、丘脑卵圆核壳区、中脑背外侧核壳区及中脑丘间核有SP阳性纤维和终末.SP广泛分布于发声-听觉中枢,可能参与了它们的活动.  相似文献   

16.
Songbirds develop their songs by imitating songs of adults. For song learning to proceed normally, the bird's hearing must remain intact throughout the song development process. In many species, song learning takes place during one period early in life, and no more new song elements are learned thereafter. In these so-called close-ended learners, it has long been assumed that once song development is complete, audition is no longer necessary to maintain the motor patterns of full song. However, many of these close-ended learners maintain plasticity in overall song organization; the number and the sequence of song elements included in a song of an individual vary from one utterance to another, although no new song elements are added or lost in adulthood. It is conceivable that these species rely on continued auditory feedback to produce normal song syntax. The Bengalese finch is a close-ended learner that produces considerably variable songs as an adult. In the present study, we found that Bengalese finches require real-time auditory feedback for motor control even after song learning is complete; deafening adult finches resulted in development of abnormal song syntax in as little as 5 days. We also found that there was considerable individual variation in the degree of song deterioration after deafening. The neural mechanisms underlying adult song production in different species of songbirds may be more diverse than has been traditionally considered. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 343–356, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号