首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Growth of young-of-the-year mackerel in the Bay of Biscay   总被引:2,自引:0,他引:2  
The first growth season of young-of-the-year (0+ year) mackerel Scomber scombrus , sampled in the Bay of Biscay, was parameterized to determine growth patterns. Daily increments were identified on sagittae otoliths, for calculation of age and growth of 92 larvae and 54 juveniles over the range 3·6–215·0 mm standard length ( L S). A Gompertz curve was fitted to the length-at-age data. At the end of the first year of growth L S was 194·2 mm, with a maximum growth increment of c . 2 mm day−1, observed 62 days after hatching. Backcalculated growth increments for mackerel juveniles, during their larval stage, were higher than those observed for sampled larvae; only 10·9% of sampled larvae were estimated to survive. Growth for north-eastern Atlantic mackerel was slower than that published for north-western Atlantic mackerel. Backcalculated hatching dates for mackerel were consistent with the typical temporal distribution of mackerel spawning in the Bay of Biscay.  相似文献   

2.
Daily ration of juvenile Japanese Spanish mackerel Scomberomorus niphonius (32·1–33·1 mm standard length, L S) was estimated at three temperatures (18·6, 19·5 and 21·2° C) in the laboratory. Gastric evacuation rate ranged between 0·398 (18·6° C) and 0·431 (21·2° C). Diel change in instantaneous consumption rate indicated that juvenile Japanese Spanish mackerel are daylight feeders. The estimated values of the daily ration ranged between 66·1%(18·6° C) and 82·6%(21·2° C) of body mass. These per cent values of daily ration were converted to daily consumption in mg (28 mg at 18·6° C to 34 mg at 21·2° C) using the mean dry body mass of juvenile Japanese Spanish mackerel of 30 mm (42·1 mg). Stomach content analysis of wild specimens collected in the Seto Inland Sea, south‐western Japan, revealed that the majority of wild Japanese Spanish mackerel larvae and juveniles ingested fish larvae with a body size >50% of the predator L S. Based on the predator‐prey size relationship, the daily consumption of a Japanese Spanish mackerel juvenile of 30 mm was equivalent to 5·1 (18·6° C) to 6·4 (21·2° C) Japanese anchovy Engraulis japonicus larvae which was the dominant prey organism in stomachs of the wild Japanese Spanish mackerel.  相似文献   

3.
The effect of the timing of first feeding (3, 4, 5, 6, 7 and 8 days post‐hatch, dph) on laboratory‐reared California halibut Paralichthys californicus larvae was evaluated by means of morphologic, morphometric and histological criteria. Larvae began to feed exogenously at 3 dph (2·7 ± 0·01 mm standard length, L S) at 18° C. Eye pigmentation, rather than mouth opening was the most distinctive trait of California halibut larvae at first feeding. Larval growth was significantly affected by the time of first exogenous feeding. At notochord flexion (21 dph), the L S of larvae fed for the first time at 3 dph was significantly larger (5·1 ± 0·1 mm) than that of those fed at 4 and 5 dph (4·9 ± 0·1 mm), although the latter fish had a more uniform size distribution. The point of no return was reached at 7 dph. Survival of larvae initially fed at 3, 4 and 5 dph was similar (58·4–60%), while no larvae were able to survive when food was offered for the first time between 6 and 8 dph. Food deprivation resulted in a progressive deterioration of the larval digestive system and atrophy of skeletal muscle fibres. Significant changes in the anterior and posterior enterocyte height were detected after 2 days of food deprivation. Similarly, tail height: L S and trunk length: L S ratios were the most sensitive morphometric indices to detect the effect of fasting on larval condition. Present results show that a combination of morphometric and histological variables can be used to evaluate the nutritional condition of California halibut larvae.  相似文献   

4.
The morphological development and allometric growth patterns in the juvenile spotted seahorse Hippocampus kuda were studied under hatchery rearing conditions. Newborn spotted seahorses [mean ± s.d . standard length ( L S) 9·33 ± 0·79 mm] were raised till the age of 124 days (119·35 ± 6·04 mm). Growth was characterized by three stages with two inflexion points occurring at day 21 and 76. The mean growth rates in the first, second and third stages were 0·68, 1·16 and 0·71 mm day−1, respectively. The growth rate was most rapid in the second stage and was probably influenced by a behavioural shift from pelagic to benthic form. The mass ( M ) and L S relationship was exponential ( M = 7·14 × 10−6 L S2·76), but the slope, b = 2·76, reflected negative allometric growth. Sexes could be distinguished at c. 110 days, and the sex ratio was unbiased. The L S in males and females did not differ significantly. Morphological stageing series is proposed, which divides H. kuda juvenile development into eight stages based on the development of coronet, cheek and eye spines, keel and pigmentation. The morphometric ratios for all the body parts, except trunk length, showed considerable changes at a transition point occurring at c. 25 mm L S. The high proportional growth in head length, head depth, pectoral fin base length, dorsal fin base length, snout length, snout depth and eye diameter at the initial stages, and the abrupt increase in tail length only after the first 2 weeks, possibly reflect development priorities during early development where important organs are being developed first for the enhancement of juvenile survival.  相似文献   

5.
The temperature and mass dependence of maximum consumption rate was measured for larval and early juvenile spotted seatrout Cynoscion nebulosus . Maximum consumption ( C MAX) estimates were obtained from feeding and gut evacuation experiments on larvae (3·8–19 mm standard length, L S) at three temperatures (24, 28 and 32° C), and maximum consumption experiments on juveniles at three temperatures (20, 26 and 32° C). Feeding levels were determined for larvae fed live prey ( Brachionus plicatilis and Artemia salina ) ad libitum . The midgut and total evacuation times were estimated for fish feeding continuously and discontinuously using alternate meals of tagged and untagged live prey. Temperature and fish size had significant effects on gut evacuation and consumption. The gut evacuation time increased with increasing fish size, and decreased with increasing temperatures. Mass‐specific midgut contents increased for small larvae <0·156 mg dry mass ( M D)( c . 4 mm L S), and decreased for larger larvae and juveniles. Maximum consumption was modelled by fitting a polynomial function to a reduced dataset of individuals feeding at high levels. The C MAX model predicted an initial increase in specific feeding rate from 70 to 155% M D day−1 for small larvae, before declining for larger larvae and juveniles.  相似文献   

6.
The influence of temperature on prey consumption and growth in mass of juvenile trahira Hoplias aff. malabaricus were investigated. Consumption of small-sized lambari Astyanax altiparanae (mean standard length, L S, 5·43 cm) varied from zero to 65 over a period of 30 days. Temperatures ranged from 14 to 34° C and the size of trahiras ranged from 17·5 to 24·7 cm L S. Prey consumption differed significantly among temperatures. Trahiras at 18° C consumed significantly less than those at 30° C. A linear multiple regression model including temperature, prey consumption and L S explained 89·4% of the variability in growth in mass. Some caution is suggested when inferring the impact of H. aff. malabaricus piscivory on assemblage structures in systems that, despite their location in tropical regions, are subjected to seasonal thermal variations.  相似文献   

7.
Growth rates of cultured first-year bonefish Albula sp. averaged 0·32 mm day−1. Maximum theoretical growth (±95% CI) was 278 (±11·2) mm L S (sexes combined), confirming that Albula sp. from the Gulf of California grow less than other species in the' vulpes 'complex.  相似文献   

8.
N. Yasue    A. Takasuka 《Journal of fish biology》2009,74(10):2250-2268
Seasonal variability in the growth of larval Japanese anchovy Engraulis japonicus was examined through otolith microstructure analysis based on the samples collected from the northern side (inner area, IA) and the southern side (outer area, OA) of the Kii Channel from April 2006 to March 2007. Growth trajectories (otolith backcalculated mean standard length of 5 day intervals from 5 days after hatch to 24 days) as well as the most recent 5 day mean growth rate of larvae before capture ( G 5) differed among months. Growth trajectories showed the same pattern as G 5. In IA, mean ± s.d. G 5 ranged from 0·31 ± 0·04 mm day−1 (January) to 0·73 ± 0·06 mm day−1 (October). In OA, mean ± s.d. G 5 ranged from 0·36 ± 0·05 mm day−1 (January) to 0·79 ± 0·11 mm day−1 (August). G 5 values declined from November to January and then started to increase. In general, the seasonal patterns of growth were similar between IA and OA, and a clear seasonal pattern in growth was identified. When the relationships among larval growth rate, sea temperature, zooplankton density and larval density were examined, growth rate was positively related with sea temperature in both areas and not related with the other factors. The similar pattern in growth observed between IA and OA was probably due to the low spatial variability in sea temperature compared to its seasonal variability.  相似文献   

9.
Larval and early juvenile growth was backcalculated for individual Japanese sardines Sardinops melanostictus using the biological intercept method based on the allometric relationship between otolith radii and fish lengths. Sardines grew at 0·81 mm day−1 during the larval stage. In the early juvenile stage, they grew from 32·3 to 45·4 mm fork length ( L ) over a 20-day period (0·64mm day−1). Using the observed relationship between L and wet body weight ( W ), W = 0·00942 L 2.99, W of the sardine juveniles was calculated to increase from 306 to 832 mg during the 20-day period. The carbon (C) requirement to achieve this growth in weight was estimated to increase from 5·7 to 9·6 mg day−1. Stomach contents of the sardines were composed mostly of copepods (73%) and larvaceans (25%). Wet stomach content weight ( Ws ) was expressed by a power function of the W , Ws=0·731 W 0·658. Carbon and nitrogen constituted 41·7 ± 1·5 and 10·0 ± 0·4% of the dry Ws , respectively. Stomach C content increased from 2·0 to 3·9 mg during the 20-day period. Three to four cycles of the daily turnover of stomach contents during the 16 h of daytime, corresponding to a gastric evacuation rate of 0·2–0·3 h−1 under continuous feeding, met the C requirement to achieve the backcalculated growth in early juvenile sardines. The Kuroshio frontal waters seem to provide Japanese sardine juveniles with favourable growth conditions.  相似文献   

10.
Effect of body size on the standard metabolism of horse mackerel   总被引:11,自引:0,他引:11  
The routine metabolic rate R R and standard metabolic rate R S were measured in horse mackerel Trachurus trachurus at 13°C over weight range of 1·4–390 g. A data extraction method rather than the more commonly used method of extrapolating the swimming speed-metabolic rate curves back to zero swimming speed was developed to measure the R S. The relation between R R and R S and weight was expressed as a linear regression with the log transformed data. The mean slope of the regression was 0·752 for R S and 0·725 for R S.  相似文献   

11.
The abundance and growth history of larval and juvenile Japanese seaperch Lateolabrax japonicus were investigated in the Chikugo River estuary, upper Ariake Bay, from 1990 to 2000. Growth during the larval period (up to 15 mm standard length, L S, the size at recruitment into the estuary) was backcalculated using sagittal otolith microstructures by the biological intercept method. Growth rates in length declined at body sizes >14 mm L S. High freshwater discharge through the Chikugo River was associated with high temperatures of the upper Ariake Bay where the larvae spend their planktonic life. Mean larval stage duration (days) from hatch to 15 mm ( D 15) varied between 48·8 and 76·2 days and was inversely correlated with the estimated mean temperature history [mean daily temperature (° C) experienced by the larvae during the period from hatch to 15 mm, T 15]. Mean abundance (number m−2) of larvae and juveniles was highest in years when T 15, D 15 and freshwater discharge were at intermediate levels. Although the abundance was not correlated with either of these variables, an exponential relationship between abundance and D 15 was found when data collected during the highest river discharge years (1990, 1991 and 1998) were excluded. The increase in freshwater discharge through the Chikugo River probably had the potential to enhance or diminish Japanese seaperch recruitment in two ways: 1) it could increase recruitment probability by increasing temperature and larval growth and 2) high river flow also had the potential to decrease the probability of immigration into the river by increasing larval seaward dispersion, predation due to decreased turbidity and starvation due to decreased zooplankton prey abundance in the estuary.  相似文献   

12.
Larval and juvenile herring Clupea harengus collected in the Polish part of the Vistula Lagoon in May-July 1997 had hatched between 17 April and 9 June and originated from three cohorts. The spawning season began on 1 March at 3·8° C and was completed on 3 June at 12·7° C. Mortality among larvae was high in the first 2 weeks of April, probably associated with significant temperature decrease at the beginning of the spawning season. The growth of 10–48 mm L S herring was linear, highest for larvae and juveniles from the first cohort (0·58 mm mm-1 day-1), slower for the second cohort (0·55 mm mm-1 day-1) and the slowest for the third cohort (0·45 mm mm day-1). Temperature effects on the growth were inconclusive and potentially unfavourable feeding conditions in June might have been responsible for the relatively slow growth of third cohort larvae and juveniles.
Relationships between otolith size (perimeter, length, width, area, and weight) and fish size ( L S) differed among the three cohorts, related mostly to the positive temperature effect on otolith growth, individuals growing in warmer water had larger otoliths. Although a negative growth rate effect was observed as well, it was less significant.  相似文献   

13.
The life history, population and reproductive variables of the southern red tabira bitterling Acheilognathus tabira jordani were investigated in a lowland reach of the River Ohara in Shimane Prefecture, western Honshu, Japan. Acheilognathus t. jordani , like all other species of bitterling, lays its eggs on the gills of freshwater mussels. It was the only species of bitterling present in the study reach, and three species of bivalve mussel were available to it for spawning: Anemina arcaeformis, Anodonta lauta and Corbicula leana . Spawning by A.t. jordani was recorded between early April and early July in 2003 and began at a size of 38· 0 mm standard length ( L S) in the 1+ age class. Ovipositor length ( L OP) during oviposition was positively correlated with female L S, and showed significant seasonal variation, with a mean ± s.d. L OP of 27· 5 ± 5· 3 mm ranging from 16· 8 to 42· 0 mm during the spawning period, which was shorter than that of a previously studied A. t. tabira population. Eggs of this subspecies are relatively long and elliptic in shape, with a volume of c. 2· 4 mm3. Egg number correlated positively with female L S and both egg shape and volume changed significantly with season. The population size of adults was estimated to be 850 individuals, and comprised age 0+ to 3+ individuals with L S ranging from 12· 0 to 72· 2 mm. The population sex ratio was significantly female biased, with seven females: three males. Egg shape and size and L OP during oviposition in the present A. tabira population may be the result of local adaptations to the mussel species utilized and no competition with other bitterling species for spawning sites.  相似文献   

14.
The pectoral fin girdle was the first element of the fins to develop in Sparus aurata. By 3·1mm L N (notochord length) the cleithrum was ossified and the cartilaginous caracoid-scapula was present. The fin was fully developed at 11·6 mm L S (standard length) and by 16·0 mm L S most elements of the fin were ossified. The pelvic fins were the last pair to develop and rudiments of these were first detected at 7·9 mm L S. The pelvic fin and girdle were completely formed and ossified at 16·0 mm L S. The development of dorsal and anal fins began at c. 6·5–7·0 mm L S with the formation of 10 cartilaginous dorsal proximal radials and eight cartilaginous ventral proximal radials. The three cartilaginous predorsals (supraneurals) appeared at 7·7 mm L S and the ossification of dorsal and anal proximal and distal radials began, respectively, at 10·5 mm L S and 11·3 mm L S. Ossified structures in the fins were also classified according to their origin, as being either dermal or endochondral. Finally the chronology of appearance of fin structures in S. aurata was compared with that reported for other Sparidae, Engraulidae and Haemulidae.  相似文献   

15.
Routine oxygen consumption rates of young spotted seatrout Cynoscion nebulosus (Sciaenidae) were measured over a range of temperatures (24, 28, 30 and 32° C) and salinities (5, 10, 20, 35 and 45). Larvae and juveniles, 4·1–39·5 mm standard length ( L S), ranging several orders of magnitude in dry body mass were used to estimate the mass–metabolism relationship. Oxygen consumption (μl O2 larva−1 h−1) scaled isometrically with body mass for larvae <5·8 mm L S(phase I, slope = 1·04) and allometrically thereafter (phase II, slope = 0·78). The inflection in the mass–metabolism relationship coincided with the formation of the hypural plate and an increase in the relative tail size of larvae. Salinity did not have a significant effect on routine metabolism during phase I. Temperature and salinity significantly affected routine metabolism during phase II of the mass–metabolism relationship. The effect of salinity was temperature dependent, and was significant only at 30° C. Response surfaces describing the environmental influences on routine metabolism were developed to provide a bioenergetic basis for modelling environmental constraints on growth.  相似文献   

16.
Thermal tolerance of a northern population of striped bass Morone saxatilis   总被引:1,自引:0,他引:1  
Thermal tolerance of age 0+ year Shubenacadie River (Nova Scotia, Canada) striped bass Morone saxatilis juveniles (mean ± s . e . fork length, L F, 19·2 ± 0·2 cm) acclimated in fresh water to six temperatures from 5 to 30° C was measured by both the incipient lethal technique (72 h assay), and the critical thermal method ( C m). The lower incipient lethal temperature ranged from 2·4 to 11·3° C, and the upper incipient lethal temperature ( I U) from 24·4 to 33·9° C. The area of thermal tolerance was 618° C2. In a separate experiment, the I U of large age 2+ year fish (34·4 ± 0·5 cm L F) was 1·2 and 0·6° C lower ( P < 0·01) than smaller age 1+ year fish (21·8 ± 0·5 cm L F) at acclimation temperatures of 16 and 23° C. Using the C m, loss of equilibrium occurred at 27·4–37·7° C, loss of righting response at 28·1–38·4° C and onset of spasms at 28·5–38·8° C, depending on acclimation temperature. The linear regression slopes for these three responses were statistically similar (0·41; P > 0·05), but the intercepts differed (25·3, 26·0 and 26·5° C; P < 0·01). The thermal tolerance of this northern population appears to be broader than southern populations.  相似文献   

17.
An analysis of mass ( M ) and standard length ( L S) data for larval, juvenile and adult sprat ( Sprattus sprattus ; Clupeidae) revealed marked changes in the allometric scaling factor ( b in     ). For sprat <44 mm L S, b was 5·0, whereas in larger juveniles and adults, b was c. 3·4 indicating a relatively protracted metamorphic period for this species.  相似文献   

18.
Variations in standard length ( L S), gape size ( S G) and jaw length ( L J) were studied in larval and juvenile gadoids (cod Gadus morhua , haddock Melanogrammus aeglefinus and whiting Merlangius merlangus ) from 4 to 70 mm. The increase in S G and L J was not linear with respect to L S. The relationship was best described by segmented regression lines in all three species, with an inflection point at c . 10·5 mm. The S G and L J increased more rapidly in relation to larval L S for individuals smaller than this inflection point size. The rates of increase slowed significantly post-inflection, an effect more noticeable in S G data compared to L J data. In each case, the inflection point fell in the intermediate period of development between the larval and juvenile stages, which could be considered as metamorphosis. Published equations that have been used to predict S G from L J lead to the overestimation of gape. New relationships are presented, which may be used to predict S G from measurements of either L S or upper jaw length in cod, haddock and whiting.  相似文献   

19.
The metamorphosis of Solea senegalensis was studied in larvae reared at 20° C and fed four different feeding regimes. A, Artemia (4 nauplii ml−1); B, Artemia (2 nauplii ml−1); C, mixed diet (2 nauplii ml−1 and 3 mg ml−1 microencapsulated diet); and D, microencapsulated diet (3·7 mg ml−1). Rotifers were also supplied in all cases during the first days of feeding. These feeding regimes supported different growth rates during the pre-metamorphosis period (regime A, G=0·376 day−1; regime B, G=0·253 day−1; regime C, G=0·254 day−1; regime D, G=0·162 day−1). Larvae started metamorphosis 9 days after hatching (DAH) when fed the regime A, 13 DAH with regime B, 11 DAH with regime C and 15 DAH with regime D. A minimum 5·6–5·9 mm LT was required under all feeding regimes to initiate the metamorphosis. Eye translocation was completed when the larvae reached 8·6–8·7 mm LT (regimes A, B and C), but only 7·3 mm LT with regime D. 4·4–6·2 days were required to complete eye migration under the regimes A, B and C, and 18·3 days under the regime D. This transformation is concomitant with changes in body reserves, and with the pattern of some digestive enzymes.  相似文献   

20.
The growth properties of juvenile spotted wolffish Anarhichas minor reared at 4, 6, 8 and 12° C, and a group reared under 'temperature steps', (T‐step) i.e . with temperature reduced successively from 12 to 9 and 6° C were investigated. Growth rate and feed efficiency ration was significantly influenced by temperature and fish size. Overall growth rate was highest at 6° C (0·68% day−1) and lowest at 12° C (0·48% day−1), while the 4 and 8° C, and the T‐step groups had similar overall growth rates, i.e . 0·59, 0·62 and 0·51% day−1 respectively. Optimal temperature for growth ( T opt G ) and feed efficiency ratio (Topt FCE) decreased as fish size increased, indicating an ontogenetic reduction in T opt G and T opt FCE. The results suggest a T opt G of juvenile spotted wolffish in the size range 135–380 g, dropping from 7·9° C for 130–135 g to 6·6° C for 360–380 g juveniles. The T opt FCE dropped from 7·4° C for 120–150 g to 6·5° C for 300–380 g juveniles. A wider parabolic regression curve between growth, feed efficiency ratio and temperature as fish size increased, may indicate increased temperature tolerance with size. Individual growth rates varied greatly at all time periods within the experimental temperatures, but at the same time significant size rank correlations were maintained and this may indicate stable size hierarchies in juvenile spotted wolffish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号