首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the potential of using Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) to estimate root zone soil moisture at native in-situ measured sites, and at distant sites under the same climatic setting. We obtained in-situ data from Soil Climate Analysis Network (SCAN) sites near the Texas-New Mexico border area, and NDVI and EVI products from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board the Terra satellite. Results show that soil moisture values of the same depth are highly correlated (r = 0.53 to 0.85) among sites as far as 150 km apart, and that NDVI and EVI are highly correlated at the same site (r = 0.87 to 0.91). Correlation based on raw time series of NDVI and soil moisture is in general higher than that based on deseasonalized time series at every depth. The correlation reaches maximum value when vegetation index (VI) lags soil moisture by 5 to 10 days. NDVI shows a slightly higher correlation with soil moisture than EVI does by using the deseasonalized time series of NDVI and soil moisture. It is found that deseasonalized time series of NDVI and soil moisture are correlated at native sites (r = 0.33 to 0.77), but not at sites where soil moisture is very low. Regression analysis was conducted using deseasonalized time series soil moisture and deseasonalized time series NDVI with a 5-day time lag. Regression models developed at one site and applied to a similar distant site can estimate soil moistures, accounting for 50–88% of the variation in observed soil moistures.  相似文献   

2.
Monitoring soil respiration (Rs) at regional scales using images from operational satellites remains a challenge because of the problem in scaling local Rs to the regional scales. In this study, we estimated the spatial distribution of Rs in the Tibetan alpine grasslands as a product of vegetation index (VI). Three kinds of vegetation indices (VIs), that is, normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and modified soil adjusted vegetation index (MSAVI), derived from Landsat Thematic Mapper (TM) and Moderate-resolution Imaging Spectroradiometer (MODIS) surface reflectance product were selected to test our method. Different statistical models were used to analyze the relationships among the three VIs and Rs. The results showed that, based on the remote sensing data from either MODIS or Landsat TM, exponential function was the optimal fit function for describing the relationships among VIs and Rs during the peak growing season of alpine grasslands. Additionally, NDVI consistently showed higher explanation capacity for the spatial variation in Rs than EVI and MSAVI. Thus, we used the exponential function of TM-based NDVI as the Rs predictor model. Since it is difficult to achieve full spatial coverage of the entire study area with Landsat TM images only, we used the MODIS 8-day composite images to obtain the spatial extrapolation of plot-level Rs after converting the NDVI_MODIS into its corresponding NDVI_TM. The performance of the Rs predictor model was validated by comparing it with the field measured Rs using an independent dataset. The TM-calibrated MODIS-estimated Rs was within an accuracy of field measured Rs with R2 of 0.78 and root mean square error of 1.45 gC m−2 d−1. At the peak growing season of alpine grasslands, Rs was generally much higher in the southeastern part of the Tibetan Plateau and gradually decreased toward the northwestern part. Satellite remote sensing demonstrated the potential for the large scale mapping of Rs in this study.  相似文献   

3.
Soil salinity is recognized worldwide as a major threat to agriculture, particularly in arid and semi-arid regions. Producers and decision makers need updated and accurate maps of salinity in agronomically and environmentally relevant ranges (i.e., <20 dS m−1, when salinity is measured as electrical conductivity of the saturation extract, ECe). State-of-the-art approaches for creating accurate ECe maps beyond field scale (i.e., 1 km2) include: (i) Analysis Of Covariance (ANOCOVA) of near-ground measurements of apparent soil electrical conductivity (ECa) and (ii) regression modeling of multi-year remote sensing canopy reflectance and other co-variates (e.g., crop type, annual rainfall). This study presents a comparison of the two approaches to establish their viability and utility. The approaches were tested using 22 fields (total 542 ha) located in California’s western San Joaquin Valley. In 2013 ECa-directed soil sampling resulted in the collection of 267 soil samples across the 22 fields, which were analyzed for ECe, ranging from 0 to 38.6 dS m−1. The ANOCOVA ECa-ECe model returned a coefficient of determination (R2) of 0.87 and root mean square prediction error (RMSPE) of 3.05 dS m−1. For the remote sensing approach seven years (2007–2013) of Landsat 7 reflectance were considered. The remote sensing salinity model had R2 = 0.73 and RMSPE = 3.63 dS m−1. The robustness of the models was tested with a leave-one-field-out (lofo) cross-validation to assure maximum independence between training and validation datasets. For the ANOCOVA model, lofo cross-validation provided a range of scenarios in terms of RMSPE. The worst, median, and best fit scenarios provided global cross-validation R2 of 0.52, 0.80, and 0.81, respectively. The lofo cross-validation for the remote sensing approach returned a R2 of 0.65. The ANOCOVA approach performs particularly well at ECe values <10 dS m−1, but requires extensive field work. Field work is reduced considerably with the remote sensing approach, but due to the larger errors at low ECe values, the methodology is less suitable for crop selection, and other practices that require accurate knowledge of salinity variation within a field, making it more useful for assessing trends in salinity across a regional scale. The two models proved to be viable solutions at large spatial scales, with the ANOCOVA approach more appropriate for multiple-field to landscape scales (1–10 km2) and the remote sensing approach best for landscape to regional scales (>10 km2).  相似文献   

4.
Assessing the spatial variability of ecosystem structure and functioning is an important step towards developing monitoring systems to detect changes in ecosystem attributes that could be linked to desertification processes in drylands. Methods based on ground-collected soil and plant indicators are being increasingly used for this aim, but they have limitations regarding the extent of the area that can be measured using them. Approaches based on remote sensing data can successfully assess large areas, but it is largely unknown how the different indices that can be derived from such data relate to ground-based indicators of ecosystem health. We tested whether we can predict ecosystem structure and functioning, as measured with a field methodology based on indicators of ecosystem functioning (the landscape function analysis, LFA), over a large area using spectral vegetation indices (VIs), and evaluated which VIs are the best predictors of these ecosystem attributes. For doing this, we assessed the relationship between vegetation attributes (cover and species richness), LFA indices (stability, infiltration and nutrient cycling) and nine VIs obtained from satellite images of the MODIS sensor in 194 sites located across the Patagonian steppe. We found that NDVI was the VI best predictor of ecosystem attributes. This VI showed a significant positive linear relationship with both vegetation basal cover (R2 = 0.39) and plant species richness (R2 = 0.31). NDVI was also significantly and linearly related to the infiltration and nutrient cycling indices (R2 = 0.36 and 0.49, respectively), but the relationship with the stability index was weak (R2 = 0.13). Our results indicate that VIs obtained from MODIS, and NDVI in particular, are a suitable tool for estimate the spatial variability of functional and structural ecosystem attributes in the Patagonian steppe at the regional scale.  相似文献   

5.
Using hyperspectral vegetation indices as a proxy to monitor soil salinity   总被引:1,自引:0,他引:1  
The spectral bands most sensitive to salt-stress across diverse plants have not yet been defined; therefore, the predictive ability of previous vegetation indices (VIs) may not be satisfied for salinization monitoring. The hyperspectra of seven typical salt-sensitive/halophyte species and their root-zone soil samples were collected to investigate the relationship between vegetation spectra and soil salinity in the Yellow River Delta (YRD) of China. Several VIs were derived from the recorded hyperspectra and their predictive power for salinity was examined. Next, a univariate linear correlogram as well as multivariate partial least square (PLS) regression was employed to investigate the sensitive bands. VIs examination and band investigation confirmed that the responses of the vegetation differed from species to species, which explained the vibrations of the VIs in many study cases. These differences were primarily between salt-sensitive and halophyte plants, with the former consistently having higher sensitivity than the latter. With the exception of soil adjusted vegetation index (SAVI), most VIs were found to have weak relationships with soil salinity (with average R2 of 0.28) and some were not sensitive to all species [e.g. photochemical reflectance index (PRI) and red edge position (REP)], which verified that most currently available VIs are not adequate indicators of salinity for various species. PLS was validated as a more useful tool than linear correlogram for identification of sensitive bands due to well dealing with multicollinear spectral variables. From PLS, wavelengths at 395–410, 483–507, 632–697, 731–762, 812–868, 884–909, and 918–930 nm were determined to be the most sensitive bands. By combining the most sensitive bands in a SAVI form, we finally proposed four soil adjusted salinity indices (SASIs) for all species. Satisfactory relationships were observed between ECe and four SASIs for all species, with largely improved R2 values ranging from 0.50 to 0.58. Our findings indicate the potential to monitor soil salinity with the hyperspectra of salt-sensitive and halophyte plants.  相似文献   

6.
A study was conducted to understand the potential of Landsat-8 in the estimation of gross primary production (GPP) and to quantify the productivity of maize crop cultivated under hyper-arid conditions of Saudi Arabia. The GPP of maize crop was estimated by using the Vegetation Photosynthesis Model (VPM) utilizing remote sensing data from Landsat-8 reflectance (GPPVPM) as well as the meteorological data provided by Eddy Covariance (EC) system (GPPEC), for the period from August to November 2015. Results revealed that the cumulative GPPEC for the entire growth period of maize crop was 1871 g C m−2. However, the cumulative GPP determined as a function of the enhanced vegetation index – EVI (GPPEVI) was 1979 g C m−2, and that determined as a function of the normalized difference vegetation index – NDVI (GPPNDVI) was 1754 g C m−2. These results indicated that the GPPEVI was significantly higher than the GPPEC (R2 = 0.96, P = 0.0241 and RMSE = 12.6%). While, the GPPNDVI was significantly lower than the GPPEC (R2 = 0.93, P = 0.0384 and RMSE = 19.7%). However, the recorded relative error between the GPPEC and both the GPPEVI and the GPPNDVI was −6.22% and 5.76%, respectively. These results demonstrated the potential of the landsat-8 driven VPM model for the estimation of GPP, which is relevant to the productivity and carbon fluxes.  相似文献   

7.
The salinity problem is becoming increasingly widespread in arid countries. In semiarid Tunisia about 50% of the irrigated land is considered as highly sensitive to salinization. To avoid the risk of salinization, it is important to control the soil salinity and keep it below plant salinity tolerance thresholds. The objective of the present study was to provide farmers and rural development offices with a tool and methodology for predicting, monitoring of soil salinity for a better agronomical strategy. The experiments were carried out in the highly complex and heterogeneous semiarid Kalâat Landalous irrigated district of Tunisia. The field and laboratory measurements of soil and water properties were conducted in 1989 and 2006 at different observation scales (2900 ha, 1400 ha, 5200 m long transect, and soil profiles). Seventeen years of reclamation of a saline and waterlogged soil led to the reduction of average electrical conductivity of the soil saturated paste extract (ECe), measured at 5 soil depths (from 0 to 2 m) below the plant salt tolerance threshold and the dilution of groundwater salinity from 18.3 to 6.6 dS m−1. The variation in soil salt storage (ΔMss = Mss2006  Mss1989) in the vadose zone was negative, equal to about −145 × 103 ton (≈−50 ton ha−1). During the same period, the salt balance (Siw–Sdw) estimated from the input dissolved salt brought by irrigation water (Siw) and output salts exported by the drainage network (Sdw) was equal to −685 × 106 kg and the Sdw was 945 × 106 kg. Under irrigation and efficient drainage, the soil salinization could be considered as a reversible process. At the transect scale, the high clay content and the exchangeable sodium percentage was negatively correlated to saturated hydraulic conductivity. The textural stratification, observed at soil profile scale, favors accumulation of salt in the soil. Based on the findings related to the multiscale assessment of soil salinity and groundwater properties, soil salinization factors were identified and a soil salinization risk map (SRU) was elaborated. The shallow groundwater constitutes the main risk of soil salinization. This map can be used by both land planners and farmers to make appropriate decisions related to crop production, and soil and water management.  相似文献   

8.
An accurate and updated natural vegetation map is imperative for sustainable environmental management. This paper proposed a novel natural vegetation mapping algorithm based on time series images. Several indices of temporal dispersion and continuity were established for this purpose: low density (LD), medium density (MD), high density (HD) and medium continuity (MC). These indices were developed based on the particular percentiles-determined section of the EVI2 temporal profiles obtained through continuous wavelet transform. The natural vegetation was generally characterized as with lower temporal dispersion and greater temporal continuity compared with agricultural crops. The proposed methodology incorporated the indices of temporal dispersion and continuity and was applied to 13 provinces in central East China based on 500 m 8-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index with two bands (EVI2) in 2013. An overall accuracy of 92.97% was obtained when compared with 2715 ground truth sites. There was also a good agreement (kappa index = 0.8049) on the distribution and areas of different vegetation types between the MODIS-estimated image and the Landsat 8 OLI interpreted data on two test regions. This study demonstrated the efficiency of the transform and metric integrated time series classification approaches in the fields of land and vegetation cover mapping.  相似文献   

9.
Retrieving leaf chlorophyll content at a range of spatio-temporal scales is central to monitoring vegetation productivity, identifying physiological stress and managing biological resources. However, estimating leaf chlorophyll over broad spatial extents using ground-based traditional methods is time and resource heavy. Satellite-derived spectral vegetation indices (VIs) are commonly used to estimate leaf chlorophyll content, however they are often developed and tested on broadleaf species. Relatively little research has assessed VIs for different leaf structures, particularly needle leaves which represent a large component of boreal forest and significant global ecosystems. This study tested the performance of 47 published VIs for estimating foliar chlorophyll content from different leaf and canopy structures (broadleaf and needle). Coniferous and deciduous sites were selected in Ontario, Canada, representing different dominant vegetation species (Picea mariana and Acer saccharum) and a variety of canopy structures. Leaf reflectance data was collected using an ASD Fieldspec Pro spectroradiometer (400–2500 nm) for over 300 leaf samples. Canopy reflectance data was acquired from the medium resolution imaging spectrometer (MERIS). At the canopy level, with both leaf types combined, the DD-index showed the strongest relationship with leaf chlorophyll (R2 = 0.78; RMSE = 3.56 μg/cm2), despite differences in leaf structure. For needleleaf trees alone the relationship with the top VI was weaker (D[red], R2 = 0.71; RMSE = 2.32 μg/cm2). A sensitivity study using simulated VIs from physically-modelled leaf (PROSPECT) and canopy (4-Scale) reflectance was performed in order to further investigate these results and assess the impacts of different background types and leaf area index on the VIs’ performance. At the leaf level, the MNDVI8 index showed a strong linearity to changing chlorophyll and negligible difference to leaf structure/type. At canopy level, the best performing VIs were relatively consistent where LAI  4, but responded strongly to differences in background at low canopy coverage (LAI = 2). This research provides comprehensive assessments for the use of spectral indices in retrieval of spatially-continuous leaf chlorophyll content at the leaf (MTCI: R2 = 0.72; p < 0.001) and canopy (DD: R2 = 0.78; p < 0.001) level for resource management over different spatial and temporal scales.  相似文献   

10.
Optimization through parallel synthesis of a novel series of hepatitis C virus (HCV) NS5B polymerase inhibitors led to the identification of (R)-11-(4-benzyloxy-2-fluorophenyl)-6-hydroxy-3,3-dimethyl-10-(6-methylpyridine-2-carbonyl)-2,3,4,5,10,11-hexahydro-dibenzo[b,e][1,4]diazepin-1-one 11zc and (R)-11-(4-benzyloxy-2-fluorophenyl)-6-hydroxy-3,3-dimethyl-10-(2,5-dimethyloxazol-4-carbonyl)-2,3,4,5,10,11-hexahydro-dibenzo[b,e][1,4]diazepin-1-one 11zk as potent (replicon EC50 = 400 nM and 270 nM, respectively) and selective (CC50 > 20 μM) inhibitors of HCV replication. These data warrant further lead-optimization efforts.  相似文献   

11.
Salt stress response in tomato beyond the salinity tolerance threshold   总被引:1,自引:0,他引:1  
Crop salt tolerance is generally assessed as the relative yield response to increasing root zone salinity, expressed as soil (ECe) or irrigation water (ECw) electrical conductivity. Alternatively, the dynamic process of salt accumulation into the shoot relative to the shoot biomass has also been considered as a tolerance index. These relationships are graphically represented by two intersecting linear regions, which identify (1) a specific threshold tolerance, at which yield begins to decrease, and (2) a declining region, which defines the yield reduction rate. Although the salinity threshold is intuitively a critical parameter for establishing plant salt tolerance, we focused our interest on physiological modifications that may occur in the plant at salinity higher than the so-called tolerance threshold. For this purpose, we exposed hydroponically grown tomato plants to eight different salinity levels (EC = 2.5 (non-salinized control); 4.2; 6.0; 7.8; 9.6; 11.4; 13.2; 15.0 dS m−1). Based on biomass production, water relations, leaf ions accumulation, leaf and root abscisic acid and stomatal conductance measurements, we were able to identify a specific EC value (approximately 9.6 dS m−1) at which a sharp increase of the shoot and root ABA levels coincided with (1) a decreased sensitivity of stomatal response to ABA; (2) a different partitioning of Na+ ions between young and mature leaves; (3) a remarkable increase of the root-to-shoot ratio. The specificity and functional significance of this response in salt stress adaptation is discussed.  相似文献   

12.
13.
Salinity is one of the serious abiotic stresses adversely affecting the majority of arable lands worldwide, limiting the crop productivity of most of the economically important crops. Sweet basil (Osmium basilicum) plants were grown in a non-saline soil (EC = 0.64 dS m−1), in low saline soil (EC = 5 dS m−1), and in a high saline soil (EC = 10 dS m−1). There were differences between arbuscular mycorrhizal (Glomus deserticola) colonized plants (+AMF) and non-colonized plants (−AMF). Mycorrhiza mitigated the reduction of K, P and Ca uptake due to salinity. The balance between K/Na and between Ca/Na was improved in +AMF plants. Growth enhancement by mycorrhiza was independent from plant phosphorus content under high salinity levels. Different growth parameters, salt stress tolerance and accumulation of proline content were investigated, these results showed that the use of mycorrhizal inoculum (AMF) was able to enhance the productivity of sweet basil plants under salinity conditions. Mycorrhizal inoculation significantly increased chlorophyll content and water use efficiency under salinity stress. The sweet basil plants appeared to have high dependency on AMF which improved plant growth, photosynthetic efficiency, gas exchange and water use efficiency under salinity stress. In this study, there was evidence that colonization with AMF can alleviate the detrimental salinity stress influence on the growth and productivity of sweet basil plants.  相似文献   

14.
《农业工程》2014,34(1):7-12
Vegetation variation is an important topic of global change research, which is of great significance to deeply understand the relationship between vegetation and global change or human activities, and to disclose regional environment evolution and transition. The dynamics of forest vegetation in the mid-subtropical zone have received little attention. Thus, this paper takes the typical distribution area of the subtropical forest ecosystem — Jinggangshan City in Jiangxi Province as a study area. The changes within the year, inter-annual changes trend and spatial variation of the mid-subtropical forest vegetation index during the recent 10 years are analyzed based on MODIS NDVI data from 2000–2011 with the spatial resolution of 250 m. The Savitzky–Golay filter is used to smooth the original MODIS NDVI data. The forest distribution data is taken as the mask to eliminate the impact of non-forest cover area. The results showed that: (1) The changes of forest vegetation index within the year present a single peak mode with the maximum value in July; in the past 10 years, the forest vegetation index fluctuated with a downward trend; NDVI values were high and stable in summer and autumn, but low and unstable in winter; (2) The distribution of NDVI values of forest vegetation had great spatial difference. The NDVI values were low in the area nearby non-forest area in the north, where the non-forest vegetation is widely distributed. The NDVI values were high in the northwestern and southeastern areas. The distribution of NDVI values are comparatively even in the middle area with the NDVI values of more than 0.7; (3) High NDVI values (>0.75) distributed most in the northwestern and southeastern areas with the altitude of 400–600 m. Low NDVI values (<0.65) distributed mostly in the northern areas with the altitude less than 400 m. As for different altitude zones, NDVI values are high in the area with altitude of 400–800 m and low in the area with altitude below 400 m or above 1200 m. There is an agreement between the spatial distribution of the NDVI value of forest vegetation and regional topography, because topography has great impacts on the distribution of forest types which are different in coverage; (4) The NDVI value of forest vegetation presents a downward trend in the northern area, but an increasing trend in the southern area. The vegetation coverage tends to decrease with high population density and intensive distribution of township and scenic spot.  相似文献   

15.
The efficient synthesis of a new series of polyhydroxylated dibenzyl ω-(1H-1,2,3-triazol-1-yl)alkylphosphonates as acyclic nucleotide analogues is described starting from dibenzyl ω-azido(polyhydroxy)alkylphosphonates and selected alkynes under microwave irradiation. Selected O,O-dibenzylphosphonate acyclonucleotides were transformed into the respective phosphonic acids. All compounds were evaluated in vitro for activity against a broad variety of DNA and RNA viruses and for cytostatic activity against murine leukemia L1210, human T-lymphocyte CEM and human cervix carcinoma HeLa cells. Compound (1S,2S)-16b exhibited antiviral activity against Influenza A H3N2 subtype (EC50 = 20 μM—visual CPE score; EC50 = 18 μM—MTS method; MCC >100 μM, CC50 >100 μM) in Madin Darby canine kidney cell cultures (MDCK), and (1S,2S)-16k was active against vesicular stomatitis virus and respiratory syncytial virus in HeLa cells (EC50 = 9 and 12 μM, respectively). Moreover, compound (1R,2S)-16l showed activity against both herpes simplex viruses (HSV-1, HSV-2) in HEL cell cultures (EC50 = 2.9 and 4 μM, respectively) and feline herpes virus in CRFK cells (EC50 = 4 μM) but at the same time it exhibited cytotoxicity toward uninfected cell (MCC  4 μM). Several other compounds have been found to inhibit proliferation of L1210, CEM as well as HeLa cells with IC50 in the 4–50 μM range. Among them compounds (1S,2S)- and (1R,2S)-16l were the most active (IC50 in the 4–7 μM range).  相似文献   

16.
Ten novel fenfuram-diarylamine hybrids were designed and synthesized. And their antifungal activities against four phytopathogenic fungi have been evaluated in vitro and most of the compounds demonstrated a significant antifungal activities against Rhizoctonia solani and Sclerotinia sclerotiorum. Compound 5e exhibited the most potent antifungal activity against R. solani with an EC50 value of 0.037 mg/L, far superior to the commercially available fungicide boscalid (EC50 = 1.71 mg/L) and lead fungicide fenfuram (EC50 = 6.18 mg/L). Furthermore, scanning electron microscopy images showed that the mycelia on treated media grew abnormally with tenuous, wizened and overlapping colonies compared to the negative control. Molecular docking studies revealed that compound 5e featured a higher affinity for succinate dehydrogenase (SDH) than fenfuram. Furthermore, it was shown that the 3-chlorophenyl group in compound 5e formed a CH-π interaction with B/Trp-206 and a Cl-π interaction with D/Tyr-128, rendering compound 5e more active than fenfuram against SDH.  相似文献   

17.
To identify new potent multidrug resistance modulators, we have synthesized a series of novel thieno[2,3-b]pyridines and furo[2,3-b]pyridines, and examined their stucture–activity relationships. All synthesized compounds were tested to determine BCRP1, P-gp, and MRP1 inhibitor activity, and most potent MDR modulators were also screened for their toxicity, cytotoxicity and Ca2+ channel antagonist activity. Among these compounds, thieno[2,3-b]pyridine (6r) was found to exhibit a potent P-gp inhibitory action with EC50 = 0.3 ± 0.2 μM, MRP1 inhibitory action with EC50 = 1.1 ± 0.1 μM and BCRP1 inhibitory action with EC50 = 0.2 ± 0.05 μM and may represent suitable candidate for further pharmacological studies.  相似文献   

18.
PPARγ and 11β-HSD1 are attractive therapeutic targets for type 2 diabetes. However, PPARγ agonists induce adipogenesis, which causes the side effect of weight gain, whereas 11β-HSD1 inhibitors prevent adipogenesis and may be beneficial for the treatment of obesity in diabetic patients. For the first time, we designed, synthesized a series of α-aryloxy-α-methylhydrocinnamic acids as dual functional agents which activate PPARγ and inhibit 11β-HSD1 simultaneously. The compound 11e exhibited the most potent inhibitory activity compared to that of the lead compound 2, with PPARγ (EC50 = 6.76 μM) and 11β-HSD1 (IC50 = 0.76 μM) in vitro. Molecular modeling study for compound 11e was also presented. Compound 11e showed excellent efficacy for lowering glucose, triglycerides, body fat, in well established mice and rats models of diabetes and obesity and had a favorable ADME profile.  相似文献   

19.
Wetland cultivation and its effects on soil properties in salt marshes in the Yellow River Delta, China were examined by using a combination of the satellite imageries and field experiments. Results showed that the conversions mainly occurred between dry lands and Phragmites australis–Suaeda salsaTamarix chinensis marshes (PSTMs). The total area of marsh wetland was reduced by 65.09 km2 during the period from 1986 to 2005, and these conversions might be attributed to a combination of farming, oil exploration and water extraction, as well as soil salinization. Significant differences were observed in bulk density, pH, salinity and NO3-N between different land-use types (P < 0.05). After the conversions from marsh wetlands to dry lands, bulk density, pH, salinity and NH4+-N decreased slightly, while a significant increase in NO3-N, TN (total nitrogen), and AP (available phosphorus) (P < 0.05) was observed. The more loss of soil nutrient storage also occurred after the maximal area conversion from PSTMs to dry lands compared to other conversions during the study period. The storages of soil organic matter, NH4+-N and total phosphorus decreased greatly under the conversion from three types of marshes to dry lands, while those of NO3-N, AP and TN showed an obvious increase during the whole study period.  相似文献   

20.
Herein we describe the synthesis of novel tricyclic analogues issued from the rigidification of the methoxy group of the benzofuranic analogue of melatonin as MT1 and MT2 ligands. Most of the synthesized compounds displayed high binding affinities at MT1 and MT2 receptors subtypes. Compound 6b (MT1, Ki = 0.07 nM; MT2, Ki = 0.08 nM) exhibited with the vinyl 6c and allyl 6d the most interesting derivatives of this series. Functional activity of these compounds showed full agonist activity with EC50 in the nanomolar range. Compounds 6a (EC50 = 0.8 nM and Emax = 98%) and 6b (EC50 = 0.2 nM and Emax = 121%) exhibited good pharmacological profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号