首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate the impact of water impoundment on the metal contamination in sediments cores from the three tributaries of Three Gorges Reservoir (TGR), the concentrations, distribution, bioavailability, and potential risk of eight trace metals between summer and winter were analyzed using sequential analysis. The mean contents of all studied metals were higher than the geochemical background value, and were higher in summer than in winter. The results of the partitioning study indicated that Cr and Ni prevailed in the residual fraction, while a small proportion was found in the easily soluble fractions. Cu and Zn were distributed mainly in the residual and reducible fraction, while Cd and Pb were predominantly associated with non-residual fractions. These observations suggested that the most easily mobilized metals in the study area were Cd and Pb. The mean enrichment factors (EF) of Cu, Zn, Cd and Hg were higher than 1.5, revealing the potential anthropogenic inputs, whilst the EF of other metals remained within the range of natural variability. The positive correlation between non-residual Cu, Zn and Cd and their EF values further indicated that anthropogenic inputs were the potentially major contributor for the enrichment of Cu, Zn and Cd in TGR sediments. The results evaluated by both potential ecological risk index and modified risk assessment code (mRAC) of all sampling sites demonstrated the relatively high potential risk of sediment contamination effect in TGR.  相似文献   

2.
In this study, heavy metals contamination in surface sediments of northwest Persian Gulf was investigated and a new index was formulated for assessing severity of heavy metal pollution in aquatic environments. The surface sediment samples were collected from 45 stations. The concentrations of 8 metals (Fe, Cu, Zn, Cr, Ni, Pb, Cd and V) were analyzed. According to the results of potential ecological risk index (RI), pollution load index (PLI) and modified degree of contamination (mCD), based on the average shale, considerable and intense pollution of heavy metals in sediments of study area was not observed. Based on the sediments quality guidelines the concentration of Ni at whole study area has frequently adverse biological effect on aquatic organisms. The mean effects range-median quotient indicated that surface sediments in the vicinity of petrochemical zone and Bahrekan pier with 49% probability of toxicity can be risky for the biota. The Consequence of the cluster analysis and principal component analysis/factor analysis indicated that Fe, Cu, Zn and Cr are mainly originated from natural sources and Ni, Pb, Cd and V are mostly derived from anthropogenic sources. Results of introduced index in this research (Contamination Severity Index) demonstrated that pollution of heavy metals in sediments at several sites is very intense. Assessment of results illustrated that proposed index is more reliable and logical compared with other investigated indices for evaluating heavy metals pollution in sediments of aquatic environments.  相似文献   

3.
This study was made to determine the pollution status and potential ecological risk of heavy metals in sediment of Persian Gulf. Surface sediments were collected seasonally by Peterson grab, and the concentrations of heavy metals were measured by using inductively coupled plasma–optical emission spectrometry (ICP–OES). The range concentrations obtained in mg/kg were 10,800–22,400 for Fe, 5.32–10.12 for Pb, 24.63–42.38 for Ni, 22.52–39.46 for Cu, and 31.64–47.20 for Cr. The concentrations of Pb, Ni, Cu, and Cr have been found lower than the Interim Sediment Quality Guidelines and probable effect level values suggesting that heavy metal contents in sediments from area of study would not be expected to cause adverse biological effects on the biota. The obtained enrichment factor values for various metals were between minimal enrichment (Pb = 0.5) and extremely enrichment (Cu = 3.11). The values of Igeo for Pb, Ni, Cu, and Cr were characterized under no pollution (0). The highest value of potential ecological risk index (RI) (8.36) was observed at St. 4 while the lowest value (5.25) was detected at station 6. Based on potential ecological RI, the Persian Gulf had low ecological risk.  相似文献   

4.
Surface sediment samples were collected from a source water reservoir in Zhejiang Province, East of China to investigate pollution characteristics and potential ecological risk of heavy metals. The BCR sequential extraction method was used to determine the four chemical fractions of heavy metals such as acid soluble, easily reducible, easily oxidizable and residual fractions. The heavy metals pollution and potential ecological risk were evaluated systematically using geoaccumulation index (Igeo) and Hakanson potential ecological risk index (H′). The results showed that the sampling sites from the estuaries of tributary flowing through downtowns and heavy industrial parks showed significantly (p < 0.05) higher average concentrations of heavy metals in the surface sediments, as compared to the other sampling sites. Chemical fractionation showed that Mn existed mainly in acid extractable fraction, Cu and Pb were mainly in reducible fraction, and As existed mainly in residual fraction in the surface sediments despite sampling sites. The sampling sites from the estuary of tributary flowing through downtown showed significantly (p < 0.05) higher proportions of acid extractable and reducible fractions than the other sampling sites, which would pose a potential toxic risk to aquatic organisms as well as a potential threat to drinking water safety. As, Pb, Ni and Cu were at relatively high potential ecological risk with high Igeo values for some sampling locations. Hakanson potential ecological risk index (H′) showed the surface sediments from the tributary estuaries with high population density and rapid industrial development showed significantly (p < 0.05) higher heavy metal pollution levels and potential ecological risk in the surface sediments, as compared to the other sampling sites.  相似文献   

5.
Trace metals in aquatic and soil systems exist in a number of different soluble and particulate forms that impact the effect of the metals on these ecosystems. Appropriate methods of sampling and analysis are required to accurately determine the low concentrations present. Although assessment of metals in many regulatory programs is based on data for total metal concentrations, such values rarely correlate with effects. Consequently, other means are needed for the prediction of risk. Bioavailability of metals depends on their speciation, whose importance was first established for copper in aquatic systems where the toxicity of metals is related to the activity of the free metal ion. Small concentrations of natural organic matter strongly complex metals ameliorating toxicity. Several electroanalytical techniques are available that allow the assessment of metal species. Recently, a modeling approach, the Biotic Ligand Model (BLM), has been applied to the prediction of acute toxicity. The model accounts for the effects of natural organic matter, pH, and hardness and is able to predict toxicity over several orders of magnitude of soluble metal concentration using only easily determined site parameters. Total metal concentrations in sediment cover several orders of magnitude with no distinction of sediments that cause effects and those that do not except at low total metal concentrations. Relating the metal concentration to the concentrations of sulfide and organic matter binding sites enables the sediments containing higher concentrations of metals to be divided into those that do and those that do not have adverse effects. It is essential that metal speciation be considered to realistically evaluate the potential of metals to pose risk.  相似文献   

6.
惠州市3座供水水库沉积物重金属污染特征   总被引:1,自引:0,他引:1  
为了解惠州市供水水库沉积物重金属(Cr、Cu、Zn、Cd、Pb和Hg)污染状况和垂直分布特征,于2008年5月在惠州市3座具代表性的水库湖泊区采集柱状沉积物样品,运用ICPMS法检测沉积物中重金属含量,并采用地积累指数法(Igen)和潜在生态风险指数法(RI)进行污染评价,同时运用主成分分析(PCA)对沉积物中重金属的可能来源进行分析.结果表明:3座水库沉积物重金属含量随沉积深度的变化差异明显,一些重金属含量的垂直变化不明显,而另一些垂直变化明显(降低或升高),但各种重金属在不同水库沉积物中呈现特有的垂直分布特征.根据地积累指数可知,3座水库中沉积物主要以Zn和Pb污染最为严重,达到轻度至强度污染(含量分别为Zn:49.98 ~ 640.29 mg·kg-1;Pb:21.94~300.66 mg· kg-1),同时沉积物中部或底部受到轻度的Cu污染(含量为16.85 ~45.46 mg·kg-1),基本未受Cr、Cd和Hg污染.据6种重金属潜在生态风险系数[Er(i)]及潜在生态风险指数(RI)可知,3座水库沉积物的重金属潜在风险均处于较低水平.据PCA分析和相关资料可知,矿山开采与冶炼、城市化和农林业快速发展等人类活动影响了3座水库沉积物重金属的分布特征和污染.其中,Zn主要来源于矿产开采与冶炼;除矿产开采与冶炼导致沙田水库Pb污染外,机动车尾气排放和生活垃圾等是3座水库沉积物Pb污染的主要途径;Cu污染主要来源于农业和林业污染.  相似文献   

7.
Zaozhuang Segment of the Beijing-Hangzhou Grand Canal is an important water conveyance line on the eastern route of the South-North Water Transfer Project in China and its water environment condition can exert a significant influence on diversion water quality safety. This paper analyzed contents of five heavy metals such as Cd, Cu, Ni, Pb and Zn as well as their chemical forms in surface sediments in this region. Methods including Threshold Effects Level-Probable Effects Level (TEL-PEL), Risk Assessment Code (RAC) and Acid Volatile Sulfide- Simultaneously Extracted Metals (AVS-SEM) were also employed to evaluate the quality of sedimentary environment in this region. With the aim to assess the eco-environmental risk revealing the information of the concentration, the chemical fractionation, the toxicity of heavy metals, a new assessment index known as Multivariable Evaluation Index (MEI) was introduced into this paper. Results indicated that contents of such five heavy metals in surface sediments were generally low. Overall, ecological risk was in the medium-low grade in addition to several locations where the level of risk was high. However, certain differences still existed among various assessment results. Comparing with other single evaluation methods, MEI may be able to reflect contamination status and ecological risks of heavy metals in sediments of a specific region more comprehensively. MEI also seemed able to overcome the limitations of other prevalent aggregated indexes to assess potential sediment pollution risk in aquatic systems.  相似文献   

8.
Overlying water, sediment, rhizosphere sediment and mangrove seedlings in the Futian mangrove forest were analyzed for heavy metals. The results showed that mangrove plant acidified sediment and increased organic matter contents. Except for chromium (Cr), nickel (Ni) and copper (Cu) in Aegiceras corniculatum sediment, heavy metals in all sediments were higher than in overlying water, rhizosphere sediment and mangrove root. Heavy metals in Avicennia marina sediments were higher than other sediments. The lower heavy metal biological concentration factors (BCFs) and translocation factors (TFs) indicated that mangrove plant adopted exclusion strategy. The geo-accumulation index, potential ecological risk index and risk assessment code (RAC) demonstrated that heavy metals have posed a considerable ecological risk, especially for cadmium (Cd). Heavy metals (Cr, Ni, Cu and Cd) mainly existed in the reducible fractions. These findings provide actual heavy metal accumulations in sediment-plant ecosystems in mangrove forest, being important in designing the long-term management and conservation policies for managers of mangrove forest.  相似文献   

9.
This paper analyzed the distribution and speciation of seven heavy metals in sediments in Jiaozhou Bay. The ecological risk was assessed using three index approaches (i.e., risk assessment code (RAC), contamination factor (CF), and potential ecological risk index (PERI)) and by a comparison with sediment quality guidelines (Chinese Marine Sediment Quality Standards (CMSQS), and threshold effect level (TEL) and probable effect level (PEL) from the USEPA). Pb, Cr, As, Cu, Zn, and Hg contents at most sites were above the corresponding TEL and Class I criteria (CMSQS) value. Particularly, high contents of Cu, detected at sites S7 (124.5 mg kg?1) and S8 (118.3 mg kg?1), exceeded the respective PEL value, indicating that harmful biological effects might occur. Speciation analysis, individual CF, and RAC calculations suggested that Cd had the highest bioavailable fraction and thus posed a very high risk to aquatic ecosystem; Cu and Zn showed a medium–high risk. Both global CF and PERI analysis indicated a high pollution risk at sites S7, S1, S3, and S2, but the assessments of specific sites were different. The incomplete consistency suggested that it is necessary to consider both total contents and chemical speciation for providing a more realistic appraisal for the risk of heavy metals in sediments.  相似文献   

10.
A comprehensive and detailed investigation of cadmium (Cd) pollution in surface riverine sediments of the Haihe Basin in north China was carried out. Total Cd concentrations in these sediments ranged from 0.153 to 22.1 mg/kg, exceeding the soil background value at all sampling sites. The mean Cd concentration of the bioavailable fraction was 0.557 mg/kg, accounting on average for 51.58% of the total Cd. A mean value of the Cd enrichment factor of 11.6 suggested that Cd has accumulated in most riverine sediments, resulting in a high degree of anthropogenic pollution. In fact, there were high levels of Cd pollution in the riverine sediments throughout the Haihe Basin, yielding geo-accumulation index values for Cd from 0.071 to 7.25. According to the potential ecological risk index, risk assessment code, and consensus-based sediment quality guidelines, Cd was a serious pollutant in this ecosystem. Because it occurred as a high proportion in the exchangeable/acid soluble fraction (21.21% on average), it may also have biological toxicity. Our findings indicated that it is important to consider Cd in control strategies for managing riverine sediment pollution in the Haihe Basin.  相似文献   

11.
Sequential extraction procedure has been carried out to scrutinize the geochemical association of Cadmium (Cd), Copper (Cu), Iron (Fe), Lead (Pb), and Manganese (Mn) with the main sedimentary phases (exchangeable, carbonate, Fe-Mn oxides, organic, and residual fraction) at 10 marine sediment samples collected from the Suez Gulf. Global contamination factor was used to identify the pollution hotspots, which indicated the existence of intensive metal contamination at stations close to the northern part of the Gulf, especially for Cd, Cu, and Pb. The potential ecological risk indices: Potential ecological risk index, risk assessment code, and modified risk assessment code revealed that there are potential hazards to marine biota caused by Cd, Cu, and Pb due to the increased levels of these metals in the labile fractions, which are vulnerable to changes in environmental conditions. This work is a good basis for further studies about metal fractionation in the Suez Gulf. It is also very helpful for government decisions about the development of the Gulf.  相似文献   

12.
Dave  Göran 《Hydrobiologia》1992,235(1):419-433
The River Kolbäcksån system is located in a historical mining and steel works district of central Sweden. Ten years ago, intensive limnological studies indicated that the sediments in many of the lakes of this system were contaminated with metals and oil (grease). More recently a very high toxicity was found in the sediments from some of these lakes in tests with Daphnia magna and Tubifex tubifex. The objective of this study was to determine the toxicity to Daphnia magna of surficial sediments from representative locations (N = 39) within this system of lakes and to look for possible correlations with concentrations of metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) and oil (total) analysed in parallel samples. These results were also compared with spiked sediment toxicity data generated for these metals and with the bottom fauna at 8 of the 39 locations. Among the metals analyzed, only Cd, Pb and Zn were correlated with whole sediment toxicity. Only for Zn and Cr did the maximum concentrations approach those that were toxic in the spiked sediments. Correlations using single and combined metal contamination and toxicity (additive models) explained 16% of the sediment toxicity (r 2 = 0.16; N = 39). Significant correlations with the bottom fauna in situ (gross abundance, biomass and species richness) were found for whole sediment toxicity, but not for metal contamination (N = 8). The use of the sediment quality triad approach for assessment of sediment quality is exemplified with a numerical normalization procedure for the latter 8 sites.  相似文献   

13.
Heavy metal contamination in lake sediments is a serious problem, particularly in developing countries such as China. To evaluate heavy metal pollution and risk of contamination in lake sediments on a national scale in China, we collated available data in the literature of the last 10 years on lake sediments polluted with heavy metals from 24 provinces in China. Based on these data, we used sediment quality guidelines, geoaccumulation index, and potential ecological risk index to assess potential ecological risk levels. The results showed that approximately 20.6% of the lakes studied exceeded grade II level in Chinese soil quality standards for As, 31.3% for Cd, 4.6% for Cu, 20.8% for Ni, 2.8% for Zn, and 11.1% for Hg, respectively. Besides, the mean concentrations for As in 10.3% of lakes, Hg in 11.9% of lakes, and Ni in 31.3% of lakes surpassed the probable effect level. The potential ecological risk for toxic metals decreased in the order of Cd > Hg > As > Cu > Pb > Ni > Cr > Zn, and there were 21.8% of the lakes studied in the state of moderate risk, 10.9% in high risk, and 12.7% in very high risk. It can be concluded that Chinese lake sediments are polluted by heavy metals to varying degrees. In order to provide key management targets for relevant administrative agencies, based on the results of the pollution and ecological risk assessments, Cd, Hg, As, Cu, and Ni were selected as the priority control heavy metals, and the eastern coastal provinces and Hunan province were selected as the priority control provinces. This article, therefore, provides a comprehensive assessment of heavy metal pollution in lake sediments in China, while providing a reference for the development of lake sediment quality standards.  相似文献   

14.
通过测定广东省东部沿海地区4座典型供水水库柱状沉积物主要重金属(Cr、Cu、Pb、Zn、Cd和Hg)含量,揭示了这4座水库沉积物重金属的污染特征及历史,并运用地积累指数及潜在生态危害指数法分别对表层沉积物重金属污染状态进行评价,最后分析了重金属可能来源。结果表明,除Cr外,Cu、Pb、Zn、Cd和Hg的含量均高于中国土壤环境质量标准Ⅰ类土标准值和工业化前全球沉积物重金属最高背景值,且4座水库间含量变异较大,表明4座水库沉积物均存在不同程度的重金属污染。据地积累指数评价,各重金属污染程度顺序为:Pb>Zn>Cd>Cu>Cr>Hg。潜在生态危害评价表明,河溪、汤溪及公平水库的生态危害程度要低于赤沙水库,各重金属污染程度顺序为:Cd>Hg>Pb>Cu>Zn>Cr,其中Cd和Hg对综合生态危害指数的贡献最大。4座水库沉积物重金属含量与人类活动强度表现出了较强的相互关系,流域内人类活动较强的公平、赤沙水库污染程度要明显高于人类活动较少的河溪和汤溪水库。  相似文献   

15.
The study deals with metal (Cu, Mn, Pb, Cd) concentrations in sediment, water, and corresponding leaf samples of Eichhornia crassipes obtained from ponds in nonmining (P1) and mining (P2, P3, P4) regions. In spite of significant high metal concentrations in sediments from mining regions rather than from nonmining regions, the unelevated SQG-I (sediment quality guideline index) values proved low levels of toxicity. Irrespective of the wide range of metal concentration in sediments, the levels in water had been nearly consistent in all the ponds. Concentration of metals in leaves decreased with an increase in concentration in the substrate. Mn, Cu, and Cd accumulated within the range of MAC (maximum allowable concentration) for plants, whereas Pb accumulated above the limit. BAFsl (bioaccumulation factor with respect to sediment) values for Mn (0.20–0.27) were highest, followed by Cu (0.13–0.20) and Pb (0.03–0.20), whereas BAFwl (bioaccumulation factor with respect to water) was highest for Cu (428–3205), followed by Mn (285–1100), Pb (242–506), and Cd (7–130). This study concludes that E. crassipes plays a very important role in removing the metals from the pond ecosystem, whereas leaves of this plant can be used effectively for biomonitoring surveys. E. crassipes can be used for phytoremediation of polluted wetlands through proper management strategies.  相似文献   

16.
Ma HR  Chen JF  Cui Y  Zhao J  Yang F 《应用生态学报》2011,22(10):2749-2756
Based on the investigation data from 48 sampling stations in the sea area of Jiaozhou Bay wetland in 2009, and by using Nemerow index, eutrophication index (EI), and Hakanson potential ecological risk index, an assessment was conducted on the environmental quality of water body and surface sediment in the sea area. According to the assessment on the 16 indicators including pH, dissolved oxygen (DO), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorous (DIP), chemical oxygen demand (COD(Mn)), petroleum hydrocarbons, Cu, Zn, Pb, Cd, Hg, As, hexachlorocyolohexane (HCH), dichlorodiphenyltrichloroethane (DDT), coliform, and faecal coliform, the water quality was at moderate and serious pollution level in the tidal reach of Dagu River, at slight and moderate pollution level in the intertidal zone, and at slight pollution level in the shallow sea. The eutrophication level differed markedly with the regions, being very serious in the tidal reach of Dagu River (EI value 58.13-327.89), serious in the intertidal zone (EI value 1.34-19.96), and slight in the shallow sea (EI value 0.65-2.10). The surface sediments in the sea area were basically at slight pollution level. The sediment quality was at slight pollution level in the tidal reach of Dagu River, at slight and moderate pollution level in the intertidal zone, and at cleaner and slight pollution level in the shallow sea. The pollution parameter (C(f)(i)) and contamination index (Cd) of the heavy metals in the surface sediments were low, suggesting that the pollution degree was at a lower level. The Cu and Zn were the primary pollution factors in the sediments. The potential ecological risk parameter (E(r)(i)) and risk index (RI) of the heavy metals in the surface sediments were lower, indicating a slight ecological risk of heavy metals pollution.  相似文献   

17.
Abstract

The Huaihe River has suffered increasing pressure from pollutants including metals from anthropogenic activities. In this study, enrichment and fractionation behavior of trace metals were analyzed in sediment samples obtained from fish spawning area of the Huaihe River (Anhui Section) to evaluate the potential ecological risk of trace metals to aquatic organisms. Geochemical indices including enrichment factor and geo-accumulation index as well as mean probable effect concentration quotient and risk assessment code were adopted to assess the contamination degree and potential ecological toxicity. Results showed that the total contents of Cu, Pb, Zn, Cr, Cd, As, and Hg in sediment were 23.1?±?6.4, 32.3?±?11.1, 76.8?±?14.2, 84.6?±?17.2, 0.2?±?0.1, 9.0?±?3.0, and 0.031?±?0.010?mg/kg, respectively. The indexes EF and Igeo revealed slight accumulation for Pb, Zn, Cr, Cd, and As in some sampling sites. The result of Qm-PEC demonstrated that trace metals in sediment were not toxic to aquatic organisms. Most trace metals appeared to mainly associate with the residual form suggesting lower mobility whereas Cd presented a relative higher exchangeable fraction indicating a great degree of bioavailability. The result of risk assessment code (RAC) evaluation revealed that Cd poses a medium ecological risk for aquatic organisms whereas most of the other trace metals pose low risks.  相似文献   

18.
This study aimed to investigate the pollution of heavy metals in the sediments of park lakes in Guangzhou, which is a large city with rapid urbanization, industrialization, and dense population in South China. Thirty-two surface sediment samples were collected from seven lakes in different districts of this city. The concentrations and distributions of Cr, Ni, Cu, Zn, Cd, and Pb were measured to assess the level of enrichment and toxicity in the sediments. The enrichment factor showed that Pb and Zn showed severe enrichment in all lakes except for the Dafu Shan Forest Park (DFS), and the geo-accumulation index (Igeo) showed that all lakes were polluted with Cu, Pb, Cd, Ni, and Zn in different levels. The results of risk assessment indicated that the DFS located in the suburbs represented moderate risks; however, other lakes in the city central represented high or very high risks. Moreover, Cd had the primary contribution to the risk of the sediments' environment in urban lakes. Multivariate statistical analyses are carried out to explore the correlativity between heavy metals and human development indices. This study indicated that the levels of heavy metals' contamination and ecological risk of urban lakes in Guangzhou have a close relationship with anthropogenic activities.  相似文献   

19.
Laboratory bioassays can provide an integrated assessment of the potential toxicity of contaminated sediments to aquatic organisms; however, toxicity as a sole endpoint is not particularly useful in terms of identifying remedial options. To focus possible remediation (e.g., source control), it is essential to know which contaminants are responsible for toxicity. Unfortunately, contaminated sediments can contain literally thousands of potentially toxic compounds. Methods which rely solely on correlation to identify contaminants responsible for toxicity are limited in several aspects: (a) actual compounds causing toxicity might not be measured, (b) concentrations of potentially toxic compounds may covary, (c) it may be difficult to assess the bioavailability of contaminants measured in a sediment, and (d) interactions may not be accounted for among potential toxicants (e.g., additivity). Toxicity identification evaluation (TIE) procedures attempt to circumvent these problems by using toxicity-based fractionation procedures to implicate specific contaminants as causative toxicants. Phase I of TIE characterizes the general physio-chemical nature of sample toxicants. Phase II employs methods to measure toxicants via different analytical methods, and Phase III consists of techniques to confirm that the suspect toxicants identified in Phases I and II of the TIE actually are responsible for toxicity. These TIE procedures have been used to investigate the toxicity of a variety of samples, including sediments. Herein we present a brief conceptual overview of the TIE process, and discuss specific considerations associated with sediment TIE research. Points addressed include: (a) selection and preparation of appropriate test fractions, (b) use of benthic organisms for sediment TIE work, and (c) methods for the identification of common sediment contaminants.  相似文献   

20.
The total concentrations and chemical forms of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in the surface sediments of the Laizhou Bay and the surrounding marine area of the Zhangzi Island (hereafter referred to as Zhangzi Island for short) were obtained and multiple indices and guidelines were applied to assess their contamination and ecological risks. The sedimentary conditions were fine in both of the two studied areas according to the marine sediment quality of China. Whereas the probable effects level guideline suggested that Ni might cause adverse biological effects to occur frequently in some sites. All indices used suggested that Cd posed the highest environmental risk in both the Laizhou Bay and the Zhangzi Island, though Cd may unlikely be harmful to human and ecological health due to the very low total concentrations. The enrichment factor (EF) showed that a substantial portion of Cr was delivered from anthropogenic sources, whereas the risk assessment code (RAC) indicated that most Cr was in an inactive state that it may not have any adverse effect either. Moreover, the results of EF and geoaccumulation index were consistent with the trend of the total metal concentrations except for Cd, while the results of RAC and potential ecological risk factor did not follow the same trend of their corresponding total metal concentrations. We also evaluated the effects of using different indices to assess the environmental impact of these heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号