首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently, heavy metal (HM) contamination in greenhouse soils is a significant concern due to the rapid expansion of greenhouse agriculture. However, it is difficult to accurately assess HM pollution in greenhouse soils in China due to the lack of local geochemical baseline concentrations (GBCs) or corresponding background values. In the present study, the GBCs of HMs in Dongtai, a representative greenhouse area of China, were established from subsoils using cumulative frequency distribution (CFD) curves. The pollution levels of HMs and potential ecological risks were investigated using different quantitative indices, such as geo-accumulation index (Igeo), pollution index (PI), pollution load index (PLI) and ecological risk index (RI), based on these regional GBCs. The total concentrations of six metals (Cd, Cr, Cu, Ni, Pb and Zn) in surface soils were determined and shown to be lower than the concentrations reported in other greenhouse regions of China. The GBCs of Cd, Cr, Cu, Ni, Pb and Zn were 0.059–0.092, 39.20–54.50, 12.52–15.57, 20.63–23.26, 13.43–16.62 and 43.02–52.65 mg kg−1, respectively. Based on this baseline criterion, Cd, Pb and Zn accumulated in the surface soils because they were present at concentrations higher than their baseline values. The soils were moderately polluted by Cd according to the Igeo values, and the PI results indicated that moderate Cd contamination was present in this area. The large variation of Igeo value of Cd revealed that Cd in this area was likely influenced by agricultural activities. The PLI showed that most of the study area was moderately polluted. However, an analysis of the RI showed that the investigated HMs had low ecological risks. Correlation analysis and principle component analysis suggested that the Cd, Pb and Zn in the greenhouse soils mainly originated from anthropogenic sources (agricultural activities, atmospheric deposition etc.), while Cr, Cu, and Ni originated from natural sources. The findings of this study illustrated the necessity of GBC establishment at the local scale to facilitate more accurate HM evaluation of greenhouse soils. It is advisable to pay more attention to Cd, which could cause environmental problems in the greenhouse system.  相似文献   

2.
Surface soil (0–20 cm) samples were collected from four chronological sequences of wetlands (i.e., >50-yr-old wetlands, 40-yr-old wetlands, 30-yr-old wetlands and 10-yr-old wetlands) in the Yellow River Delta of China in May and June of 2007. Total contents of Al, As, Cd, Cr, Cu, Ni, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry (ICP-AAS) to investigate the levels, sources and toxic risks of heavy metals in these wetlands. Our results showed an increasing trend for Pb, Cu and Zn along the wetland-forming chronosequence although their pollution levels were low. Both As and Cd exhibited significant enrichment due to their high enrichment factor (EF) values (EF > 5), especially in older wetlands (i.e., >50-yr-old and 40-yr-old wetlands), whereas other heavy metals were minimally or moderately enriched in this region. The results of principal component analysis showed that 83.09% of total variance based on eigenvalues (eigenvalue > 1) could be explained by three principal components (PCs) in four wetlands. The source of Al, Cu, Pb and Zn was different from Cd, Cr and Ni. According to the sediment quality guidelines (SQGs) of China, soil samples in the younger wetlands, especially the 10-yr-old wetlands, were moderately polluted by As, Cd and Ni. According to the SQGs of US EPA, all soil samples were heavily polluted by As and moderately polluted by Ni and soil samples in the older wetlands were moderately polluted by Cr. However, with the exception of As and Ni, the contents of other heavy metals in the four wetlands did not exceed the probable effect level (PEL) values. As, Cd and Ni were identified as heavy metals of primary concerns in four wetlands, Cr were of moderate concern in older wetlands, and Pb, Cu and Zn should be paid more attention in younger wetland (i.e., 10-yr-old and 30-yr-old wetlands). A new and sensitive toxic risk index (TRI) is developed for the accurate assessment of toxic risk for heavy metals in wetland soils compared with the sum of the toxic units (∑TUs), and As, Cr, Ni and Cd showed higher contributions to TRI.  相似文献   

3.
Sediments of the Dohezar River in Tonekabon contain high levels of heavy metals and therefore, they were chemically analyzed to determine concentrations of these elements. In fact, this research intended to evaluate the ecological risks of the heavy metals As, Pb, Cr, Zn, and Cu in the river sediments. Contamination indices such as enrichment factor and contamination factor, potential ecological risk index for each heavy metal (Ei), and potential ecological risk index (RI) were evaluated. Considering the average concentrations of the heavy metals at all of the Stations, the maximum average for the elements was zinc and the minimum was copper. Therefore, the averages of changes in the concentrations of the elements are Zn > Cr > Pb > As > Cu. Considering calculation of the enrichment factors for the heavy metals according to the EF classification table, the maximum number of Stations (43.02%) with respect to contamination with As were in class 4(moderately severe enrichment). With respect to enrichment of Pb, Zn, Cr, and copper, the rest of the stations with 83.72, 77.91, 86.05, and 69.77%, respectively, were in class 2 (minor enrichment). Considering the high concentrations of the studied elements in the sediments of the region compared to the background value, and based on calculations related to contamination factor, arsenic with the average of 11.9 exceeded the most from the standard limit. It was followed by Pb with 2.2, zinc with 2, Cr with 1.8, and Cu with1.6 (copper exceeding the least from the standard limit). With respect to Ei (the potential ecological risk index for each heavy metal), arsenic was the element with the highest environmental risk. Moreover, with respect to RI (potential ecological risk index), most Stations were in the low-grade range (low environmental risk). This research used statistical studies on correlation coefficients and cluster analysis to find the origin of the heavy metals in the sediments of the region. The low correlation between the heavy metals in the soil can indicate they probably did not have the same source. Moreover, these elements have different geochemical behaviors due to their low correlation. Finally, the kriging method was employed to extract interpolation maps of the spatial distribution for each of the heavy metals.  相似文献   

4.
This study was made to determine the pollution status and potential ecological risk of heavy metals in sediment of Persian Gulf. Surface sediments were collected seasonally by Peterson grab, and the concentrations of heavy metals were measured by using inductively coupled plasma–optical emission spectrometry (ICP–OES). The range concentrations obtained in mg/kg were 10,800–22,400 for Fe, 5.32–10.12 for Pb, 24.63–42.38 for Ni, 22.52–39.46 for Cu, and 31.64–47.20 for Cr. The concentrations of Pb, Ni, Cu, and Cr have been found lower than the Interim Sediment Quality Guidelines and probable effect level values suggesting that heavy metal contents in sediments from area of study would not be expected to cause adverse biological effects on the biota. The obtained enrichment factor values for various metals were between minimal enrichment (Pb = 0.5) and extremely enrichment (Cu = 3.11). The values of Igeo for Pb, Ni, Cu, and Cr were characterized under no pollution (0). The highest value of potential ecological risk index (RI) (8.36) was observed at St. 4 while the lowest value (5.25) was detected at station 6. Based on potential ecological RI, the Persian Gulf had low ecological risk.  相似文献   

5.
The present study was performed at a heavy-traffic affected soil to examine the efficacy of bioaccumulation and translocation potentials of heavy metals by the naturally growing weed Plantago major. Heavy metals were analyzed in soil as well as in plant below- and above-ground parts along different distances from a heavy-traffic highway. All the investigated soil heavy metals, except Cd, varied significantly, while pH and E.C had no significant difference, with increasing distance from the highway. Likewise, there was a significant decrease of heavy metals in plant below- and aboveground parts. In addition, no significant difference between most soil and root heavy metals at 20 and 100 m as well as those at 500 and 750 m distance from the highway. The bioaccumulation factor (BF) of all heavy metals, except Cd and Sr, were less than unity at most distances. However, Cd showed relative BF decline with the distance in contrast to Sr, which increases as distance from the highway increases. On the other hand, the translocation factors (TF) of Cd, Co, Cu, Pb and Zn were higher at the distances far from the highway, while that of Fe, Cr and Sr were higher near the highway. Furthermore, the enrichment factor (EF) showed small variations, among the investigated heavy metals, with varying distances from the pollution source. It was found that soil Fe, Al, Cr, Ni, Sr, V and Zn had significant positive correlation with all investigated heavy metals in P. major roots. The higher TFs of Cd, Fe and Pb in P. major shoots makes it suitable for phytoextraction from soil, while the lower ratios of Al, Mn, V, Co, Ni, Cr, Zn, Cu and Sr make it suitable for their phytostabilization. Therefore, this plant can be used as a bioindicator and biomonitor for traffic related heavy metals.  相似文献   

6.
The concentration and chemical fractionation of globally alarming six heavy metals (Cr, Ni, Cu, As, Cd and Pb) were measured in surface water and sediment of an urban river in Bangladesh. The decreasing trend of metals were observed in water as Cr > Cu > As > Ni > Pb > Cd and in sediment as Cr > Ni > Cu > Pb > As > Cd. The level of studied metals exceeded the safe limits of drinking water, indicated that water from this river is not safe for drinking and/or cooking purposes. However, the investigated metals showed low mobility except for Cd and Pb which could pose a severe threat to the aquatic environment. Contamination factor (CF) and geoaccumulation index (Igeo) demonstrated that most of the sediment samples were moderately to heavily contaminated by Cr, As, Cd and Pb. The pollution load index (PLI) values were above one (>1) indicates progressive deterioration of the sediment quality. The extent of pollution by heavy metals in the river Korotoa implies that the condition is much frightening to the biota and inhabitants in the vicinity of the river as well.  相似文献   

7.
The concentrations of heavy metals in the roots, rhizomes, stems and leaves of the aquatic macrophyte Phragmites australis (common reed), and in the corresponding water and sediment samples from the mouth area of the Imera Meridionale River (Sicily, Italy), were investigated to ascertain whether plant organs are characterized by differential accumulation, and to test the suitability of the various organs for heavy metal biomonitoring of water and soil. Heavy metals considered were Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn. Results showed that belowground organs were the primary areas of metal accumulation. In particular, metal concentrations in plant organs decreased in the order of root > rhizome  leaf > stem. All four organs showed significant differences in concentration for Cr, Hg, Mn, Zn, thus suggesting low mobility from roots to rhizomes and to aboveground organs. Although the organs followed different decreasing trends of metal concentration, the trend Mn > Zn > Pb > Cu was found in each plant organ. Mn showed the highest concentrations in all organs whereas the lowest concentrations regarded Cd and Cr in the belowground and aboveground organs, respectively. The toxic threshold was exceeded by Cr in roots, rhizomes and leaves, Mn in roots and leaves, Ni in roots. The highest average concentrations were found as follows: Cd, Hg, Pb, Zn in root, Cr, Mn, Ni in sediment, Cu in water. Positive linear relationships were found between heavy metal concentrations in all plant organs and those in water and sediment, thus indicating the potential use of such organs for pollution monitoring of water and sediment. Advantages of using plant species as biomonitors, especially Phragmites australis, were also discussed.  相似文献   

8.
A physiologically based extraction test (PBET) was run for the extraction of six metals (Cu, Zn, Cd, Cr, Ni and Pb) in four composts containing high concentrations of heavy metals. An aqueous solution of pepsin plus citric, acetic, and malic acids buffered to pH 2 was used to simulate the gastric mixture, and an extraction of 1 h at 37 °C was run with a solid:liquid ratio of 1:100. The results were compared to those obtained using water and CaCl2–DTPA solution. The PBET extracted far more metals than water, but less than CaCl2–DTPA for Cu, Pb and Cr, while giving similar or slightly lower results for Cd, Zn, and Ni.  相似文献   

9.
To assess the extent and potential hazards of heavy metal pollution at Shanghai Laogang Landfill, the largest landfill in China, surface soil samples were collected near the landfill and concentrations of Cu, Zn, Cd, Pb, and Cr were determined. The results revealed that the concentrations of heavy metals, except Pb, were higher in the surface soil near the landfill than in the background soil. Principal component analysis and hierarchical cluster analysis suggested that the enrichment of Cu in soil was probably related to agricultural activities and Cd and Pb to landfill leachates, whereas Zn and Cr concentrations were probably controlled by soil matrix characteristics. The pollution indices (PIs) of the metals were: Cd > Cu > Cr > Zn > Pb. Among the five measured metals, Cd showed the largest toxic response and might cause higher ecological hazards than other metals. The integrated potential eco-risk index (RI) of the five metals ranged from 26.0 to 104.9, suggesting a low-level eco-risk potential. This study indicated the accumulations of Cu, Zn, Cd, Pb, and Cr did not reach high pollution levels, and therefore posed a low eco-risk potential in surface soil near the landfill.  相似文献   

10.
There is currently a wide variety of methods used to evaluate soil contamination. We present a discussion of the advantages and limitations of different soil contamination assessment methods. In this study, we analyzed seven trace elements (As, Cd, Cr, Cu, Hg, Pb, and Zn) that are indicators of soil contamination in Dexing, a city in China that is famous for its vast nonferrous mineral resources in China, using enrichment factor (EF), geoaccumulation index (Igeo), pollution index (PI), and principal component analysis (PCA). The three contamination indices and PCA were then mapped to understand the status and trends of soil contamination in this region. The entire study area is strongly enriched in Cd, Cu, Pb, and Zn, especially in areas near mine sites. As and Hg were also present in high concentrations in urban areas. Results indicated that Cr in this area originated from both anthropogenic and natural sources. PCA combined with Geographic Information System (GIS) was successfully used to discriminate between natural and anthropogenic trace metals.  相似文献   

11.
In this study, a survey for the spatial distribution of heavy metals in Hengshuihu Wetland of China was conducted. Samples were collected from three compartments, water, sediment, and reed (Phragmites communis Trin), at different sites, and their contents of heavy metals, including mercury (Hg), arsenic (As), chromium (Cr), lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd), were analyzed. The results showed heavy metals in the sediments distributed in the Buffer Zone and Wangkou Sluice area at concentrations relatively higher than those in other areas, while concentrations in the Core Zone were lower. The heavy metal concentrations of water bodies in all areas, except those for Hg and Pb, were lower than the cutoff values for the first-grade water quality that was set as the highest standard to protect the national nature reserves. The heavy metal distributions among the three compartments were significantly different, with the following order: sediment > plant > water. In the reeds, accumulated amounts of different heavy metals varied in the following order: Hg > Zn > As > Cu > Cr. Concentrations of heavy metals only showed weak correlations between the water bodies and the sediments. Concentrations of heavy metals (except Hg and Cr) had no corrections between the sediments and the reeds. The distribution of mercury indicated that it enters the lake mainly from the atmosphere and outside water bodies. The concentrations of As, Hg, Cr, Cu and Zn in different parts of the reeds were detected and their abundances were ranked in the following order: root > leaf > stem.  相似文献   

12.
This study aimed to investigate the pollution of heavy metals in the sediments of park lakes in Guangzhou, which is a large city with rapid urbanization, industrialization, and dense population in South China. Thirty-two surface sediment samples were collected from seven lakes in different districts of this city. The concentrations and distributions of Cr, Ni, Cu, Zn, Cd, and Pb were measured to assess the level of enrichment and toxicity in the sediments. The enrichment factor showed that Pb and Zn showed severe enrichment in all lakes except for the Dafu Shan Forest Park (DFS), and the geo-accumulation index (Igeo) showed that all lakes were polluted with Cu, Pb, Cd, Ni, and Zn in different levels. The results of risk assessment indicated that the DFS located in the suburbs represented moderate risks; however, other lakes in the city central represented high or very high risks. Moreover, Cd had the primary contribution to the risk of the sediments' environment in urban lakes. Multivariate statistical analyses are carried out to explore the correlativity between heavy metals and human development indices. This study indicated that the levels of heavy metals' contamination and ecological risk of urban lakes in Guangzhou have a close relationship with anthropogenic activities.  相似文献   

13.
朱立安  曾清苹  柳勇  柯欢  程炯  张会化  李俊杰 《生态学报》2020,40(13):4659-4669
富集重金属的枯落物分解可能提高重金属暴露率,增加人体接触健康风险。为了解南方城市土壤重金属在森林生态系统中的分布及流转情况,通过调查研究了佛山市8个典型森林群落土壤及枯落物重金属含量,分析了各森林群落枯落物对不同重金属的富集效应及重金属随枯落物回归土壤流通量。结果表明:1)城市森林各土壤重金属含量在不同典型群落间差异显著(P<0.05),差异最大为Pb、Cr、Zn,As、Cu、Ni次之,Hg、Cd最小;土层深度(0-20,20-40,40-60 cm)对重金属含量影响显著(P<0.05),差异最大为Cd、Hg,其次为As、Cu,最小为Zn、Ni、Pb、Cr。整体上,Cd、Hg、As、Pb、Zn在0-20 cm最高,表层富集特征明显,Cr和Ni在40-60 cm最高。2)8个森林群落中阴香-白楸-醉香含笑群落(CMMC)枯落物对8种重金属的综合富集系数(TBCF,66.76)最高,其中以Cd的富集效果最突出,富集系数为44.45,且对Pb、Cu、Zn也相对富集;最低的为黧蒴锥-香椿-樟树群落(CTCC),综合富集系数(TBCF)为8.09,仅对Cd、Cr、Cu相对富集,对其余重金属富集效应不明显。3)相关分析显示,群落重金属枯落物流通量与0-60 cm土壤重金属平均含量(Cr和Ni除外)无显著相关性。本研究对城市森林建设管理及筛选重金属富集植物及群落具有较强理论及实践意义。  相似文献   

14.
This paper reports the response of isopods exposed to fallout of a municipal solid waste landfill located in central Italy. Soil samples and specimens of Armadillidium vulgare were collected at different distances from the landfill and analyzed to determine the concentrations of heavy elements such as As, Cd, Co, Cr, Cu, Ni, Pb, Sb, V and Zn. The isopod analysis was performed on unpurged and purged specimens. Analytical data indicate that the soil contents of heavy elements were quite uniform and within the respective local geochemical background. Slight enrichments of Cu and Pb were found in some soils collected within the solid waste. Purged isopods showed an accumulation of As, Co, Cr, Ni, Sb and V whose body levels decreased as the distance from the landfill increased. Cd, Cu, Pb and Zn concentrations in purged specimens were rather uniform and no significant variation trend occurred. This result probably was due to the fact that the isopods are provided with physiological mechanisms of regulation for these heavy elements. Analytical data also indicate the ability of A. vulgare to adsorb differently the heavy elements according to the following order: As > Co > Ni > Pb > V. The contents of heavy elements in unpurged specimens were higher than in purged ones. This finding suggested that the defecation has marked effects on the tissue levels of heavy elements in isopods. This study indicates that the isopods provide useful information about environmental quality in areas characterized by low and discontinuous emission of heavy elements and their low accumulation in soil.  相似文献   

15.
在综合考虑深圳市城市功能区分异特征的基础上,进行全市表层土壤系统采样,全面监测土壤表层8种重金属元素污染状况,分析不同重金属元素含量的统计学特征,探讨不同城市功能区对土壤表层重金属污染的影响,采用内梅罗指数和潜在生态危害指数评估不同重金属元素和不同城市功能区的生态风险水平,分别进行基于两种方法的全市重金属污染生态风险分区。结果表明: 1)深圳市土壤表层的Mn、Ni、Cr和Pb 4种元素受人为活动的影响程度较低,Cd、Zn、Cu和As 4类元素受人为活动影响较大。地表环境约束因素背景下的高强度城市化和工业化过程,是各种重金属污染区域分异和功能区分异的决定性因素。2)深圳市土壤重金属污染风险较高的重金属元素为Cd、Zn、Cu和Pb,特别是Pb污染问题尤为突出,必须加强管控工作。深圳市总体土壤表层重金属污染风险水平高于国内相关城市,需要引起足够重视。3)内梅罗指数法和潜在生态危害指数法的侧重点不同,在单一重金属元素风险判断、不同城市功能区生态风险的总体评价,以及市域土壤重金属污染生态风险分级评价方面结果差异较大,组合使用效果更好。  相似文献   

16.
为了了解不同土壤重金属浓度梯度及污染梯度下香樟不同器官的富集特征,测定了香樟树叶、树枝、树干和根际土壤中6种重金属元素(Cu、Zn、Pb、Cr、Mn、Ni)的含量.结果表明: 香樟地上部分重金属含量因器官、元素种类、根际土壤重金属浓度的不同而存在差异.香樟树叶和树枝重金属含量的大小顺序均为:Mn>Zn>Cu>Cr>Pb>Ni,树干重金属含量为:Mn>Zn>Cr>Pb>Ni>Cu.树叶对Mn的富集系数较高,为2.409;树干对Ni的富集系数较高,分别为树叶、树枝的8.6和17倍,且在不同土壤重金属浓度梯度下,香樟树干对Cu、Zn、Pb、Cr、Ni的富集系数均明显高于其他器官.香樟地上部分器官对Cu、Zn、Pb、Cr、Mn、Ni 6种重金属元素的综合富集能力大小顺序为:树叶>树干>树枝.随着土壤重金属污染等级的增加,香樟地上部分各器官的富集系数均逐渐降低.研究区域平均胸径为22 cm的单株香樟对重金属元素富集效能的大小顺序为:树叶>树干>树枝,其中树干对Cu、Zn、Pb、Cr、Ni的积累量均显著高于树叶和树枝.表明香樟对6种重金属元素均有一定的富集能力,并且树干对Pb和Ni的富集效能明显,分别占地上部分总积累量的82.7%和91.9%,能很好地富集并稳固土壤中的Pb和Ni,可作为修复治理土壤重金属污染的备选树种.  相似文献   

17.
Leaves of common deciduous trees: Aesculus hippocastanum and Tilia spp. from three parks within the urban area of Belgrade (Serbia) were studied as biomonitors of trace elements (Cr, Fe, Ni, Cu, Zn, and Pb) atmospheric pollution. The seasonal trace elements accumulation (September/May) in the leaves, and their temporal trends, were assayed in a multy-year period (2002–2006). Significant seasonal accumulation was evident in samples of A. hippocastanum for: Cr, Fe, Ni, Zn, and Pb, as well as in Tilia spp. leaves, except for Zn. For Cu, no regular seasonal accumulation was observed in leaves of the studied species. Decreasing temporal trend in leaf tissue concentrations were evident for Pb in A. hippocastanum (16.0 μg g?1 in September of 2002 to 4.6 μg g?1 in September of 2006) which is in accordance with the bulk atmospheric deposition measurements. The leaf Cu concentrations were the highest at one of the studied sites, also marked previously with extremely high atmospheric Cu loadings by some other monitoring (bulk deposition, particulate matter, moss) surveys. Decreasing Cu concentrations temporal trend at that site in the leaves of A. hippocastanum was evident through the studied years and also confirmed with the bulk deposition measurements. The Cr, Fe, Ni, and Zn leaf tissue concentrations remained at about the same level in the studied species throughout the experiment and no agreement was observed with the bulk deposition data. Comparing the studied biomonitors, the leaves of A. hippocastanum showed significantly higher elements accumulation and more consistency than Tilia spp., so it may be considered as more suitable species for assessment of Pb and Cu atmospheric pollution.  相似文献   

18.
This study was done to evaluate heavy metal concentrations in street dust samples, to compare measured concentrations in samples to background concentrations in order to make evaluations for pollution indices, and to describe the quality of street dust in the studied area in relation to pollution. A total of 30 cumulative samples were collected from the streets of Eslamshahr City. Concentrations of heavy metals were determined using an Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Results determined mean concentrations (mg/kg) of the heavy metals Cd, Cr, Cu, Ni, Pb, and Zn, in collected samples of street dust as 0.34, 35.1, 239, 42.4, 71.3, and 573, respectively. Igeo values for Cd and Cr, Cu, Ni, Pb, and Zn showed level of moderately polluted, unpolluted, moderately to strongly polluted, unpolluted, moderately polluted and moderately to strongly polluted, respectively. The pattern of total metal concentrations in the studied area was ranked as follows: Zn and Cu>Pb>Cd>Ni>Cr. The highest values for the monomial potential ecological risk (Er) were observed for Cd (114). The mean level of RI for the studied soil samples was 192 (91.3–244), which is classed as presenting a strong potential ecological risk.  相似文献   

19.
Soil heavy metal pollution from mining activities is potentially harmful to human health through the food chain. In this study, a total of 43 soil samples were collected from a depth of 0–20 cm from fields close to a Pb and Zn smelter. The samples were used to: 1) analyze the pollution level of heavy metals (Pb, Zn, Cr, and Cu) and spatial distribution pattern; 2) evaluate the degree of accumulation and enrichment, potential ecological risk, and human health risk; and 3) perform source apportionment in Fengxiang County, Shaanxi Province of China. The results showed that the concentration ranged from 43.67 to 189.55, 131.43 to 239.53, 74.77 to 112.25, and 24.69 to 37.71 mg·kg?1 for Pb, Zn, Cr, and Cu, respectively, and the mean concentration for Pb, Zn, Cr, and Cu was 129.46, 192.85, 91.98 and 31.67 mg·kg?1, respectively. The concentrations were greater than the Shaanxi Province background values, while they were lower than the second-level limits of Environmental Quality Standard for Soils of China (EQSS). The spatial distribution of heavy metal contents showed a banded in soil except Cu. The spatial distribution pattern and pollution assessment indexes (Igeo, EF) indicated that the investigated metals had been accumulated in the study areas, and implied significant influences from anthropogenic activities, local meteorological situation, and soil properties. The ecological risk assessment showed that the risks were relatively low (RI<150). Compared with the exposure risk for adults, that for children was significantly greater. The ingestion of heavy metals in the soils by humans was the main exposure pathway compared with the dermal exposure. There may be a risk of noncarcinogenic adverse health effects (HQ < 1, 0.377 ≤ HI≤1.553) on children, but the adults were unlikely to experience obvious adverse health effects (HQ < 1, HI < 1). The carcinogenic risk of Cr for adults and children was at an unacceptable level. The carcinogenic and noncarcinogenic risks were in the order of children > adults. The correlation analysis showed that Pb, Cr, and Cu have identical anthropogenic and natural sources, while Zn has another identical source. This study could provide a basis for the sustainable management of this region by reducing metal inputs and to protect soils from long-term heavy metal accumulation.  相似文献   

20.
Due to rapid industrialization and urbanization during the last two decades, contamination of urban agricultural soils by heavy metals is on an increase all over China. In this study, fifty soil samples were collected from urban vegetable fields in a chemical industrial area and non chemical industrial area in Jilin City to investigate the heavy metal pollution level. The mean Pb, Cr, Cu, Ni, Zn, and Cd contents (30.84, 65.65, 26.41, 23.07, 135.14, and 0.1434 mg kg?1 dry weight, respectively) in the urban vegetable soils were higher than their corresponding natural background values. The principal component analysis (PCA) was performed to identify the possible sources of metal contamination in the study area. The results indicated that Cu and Zn were mainly from industrial activities, while Pb and Cd were derived from traffic activities and agricultural activities, and Cr and Ni tended to be from parent material. The distribution of comprehensive pollution index values showed that Pb, Cr, Cu, Ni, Zn, and Cd concentrations in most of the agricultural fields did not exceed the baseline values affecting the safety of agricultural production and human health according to the soil environmental quality standard of China, indicating an insignificant contamination of these metals in Jilin City.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号