首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Though actin is ubiquitous in eukaryotes, its existence has not been clearly proven in Tetrahymena. Recently, we have succeeded in cloning and sequencing the Tetrahymena actin gene using a Dictyostelium actin probe (Hirono, M. et al. (1987) J. Mol. Biol. 194, 181-192). The primary structure of the Tetrahymena actin deduced from the nucleotide sequence of its gene is greatly divergent from those of other known actins, making it necessary to ascertain whether the predicted Tetrahymena actin is indeed an actin. In this paper, we investigated the localization of the predicted Tetrahymena actin by an immunofluorescence technique using antibody against its synthetic N-terminal peptide, in order to elucidate its possible biological roles. The results showed that immunofluorescence was localized in the division furrow of the dividing cell, and in the intranuclear filament bundles formed in cells exposed to heat shock or DMSO. In addition, the oral apparatus and the proximity of the cytoproct, which are organelles involved in endocytosis and exocytosis, respectively, also fluoresced. Thus, we conclude that the Tetrahymena actin we identified is indeed an actin and plays the same biological roles as ubiquitous actins do, although it is considerably divergent in its amino acid sequence.  相似文献   

2.
We have previously shown that actin from Tetrahymena pyriformis has a very divergent primary structure (Hirono, M., Endoh, H., Okada, N., Numata, O., & Watanabe, Y. (1987) J. Mol. Biol. 194, 181-192) and that though it shares essential properties with skeletal muscle actin, it does not interact at all with phalloidin or DNase I (Hirono, M., Kumagai, Y., Numata, O., & Watanabe, Y. (1989) Proc. Natl. Acad. Sci. U.S. 86, 75-79). In this study, we investigated the copolymerization of this actin with skeletal muscle actin by direct observation of the heteropolymers formed from the two actins by means of electron microscopy. We also examined the binding of actin-binding proteins from skeletal muscle or smooth muscle to Tetrahymena actin by means of a cosedimentation assay. The results show that (i) Tetrahymena actin copolymerizes with skeletal muscle actin and that (ii) muscle myosin subfragment 1 binds to it in the absence of ATP, like skeletal muscle actin. However, it was also shown that (iii) muscle alpha-actinin hardly binds to Tetrahymena actin and that (iv) muscle tropomyosin does not bind to it at all. The results show that Tetrahymena actin has both properties similar and dissimilar to those of skeletal muscle actin.  相似文献   

3.
We previously revealed that Tetrahymena actin can copolymerize with rabbit skeletal muscle actin whereas it has a very divergent primary structure and some unusual properties. To investigate the effects of coexistence of this unusual Tetrahymena actin in mammalian cells, we here transfected Tetrahymena actin gene on an expression vector into COS-1 cells. From the results of immunofluorescence microscopy, it was found that Tetrahymena actin expressed in COS-1 cells copolymerized with intrinsic actin, and it was conspicuously localized to the tips of microfilament core bundles in microspikes. On the other hand, increase in cell number tended to cease temporarily about 24 hr after transfection with Tetrahymena actin gene, implying the inhibition of cytokinesis by Tetrahymena actin coexistence.  相似文献   

4.
Summary The ascidians Styela plicata, S. clava, and Mogula citrina are urochordates. The larvae of urochordates are considered to morphologically resemble the ancestral vertebrate. We asked whether larval and adult ascidian muscle actin sequences are nonmusclelike as in lower invertebrates, musclelike as in vertebrates, or possess characteristics of both. Nonmuscle and muscle actin cDNA clones from S. plicata were sequenced. Based on 27 diagnostic amino acids, which distinguish vertebrate muscle actin from other actins, we found that the deduced protein sequences of ascidian muscle actins exhibit similarities to both invertebrate and vertebrate muscle actins. A comparison to muscle actins from different vertebrate and invertebrate phylogenetic groups suggested that the urochordate muscle actins represent a transition from a nonmusclelike sequence to a vertebrate musclelike sequence. The ascidian adult muscle actin is more similar to skeletal actin and the larval muscle actin is more similar to cardiac actin, which indicates that the divergence of the skeletal and cardiac isoforms occurred before the emergence of urochordates. The muscle actin gene may be a powerful probe for investigating the chordate lineage. Offprint requests to: C.R. Tomlinson  相似文献   

5.
Actin is a ubiquitous and highly conserved microfilament protein that is hypothesized to play a mechanical force-generating role in the unusual gliding motility of sporozoan zoites and their active penetration of host cells. We have identified and isolated an actin gene from a Babesia gibsoni cDNA library by random sequencing. The complete nucleotide sequence of the actin gene is 1,243 bp; a single open reading frame encodes a polypeptide of 377 amino acid residues. The deduced amino acid sequence showed a high homology with actins from other species, especially with reported apicomplexan protozoans. The antiserum against recombinant actin expressed in Escherichia coli recognizes a 42-kDa native protein, which is consistent with its expected size. Immunofluorescence and confocal microscopic observation revealed that the protein is diffusely distributed throughout the B. gibsoni parasites.  相似文献   

6.
7.
8.
A chimeric actin gene was constructed from Tetrahymena actin sequence corresponding to residues 1-83 and Dictyostelium actin sequence corresponding to residues 84-375, and the gene was expressed in Dictyostelium cells. Using DNase I-affinity column, we revealed that the product of the chimeric actin gene was not retained in the column whereas intrinsic actin was retained. In conjunction with our previous data that Tetrahymena actin does not interact with DNase I [Hirono, M., Kumagai, Y., Numata, O., & Watanabe Y. (1989) Proc. Natl. Acad. Sci. U.S. 86, 75-79], we suggest that the binding site of DNase I in an ubiquitous actin is located in N-terminal region (residues 1-83).  相似文献   

9.
10.
Actin was purified from calf thymus, bovine brain and SV40-transformed mouse 3T3 cells grown in tissue culture. Isoelectric focusing analysis showed the presence of the two actin polypeptides beta and gamma typical for non-muscle actins in all three actins. Tryptic and thermolytic peptides accounting for the complete amino-acid sequence of the cytoplasmic actins were separated and isolated by preparative fingerprint techniques. All peptides were characterized by amino-acid analysis and compared with the corresponding peptides from rabbit skeletal muscle actin. Peptides which differed in amino-acid composition from the corresponding skeletal muscle actin peptides were subjected to sequence analysis in order to localize the amino-acid replacement. The results obtained show that all three mammalian cytoplasmic actins studied contain the same amino-acid exchanges indicating that mammalian cytoplasmic actins are very similar if not identical in amino-acid sequence. The presence of two different isoelectric species beta and gamma in cytoplasmic actins from higher vertebrates is acccounted for by the isolation of two very similar but not identical amino-terminal peptides in all three actin preparations. The nature of the amino-acid replacements in these two peptides not only accounts for the different isoelectric forms but also shows that beta and gamma cytoplasmic actins are the products of two different structural genes expressed in the same cell. The total number of amino-acid replacements so far detected in the comparison of these cytoplasmic actins and skeletal muscle actin is 25 for the beta chain and 24 for the gamma chain. With the exception of the amino-terminal three or four residues, which are responsible for the isoelectric differences, the replacements do not involve charged amino acids. The exchanges are not randomly distributed. No replacements were detected in regions 18--75 and 299--356 while the regions between residues 2--17 and 259--298 show a high number of replacements. In addition documentation for a few minor revisions of the amino acid sequence of rabbit skeletal muscle actin is provided.  相似文献   

11.
12.
Several types of evidence indicate that the gene coding for the skeletal muscle actin is expressed in the rat heart: 1) A recombinant plasmid containing an insert with a nucleotide sequence identical to that of the homologous region of skeletal muscle actin gene was isolated from a cDNA library prepared on rat cardiac mRNA template. 2) Using specific probes it was found that the hearts of newborn rats contain a significant amount of skeletal muscle actin mRNA. The quantity of this mRNA in the heart decreases during development. 3) The skeletal muscle actin gene is DNAase I sensitive in nuclei from rat heart tissue. A plasmid containing a cDNA insert homologous to a part of the cardiac actin mRNA was isolated and sequenced. It was found that in spite of the great similarity between the amino acid sequence of the skeletal muscle and cardiac actins, the nucleotide sequences of the two mRNAs are considerably divergent. There is only limited sequence homology between the 3' untranslated regions of the two mRNAs. However, there is an extensive sequence homology between the 3' untranslated regions of the rat and human cardiac mRNAs, suggesting a functional role for this region of the gene or mRNA.  相似文献   

13.
J V Pardo  M F Pittenger  S W Craig 《Cell》1983,32(4):1093-1103
We describe two subpopulations of actin antibodies isolated by affinity chromatography from a polyclonal antibody to chicken gizzard actin. One subpopulation recognizes gamma actins from smooth muscle and nonmuscle cells, but does not recognize alpha actin from skeletal muscle. The other subpopulation recognizes determinants that are common to alpha actin from skeletal muscle and the two gamma actin isotypes. Neither antibody recognizes cytoplasmic beta actin. Both antibodies recognize only actins or molecules with determinants that are also present in actins. By immunofluorescence we found that the anti-gamma actin colocalizes with mitochondria in fibers of mouse diaphragm, and that it does not bind detectably to the 1 bands of sarcomeres. The antibody that recognizes both alpha and gamma actins stains 1 bands intensely, as expected. We interpret these observations as preliminary evidence for selective association of gamma actin with skeletal muscle mitochondria and, more broadly, as evidence for subcellular sorting of isoactins.  相似文献   

14.
The actins are a group of highly conserved proteins encoded by a multigene family. We have previously reported that the skeletal muscle actin gene is located on mouse chromosome 3, together with several other unidentified actin DNA sequences. We show here that the gene coding for the cardiac muscle actin, which is closely related to the skeletal muscle actin (1.1% amino acid replacements), is located on mouse chromosome 17. The gene coding for the cytoplasmic beta-actin is located on mouse chromosome 5. Thus, these three actin genes are located on three different chromosomes.  相似文献   

15.
Complete amino acid sequences for four mammalian muscle actins are reported: bovine skeletal muscle actin, bovine cardiac actin, the major component of bovine aorta actin, and rabbit slow skeletal muscle actin. The number of different actins in a higher mammal for which full amino acid sequences are now available is therefore increased from two to five. Screening of different smooth muscle tissues revealed in addition to the aorta type actin a second smooth muscle actin, which appears very similar if not identical to chicken gizzard actin. Since the sequence of chicken gizzard actin is known, six different actins are presently characterized in a higher mammal. The two smooth muscle actins--bovine aorta actin and chicken gizzard actin--differ by only three amino acid substitutions, all located in the amino-terminal end. In the rest of their sequences both smooth muscle actins share the same four amino acid substitutions, which distinguish them from skeletal muscle actin. Cardiac muscle actin differs from skeletal muscle actin by only four amino acid exchanges. No amino acid substitutions were found when actins from rabbit fast and slow skeletal muscle were compared. In addition we summarize the amino acid substitution patterns of the six different mammalian actins and discuss their tissue specificity. The results show a very close relationship between the four muscle actins in comparison to the nonmuscle actins. The amino substitution patterns indicate that skeletal muscle actin is the highest differentiated actin form, whereas smooth muscle actins show a noticeably cloer relation to nonmuscle actins. By these criteria cardiac muscle actin lies between skeletal muscle actin and smooth muscle actins.  相似文献   

16.
Wild-type and mutant actin genes in Caenorhabditis elegans   总被引:6,自引:0,他引:6  
We have sequenced the four actin genes of Caenorhabditis elegans. These four genes encode typical invertebrate actins and are highly homologous, differing from each other by, at most, three amino acid residues. As a first step toward an understanding of the developmental regulation of this gene set we have also sequenced mutant actin genes. The mutant genes were cloned from two independent revertants of a single dominant actin mutant. For both revertants, reversion was accompanied by an actin gene rearrangement. The accumulation of actin mRNA during development in these two revertants is different from that of wild-type animals. We present here a correlation between actin gene structure and expression in wild-type and mutant animals. The results, suggest that co-ordinate regulation of actin genes is not essential for wild-type muscle function. In addition, it appears that changes in the 3' region of at least one of the actin mRNA may affect its steady-state regulation during development.  相似文献   

17.
Poly(A)-containing mRNA was isolated from division synchronized populations of the ciliated protozoan, Tetrahymena pyriformis. The level of tubulin and actin mRNA at specific cell cycle stages was analyzed by hybridization to tubulin and actin cDNA probes and by gel analysis of their in vitro translation products. The pattern of fluctuation of tubulin mRNA levels was similar to that observed for the in vivo tubulin synthesis previously reported [1]. This suggests that as the cells progress through the cell cycle, tubulin synthesis is controlled at the mRNA level. There was little fluctuation of actin synthesis or actin mRNA levels during the cell cycle, which may be indicative of a different regulatory mechanism for actin than for tubulin.  相似文献   

18.
Structure and expression of an actin gene of Physarum polycephalum   总被引:1,自引:0,他引:1  
Physarum polycephalum (strain M3CVIII) contains four unlinked actin gene loci, each with two alleles (ardA1, ardA2, ardB1, ardB2, ardC1, ardC2, ardD1 and ardD2). The 4800 base HindIII fragment of the ardC2 allele was previously isolated as a recombinant phage lambda. We now report the structure of the actin gene sequences (C-actin gene). The gene, which contains four intervening sequences, codes for the principal actin isotype of plasmodia and it is expressed in both the haploid myxamoebal and diploid plasmodial phases of the life cycle. The C-actin isotype is closely related to actins of Dictyostelium, Acanthamoebae, Drosophila, sea urchin and mammalian cytoplasmic actin, and more distantly related to actins of yeast, Entamoebae and Tetrahymena. The ardC1 and ardC2 alleles differ by a 700(+/- 100) base-pair insertion/deletion in the vicinity of the 3' end of the transcribed region of the gene.  相似文献   

19.
Total protein constituents of Tetrahymena thermophila strain B1868 III were studied by two-dimensional agarose-polyacrylamide gel electrophoresis to detect actin among the constituents. In the attempts to prepare a whole-cell extract of Tetrahymena, it was found that protease activity in the extract was so high that high molecular components were quickly digested with the endogenous protease into small peptides unless the homogenization and heat-treatment in a sodium dodecylsulfate solution were performed within 5 s. It was eventually found that employment of 8 M guanidine hydrochloride (HCl) in the homogenization of cells perfectly prevented the degradation of protein components, even through a long preparation procedure. A devised two-dimensional agarose-polyacrylamide gel electrophoresis of the guanidine HCl extract gave a 'protein map' on which most proteins were located in their respective positions, including proteins with more than 200,000 mol. wt. Addition of rabbit skeletal muscle actin on the protein map revealed that no protein with isoelectric point and molecular weight identical with those of the actin was contained in the whole Tetrahymena extract, suggesting that Tetrahymena actin may have characteristics far different from those of skeletal muscle actin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号