首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 89 毫秒
1.
2.
BACKGROUND: In premitotic plant cells, the future division plane is predicted by a cortical ring of microtubules and F-actin called the preprophase band (PPB). The PPB persists throughout prophase, but is disassembled upon nuclear-envelope breakdown as the mitotic spindle forms. Following nuclear division, a cytokinetic phragmoplast forms between the daughter nuclei and expands laterally to attach the new cell wall at the former PPB site. A variety of observations suggest that expanding phragmoplasts are actively guided to the former PPB site, but little is known about how plant cells "remember" this site after PPB disassembly. RESULTS: In premitotic plant cells, Arabidopsis TANGLED fused to YFP (AtTAN::YFP) colocalizes at the future division plane with PPBs. Strikingly, cortical AtTAN::YFP rings persist after PPB disassembly, marking the division plane throughout mitosis and cytokinesis. The AtTAN::YFP ring is relatively broad during preprophase/prophase and mitosis; narrows to become a sharper, more punctate ring during cytokinesis; and then rapidly disassembles upon completion of cytokinesis. The initial recruitment of AtTAN::YFP to the division plane requires microtubules and the kinesins POK1 and POK2, but subsequent maintenance of AtTAN::YFP rings appears to be microtubule independent. Consistent with the localization data, analysis of Arabidopsis tan mutants shows that AtTAN plays a role in guidance of expanding phragmoplasts to the former PPB site. CONCLUSIONS: AtTAN is implicated as a component of a cortical guidance cue that remains behind when the PPB is disassembled and directs the expanding phragmoplast to the former PPB site during cytokinesis.  相似文献   

3.
Summary This work examines mitosis in root-tip cells ofTriticum turgidum treated with the RNA synthesis inhibitor ethidium bromide, using tubulin immunolabeling and electron microscopy. The following aberrations were observed in ethidium bromideaffected cells: (1) incomplete chromatin condensation and nuclear-envelope breakdown; (2) delay of preprophase microtubule band maturation; (3) preprophase microtubule band assembly in cells displaying an interphase appearance of the nucleus; (4) prevention of the prophase spindle formation, caused by inhibition of perinuclear microtubule (Mt) formation and/or inability of the perinuclear Mts to assume bipolarity; (5) organization of an atypical metaphase spindle which is unable to arrange the chromosomes on the equatorial plane; (6) formation of an atypical perinuclear metaphase spindle in cells in which nuclear-envelope breakdown has been almost completely inhibited; (7) inhibition of the anaphase spindle formation as well as of anaphase chromosome movement; (8) disorganization of the atypical mitotic spindle during transition from mitosis to cytokinesis. The observations favor the following hypotheses. Nucleation of prophase spindle Mts is related to the mechanism that causes nuclear-envelope breakdown. The mitotic poles lack Mtnucleating and -organizing properties, and their function does not account for prophase and metaphase spindle assembly. The organization of the prophase spindle is not a prerequisite for the formation of the metaphase spindle; the metaphase spindle seems to be formed de novo by Mts nucleated on the nuclear envelope and/or in the immediate vicinity of chromosomes.Abbreviations 5-AU 5-aminouracil - EB ethidium bromide - EM electron microscopy - k-Mt kinetochore microtubule - Mt microtubule - MTOC microtubule-organizing center - NE nuclear envelope - NEB nuclear-envelope breakdown - PPB preprophase band of microtubules  相似文献   

4.
Summary Cyclin proteins and cyclin-dependent kinases play a key role in the regulation of cell division. We have therefore studied the relationship of the level of four mitotic cyclin proteins and the Cdc2a kinase protein to cell division in maize root tissue with respect to cessation of division as cells leave the primary meristem region, resumption of division in formation of lateral-root primordia, and induced division following wounding. All four mitotic cyclins and Cdc2a were most abundant in dividing cells. The only examined cell cycle protein which was restricted to dividing tissue was cyclin ZmCycB1;2 (previously ZmIb) and may thus be a limiting factor for cell division. All other cyclin proteins, i.e., ZmCycB1;1 (previously ZmIa), ZmCycA1;1 (previously ZmII), and ZmCycB2;1 (previously ZmIII), and the Cdc2a kinase declined shortly after cells had ceased division. The distance from the root tip at which cells ceased division was tissue-specific and reflected the distance at which decrease of cell cycle proteins was detected. Whereas cyclin ZmCycB1;2 rapidly declined to a hardly detectable level in either nucleus or cytoplasm, in the nuclei of nondividing cells there was persistence of Cdc2a and of cyclins ZmCycB1;1, ZmCycCA1;1, and ZmCycB2;1, indicating that there are plant cyclins which are tightly linked to cell division and others that persist, especially in the nuclei, in nondividing cells. The transition from division to differentiation may thus partly be triggered and enforced by the decrease of the cell cycle proteins and especially the decline of cyclins in the cytoplasm. In the resumption of cell division, both in lateral-root formation and in wound response, high nuclear and low cytoplasmic accumulation of cyclin ZmCycB2;1 was the first visible sign of cell dedifferentiation, implying a role for cyclin ZmCycB2;1 in the G0–G1 phase transition. Next, cytoplasmic accumulation of cyclin ZmCycA1;1, followed by a rearrangement of cortical microtubules, was observed and since both the cyclins ZmCycA1;1 and ZmCycB2;1 were found at places of high tubulin concentration, they may function in the microtubule rearrangement for cell division. When the nuclei of dedifferentiating cells had visibly enlarged, all cyclins and Cdc2a accumulated there, possibly contributing to DNA replication and preparation for mitosis. Later, presumably during G2 phase, cytoplasmic accumulation was observed for Cdc2a at low levels, as observed in G2 phase cells of the primary meristem, and for cyclins ZmCycB1;1 and ZmCycB1;2 accumulation was observed above the levels found in undisturbed meristems, suggesting special contributions to late dedifferentiation processes in both wound-induced and lateral meristems.Abbreviations CDK cyclin-dependent kinase - LRP lateral-root primordium - Mt microtubule - FITC fluorescein isothiocyanate - TRITC tetramethylrhodamine isothiocyanate Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday  相似文献   

5.
MPF localization is controlled by nuclear export.   总被引:20,自引:2,他引:18       下载免费PDF全文
A Hagting  C Karlsson  P Clute  M Jackman    J Pines 《The EMBO journal》1998,17(14):4127-4138
In eukaryotes, mitosis is initiated by M phase promoting factor (MPF), composed of B-type cyclins and their partner protein kinase, CDK1. In animal cells, MPF is cytoplasmic in interphase and is translocated into the nucleus after mitosis has begun, after which it associates with the mitotic apparatus until the cyclins are degraded in anaphase. We have used a fusion protein between human cyclin B1 and green fluorescent protein (GFP) to study this dynamic behaviour in real time, in living cells. We found that when we injected cyclin B1-GFP, or cyclin B1-GFP bound to CDK1 (i.e. MPF), into interphase nuclei it is rapidly exported into the cytoplasm. Cyclin B1 nuclear export is blocked by leptomycin B, an inhibitor of the recently identified export factor, exportin 1 (CRM1). The nuclear export of MPF is mediated by a nuclear export sequence in cyclin B1, and an export-defective cyclin B1 accumulates in interphase nuclei. Therefore, during interphase MPF constantly shuttles between the nucleus and the cytoplasm, but the bulk of MPF is retained in the cytoplasm by rapid nuclear export. We found that a cyclin mutant with a defective nuclear export signal does not enhance the premature mitosis caused by interfering with the regulatory phosphorylation of CDK1, but is more sensitive to inhibition by the Wee1 kinase.  相似文献   

6.
Mitotic cyclins A and B contain a conserved N-terminal helix upstream of the cyclin box fold that contributes to a significant interface between cyclin and cyclin-dependent kinase (CDK). To address its contribution on cyclin-CDK interaction, we have constructed mutants in conserved residues of the N-terminal helix of Xenopus cyclins B2 and A1. The mutants showed altered binding affinities to Cdc2 and/or Cdk2. We also screened for mutations in the C-terminal lobe of CDK that exhibited different binding affinities for the cyclin-CDK complex. These mutations were at residues that interact with the cyclin N-terminal helix motif. The cyclin N-terminal helix mutations have a significant effect on the interaction between the cyclin-CDK complex and specific substrates, Xenopus Cdc6 and Cdc25C. These results suggest that the N-terminal helix of mitotic cyclins is required for specific interactions with CDKs and that to interact with CDK, specific substrates Cdc6 and Cdc25C require the CDK to be associated with a cyclin. The interaction between the cyclin N-terminal helix and the CDK C-terminal lobe may contribute to binding specificity of the cyclin-CDK complex.  相似文献   

7.
Two maize (Zea mays) cyclin-dependent kinase (CDK) inhibitors, Zeama;KRP;1 and Zeama;KRP;2, were characterized and shown to be expressed in developing endosperm. Similar to the CDK inhibitors in Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum), the maize proteins contain a carboxy-terminal region related to the inhibitory domain of the mammalian Cip/Kip inhibitors. Zeama;KRP;1 is present in the endosperm between 7 and 21 d after pollination, a period that encompasses the onset of endoreduplication, while the Zeama;KRP;2 protein declines during this time. Nevertheless, Zeama;KRP;1 accounts for only part of the CDK inhibitory activity that peaks coincident with the endoreduplication phase of endosperm development. In vitro assays showed that Zeama;KRP;1 and Zeama;KRP;2 are able to inhibit endosperm Cdc2-related CKD activity that associates with p13(Suc1). They were also shown to specifically inhibit cyclin A1;3- and cyclin D5;1-associated CDK activities, but not cyclin B1;3/CDK. Overexpression of Zeama;KRP;1 in maize embryonic calli that ectopically expressed the wheat dwarf virus RepA protein, which counteracts retinoblastoma-related protein function, led to an additional round of DNA replication without nuclear division.  相似文献   

8.
Several different cytokinetic mechanisms operate in flowering plants. During 'conventional' somatic cytokinesis, the mitotic spindle remnants give rise to a phragmoplast that serves as a framework for the assembly of the cell plate. Cell plates fuse with the parental plasma membrane at specific cortical sites previously defined by the preprophase band of microtubules. In nuclear endosperms, meiocytes, and gametophytic cells, cytokinesis occurs without preprophase bands. The position of the new cell walls is determined instead by interacting arrays of microtubules that radiate from the nuclear envelope surfaces. The nuclear cytoplasmic domains defined by these microtubule arrays demarcate the boundaries of the future cells. Recent studies have provided new insights into the ultrastructural similarities and dissimilarities between conventional and non-conventional cytokinesis. Numerous proteins have also been localized to cytokinesis-related cytoskeletal arrays and cell plates but the functions of most of them have yet to be elucidated.  相似文献   

9.
Reversible phosphorylation of proteins by kinases and phosphatases plays a key regulatory role in several eukaryotic cellular functions including the control of the division cycle. Increasing numbers of sequence and biochemical data show the involvement of cyclin-dependent kinases (CDKs) and cyclins in regulation of the cell cycle progression in higher plants. The complexity represented by different types of CDKs and cyclins in a single species such as alfalfa, indicates that multicomponent regulatory pathways control G2/M transition. A set of cdc2-related genes (cdc2Ms A, B, D and F) was expressed in G2 and M cells. Phosphorylation assays also revealed that at least three kinase complexes (Cdc2Ms A/B, D and F) were successively active in G2/M cells after synchronization. Interaction between alfalfa mitotic cyclin (Medsa;CycB2;1) and a kinase partner has been reported previously. The present yeast two-hybrid analyses showed differential interaction between defined D-type cyclins and Cdc2Ms kinases functioning in G2/M phases. Localization of Cdc2Ms F kinase to the preprophase band (PPB), the perinuclear ring in early prophase, the mitotic spindle and the phragmoplast indicated a pivotal role for this kinase in mitotic plant cells. So far limited research efforts have been devoted to the functions of phosphatases in the control of plant cell division. A homologue of dual phosphatase, cdc25, has not been cloned yet from alfalfa; however tyrosine phosphorylation was indicated in the case of Cdc2Ms A kinase and the p13suc1-bound kinase activity was increased by treatment of this complex with recombinant Drosophila Cdc25. The potential role of serine/threonine phosphatases can be concluded from inhibitor studies based on okadaic acid or endothall. Endothall elevated the kinase activity of p13suc1-bound fractions in G2-phase alfalfa cells. These biochemical data are in accordance with observed cytological abnormalities. The present overview with selected original data outlines a conclusion that emphasizes the complexity of G2/M regulatory events in flowering plants.  相似文献   

10.
H. Wang  A. J. Cutler  L. C. Fowke 《Protoplasma》1989,150(2-3):110-116
Summary Multinucleate cells derived from soybean protoplasts were used to investigate the effect of increased nuclear number on the development and frequency of preprophase bands (PPBs) of microtubules (MTs). The results do not support the assumption that one nucleus establishes one PPB because the majority of multinucleate cells had only one large PPB. However, nuclear number or ploidy level has some influence on PPB development since double PPBs occurred more often in multinucleate than uninucleate cells. Double (divergent) PPBs were present at early and late stages of PPB development, suggesting that they are not a transient stage. PPBs in multinucleate cells developed in a similar fashion to those in uninucleate cells. In multinucleate cells, each dividing nucleus had its own spindle and phragmoplast. Subsequent phragmoplast development was frequently uncoupled from PPB distribution. Most multinucleates contained a single large PPB but at telophase, multiple phragmoplasts oriented in different planes.Abbreviations MT microtubule - MtSB microtubule stabilizing buffer - PBS phosphate buffered saline - PNF perinuclear fluorescence - PPB preprophase band  相似文献   

11.
Maternally contributed cyclin A and B proteins are initially distributed uniformly throughout the syncytial Drosophila embryo. As dividing nuclei migrate to the cortex of the embryo, the A and B cyclins become concentrated in surface layers extending to depths of approximately 30-40 microns and 5-10 microns, respectively. The initiation of nuclear envelope breakdown, spindle formation, and the initial congression of the centromeric regions of the chromosomes onto the metaphase plate all take place within the surface layer occupied by cyclin B on the apical side of the blastoderm nuclei. Cyclin B is seen mainly, but not exclusively, in the vicinity of microtubules throughout the mitotic cycle. It is most conspicuous around the centrosomes. Cyclin A is present at its highest concentrations throughout the cytoplasm during the interphase periods of the blastoderm cycles, although weak punctate staining can also be detected in the nucleus. It associates with the condensing chromosomes during prophase, segregates into daughter nuclei in association with chromosomes during anaphase, to redistribute into the cytoplasm after telophase. In contrast to the cycles following cellularization, neither cyclin is completely degraded upon the metaphase-anaphase transition.  相似文献   

12.
BACKGROUND: Several checkpoint pathways employ Wee1-mediated inhibitory tyrosine phosphorylation of cyclin-dependent kinases (CDKs) to restrain cell-cycle progression. Whereas in vertebrates this strategy can delay both DNA replication and mitosis, in yeast cells only mitosis is delayed. This is particularly surprising because yeasts, unlike vertebrates, employ a single family of cyclins (B type) and the same CDK to promote both S phase and mitosis. The G2-specific arrest could be explained in two fundamentally different ways: tyrosine phosphorylation of cyclin/CDK complexes could leave sufficient residual activity to promote S phase, or S phase-promoting cyclin/CDK complexes could somehow be protected from checkpoint-induced tyrosine phosphorylation. RESULTS: We demonstrate that in Saccharomyces cerevisiae, several cyclin/CDK complexes are protected from inhibitory tyrosine phosphorylation, allowing Clb5,6p to promote DNA replication and Clb3,4p to promote spindle assembly, even under checkpoint-inducing conditions that block nuclear division. In vivo, S phase-promoting Clb5p/Cdc28p complexes were phosphorylated more slowly and dephosphorylated more effectively than were mitosis-promoting Clb2p/Cdc28p complexes. Moreover, we show that the CDK inhibitor (CKI) Sic1p protects bound Clb5p/Cdc28p complexes from tyrosine phosphorylation, allowing the accumulation of unphosphorylated complexes that are unleashed when Sic1p is degraded to promote S phase. The vertebrate CKI p27(Kip1) similarly protects Cyclin A/Cdk2 complexes from Wee1, suggesting that the antagonism between CKIs and Wee1 is evolutionarily conserved. CONCLUSIONS: In yeast cells, the combination of CKI binding and preferential phosphorylation/dephosphorylation of different B cyclin/CDK complexes renders S phase progression immune from checkpoints acting via CDK tyrosine phosphorylation.  相似文献   

13.
Mitosis is thought to be triggered by the activation of Cdk-cyclin complexes. Here we have used RNA interference (RNAi) to assess the roles of three mitotic cyclins, cyclins A2, B1, and B2, in the regulation of centrosome separation and nuclear-envelope breakdown (NEB) in HeLa cells. We found that the timing of NEB was affected very little by knocking down cyclins B1 and B2 alone or in combination. However, knocking down cyclin A2 markedly delayed NEB, and knocking down both cyclins A2 and B1 delayed NEB further. The timing of cyclin B1-Cdk1 activation was normal in cyclin A2 knockdown cells, and there was no delay in centrosome separation, an event apparently controlled by the activation of cytoplasmic cyclin B1-Cdk1. However, nuclear accumulation of cyclin B1-Cdk1 was markedly delayed in cyclin A2 knockdown cells. Finally, a constitutively nuclear cyclin B1, but not wild-type cyclin B1, restored normal NEB timing in cyclin A2 knockdown cells. These findings show that cyclin A2 is required for timely NEB, whereas cyclins B1 and B2 are not. Nevertheless cyclin B1 translocates to the nucleus just prior to NEB in a cyclin A2-dependent fashion and is capable of supporting NEB if rendered constitutively nuclear.  相似文献   

14.
Cyclin D2 is a member of the family of D-type cyclins that is implicated in cell cycle regulation, differentiation, and oncogenic transformation. To better understand the role of this cyclin in the control of cell proliferation, cyclin D2 expression was monitored under various growth conditions in primary human and established murine fibroblasts. In different states of cellular growth arrest initiated by contact inhibition, serum starvation, or cellular senescence, marked increases (5- to 20-fold) were seen in the expression levels of cyclin D2 mRNA and protein. Indirect immunofluorescence studies showed that cyclin D2 protein localized to the nucleus in G0, suggesting a nuclear function for cyclin D2 in quiescent cells. Cyclin D2 was also found to be associated with the cyclin-dependent kinases CDK2 and CDK4 but not CDK6 during growth arrest. Cyclin D2-CDK2 complexes increased in amounts but were inactive as histone H1 kinases in quiescent cells. Transient transfection and needle microinjection of cyclin D2 expression constructs demonstrated that overexpression of cyclin D2 protein efficiently inhibited cell cycle progression and DNA synthesis. These data suggest that in addition to a role in promoting cell cycle progression through phosphorylation of retinoblastoma family proteins in some cell systems, cyclin D2 may contribute to the induction and/or maintenance of a nonproliferative state, possibly through sequestration of the CDK2 catalytic subunit.  相似文献   

15.
Ann L. Cleary 《Protoplasma》2001,215(1-4):21-34
Summary Tradescantia virginiana leaf epidermal cells were plasmolysed by sequential treatment with 0.8 M and 0.3 M sucrose. Plasmolysis revealed adhesion of the plasma membrane to the cell wall at sites coinciding with cytoskeletal arrays involved in the polarisation of cells undergoing asymmetric divisions — cortical actin patch — and in the establishment and maintenance of the division site —preprophase band of microtubules and filamentous (F) actin. The majority of cells retained adhesions at the actin patch throughout mitosis. However, only approximately 13% of cells formed or retained attachments at the site of the preprophase band. After the breakdown of the nuclear envelope, plasmolysis had a dramatic effect on spindle orientation, cell plate formation, and the plane of cytokinesis. Spindles were rotated at abnormal angles including tilted into the plane of the epidermis. Cell plates formed but were quickly replaced by vacuole-like intercellular compartments containing no Tinopal-stainable cell wall material. This compartment usually opened to the apoplast at one side, and cytokinesis was completed by the furrow extending across the protoplast. This atypical cytokinesis was facilitated by a phragmoplast containing microtubules and F-actin. Progression of the furrow was unaffected by 25 g of cytochalasin B per ml but inhibited by 10 M oryzalin. Phragmoplasts were contorted and misguided and cytokinesis prolonged, indicating severe disruption to the guidance mechanisms controlling phragmoplast expansion. These results are discussed in terms of cytoskeleton-plasma membrane-cell wall connections that could be important to the localisation of plasma membrane molecules defining the cortical division site and hence providing positional information to the cytokinetic apparatus, and/or for providing an anchor for cytoplasmic F-actin necessary to generate tension on the phragmoplast and facilitate its directed, planar expansion.Abbreviations ADZ actin-depleted zone - DIC differential interference contrast - GMC guard mother cell - MT microtubule - PPB preprophase band - SMC subsidiary mother cell Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

16.
Little is known about the posttranslational control of the cyclin-dependent protein kinase (CDK) inhibitor p21. We describe here a transient phosphorylation of p21 in the G2/M phase. G2/M-phosphorylated p21 is short-lived relative to hypophosphorylated p21. p21 becomes nuclear during S phase, prior to its phosphorylation by CDK2. S126-phosphorylated cyclin B1 binds to T57-phosphorylated p21. Cdc2 kinase activation is delayed in p21-deficient cells due to delayed association between Cdc2 and cyclin B1. Cyclin B1-Cdc2 kinase activity and G2/M progression in p21-/- cells are restored after reexpression of wild-type but not T57A mutant p21. The cyclin B1 S126A mutant exhibits reduced Cdc2 binding and has low kinase activity. Phosphorylated p21 binds to cyclin B1 when Cdc2 is phosphorylated on Y15 and associates poorly with the complex. Dephosphorylation on Y15 and phosphorylation on T161 promotes Cdc2 binding to the p21-cyclin B1 complex, which becomes activated as a kinase. Thus, hyperphosphorylated p21 activates the Cdc2 kinase in the G2/M transition.  相似文献   

17.
Summary The aim of this study was to search for uncharacterized components of the plant cytoskeleton using monoclonal antibodies raised against spermatozoids of the fernPteridium (Marc et al. 1988). The cellular distribution of crossreacting immunoreactive material during the division cycle in wheat root tip cells was determined by immunofluorescence microscopy and compared to the fluorescence pattern obtained with antitubulin. Five antibodies are of special interest. Pas1D3 and Pas5F4 detect a diffuse cytoplasmic material, which, during mitosis, follows the distribution of microtubules (MTs) at the nuclear surface and in the preprophase band (PPB), spindle and phragmoplast. The immunoreactive material codistributes specifically with MT arrays of the mitotic apparatus and does not associate with interphase cortical MTs. Pas5D8 is relevant to the PPB and spatial control of cytokinesis. It binds in a thin layer at the cytoplasmic surface throughout the cell cycle, except when its coverage is transiently interrupted by an exclusion zone at the PPB site and later at the same site when the phragmoplast fuses with the parental cell wall.Pas2G6 reacts with a component of basal bodies and the flagellar band in thePteridium spermatozoid and recognizes irregularly shaped cytoplasmic vesicles in wheat cells. During interphase these particles form a cortical network.Pas6D7 binds to dictyosomes and dictyosome vesicles. At anaphase the vesicles accumulate at the equator and subsequently condense into the cell plate.Abbreviations MT microtubule - PPB preprophase band  相似文献   

18.
19.
Nucleocytoplasmic trafficking of G2/M regulators in yeast   总被引:2,自引:2,他引:0       下载免费PDF全文
Nucleocytoplasmic shuttling is prevalent among many cell cycle regulators controlling the G2/M transition. Shuttling of cyclin/cyclin-dependent kinase (CDK) complexes is thought to provide access to substrates stably located in either compartment. Because cyclin/CDK shuttles between cellular compartments, an upstream regulator that is fixed in one compartment could in principle affect the entire cyclin/CDK pool. Alternatively, the regulators themselves may need to shuttle to effectively regulate their moving target. Here, we identify localization motifs in the budding yeast Swe1p (Wee1) and Mih1p (Cdc25) cell cycle regulators. Replacement of endogenous Swe1p or Mih1p with mutants impaired in nuclear import or export revealed that the nuclear pools of Swe1p and Mih1p were more effective in CDK regulation than were the cytoplasmic pools. Nevertheless, shuttling of cyclin/CDK complexes was sufficiently rapid to coordinate nuclear and cytoplasmic events even when Swe1p or Mih1p were restricted to one compartment. Additionally, we found that Swe1p nuclear export was important for its degradation. Because Swe1p degradation is regulated by cytoskeletal stress, shuttling of Swe1p between nucleus and cytoplasm serves to couple cytoplasmic stress to nuclear cyclin/CDK inhibition.  相似文献   

20.
Stimulation of primary human T lymphocytes results in up-regulation of cyclin T1 expression, which correlates with phosphorylation of the C-terminal domain of RNA polymerase II (RNAP II). Up-regulation of cyclin T1 and concomitant stabilization of cyclin-dependent kinase 9 (CDK9) may facilitate productive replication of HIV in activated T cells. We report that treatment of PBLs with two mitogens, PHA and PMA, results in accumulation of cyclin T1 via distinct mechanisms. PHA induces accumulation of cyclin T1 mRNA and protein, which results from cyclin T1 mRNA stabilization, without significant change in cyclin T1 promoter activity. Cyclin T1 mRNA stabilization requires the activation of both calcineurin and JNK because inhibition of either precludes cyclin T1 accumulation. In contrast, PMA induces cyclin T1 protein up-regulation by stabilizing cyclin T1 protein, apparently independently of the proteasome and without accumulation of cyclin T1 mRNA. This process is dependent on Ca2+-independent protein kinase C activity but does not require ERK1/2 activation. We also found that PHA and anti-CD3 Abs induce the expression of both the cyclin/CDK complexes involved in RNAP II C-terminal domain phosphorylation and the G1-S cyclins controlling cell cycle progression. In contrast, PMA alone is a poor inducer of the expression of G1-S cyclins but often as potent as PHA in inducing RNAP II cyclin/CDK complexes. These findings suggest coordination in the expression and activation of RNAP II kinases by pathways that independently stimulate gene expression but are insufficient to induce S phase entry in primary T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号