首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The PHA-degrading isolate, strain P37C, was enriched from residential compost for its ability to hydrolyze the medium chain length PHA, poly(beta-hydroxyoctanoate) (PHO). It was subsequently found to grow on a wide range of PHAs, including both short chain length and medium chain length PHAs. The isolate was identified as belonging to the genus Comamonas. Strain P37C formed clear zones on poly(beta-hydroxybutyrate) (PHB), (PHO) and poly(beta-hydroxyphenylvalerate) (PHPV) overlay plates. PHA clear zone tubes were prepared using seven different kinds of PHAs, ranging from PHB with four-carbon repeating units, to poly(beta-hydroxyoctanoate-co-beta-hydroxyundecanoate) (PHOU) with 8- and 11-carbon repeating units. There was a direct correlation between PHA side chain length and rate of hydrolysis of the PHAs. A series of PHOUs containing varying percentages of unsaturated bonds were used to make a series of epoxidized PHOUs (PHOEs) with varying percentages of epoxy functions. Results of clear zone tube assays showed that these functionalized PHAs were all biodegradable by strain P37C, and there was no apparent correlation between rate of biodegradation and the proportion of functional groups in the PHAs. Biodegradability of these PHAs was verified using respirometry and enzyme assays. Cell-free supernatants containing activity toward PHAs were prepared, and strain P37C was shown to synthesize at least two distinct PHA depolymerases for the hydrolysis of SCL and MCL PHAs.  相似文献   

2.
The formation of poly(3-hydroxyalkanoates) (PHAs) in Pseudomonas putida KT2442 from various carbon sources was studied by 13C nuclear magnetic resonance spectroscopy, gas chromatography, and gas chromatography-mass spectroscopy. By using [1-13C]decanoate, the relation between beta-oxidation and PHA formation was confirmed. The labeling pattern in PHAs synthesized from [1-13C]acetate corresponded to the formation of PHAs via de novo fatty acid biosynthesis. Studies with specific inhibitors of the fatty acid metabolic pathways demonstrated that beta-oxidation and de novo fatty acid biosynthesis function independently in PHA formation. Analysis of PHAs derived from [1-13C]hexanoate showed that both fatty acid metabolic routes can function simultaneously in the synthesis of PHA. Furthermore, evidence is presented that during growth on medium-chain-length fatty acids, PHA precursors can be generated by elongation of these fatty acids with an acetyl coenzyme A molecule, presumably by a reverse action of 3-ketothiolase.  相似文献   

3.
The production and characterization of polyhydroxyalkanoic acids (PHAs) from glucose in Pseudomonas aeruginosa ATCC 9027 is described. We determined that the synthesis of PHAs was not due to a complete lack of nitrogen source, as previously reported for other microorganisms. The synthesis of PHAs was observed during exponential growth and it depended on the carbon/nitrogen ratio in the culture. More significantly, the specific PHA accumulation rate in this phase was higher than that observed in the storage phase. This phenomenon was a consequence of higher extracellular production rates of gluconate and 2-ketogluconate detected during the storage phase. Therefore, the production of those acids decreased the synthesis of PHAs in P. aeruginosa. The maximum percentage of PHA accumulation obtained was 10.8% of the cell dry matter when all the glucose was consumed. The monomer composition of this PHA consisted only of saturated 3-hydroxy fatty acids (octanoic, decanoic, and dodecanoic acids) as shown by gas chromatography - mass spectroscopy and nuclear magnetic resonance analyses, where 3-hydroxydecanoic acid was the main component because of the high affinity of its PhaC synthase for this monomer. The physical properties of this PHA were determined by differential scanning calorimetry and gel permeation chromatography.  相似文献   

4.
Hemin, having two carboxyl groups, was coupled with alpha-(3-aminopropyl)-omega-methoxypoly(oxyethylene) through the acid-amide bond formed with carbodiimide. The modified hemin catalyzed the peroxidase reaction in 1,1,1-trichloroethane using benzoyl peroxide or peroxides in unsaturated fatty acids as the hydrogen acceptor and leuco crystal violet as the hydrogen donor. A basic study on quantitative microanalysis of the lipid peroxides was attempted.  相似文献   

5.
Bacterial isolates from two environments, an integrated-farming pond in the university and palm-oil mill effluent (POME) ponds at a local palm-oil-processing factory, were screened for polyhydroxyalkanoates (PHAs). Initially Sudan Black B staining was performed to detect lipid cellular inclusions. Lipid-positive isolates were then grown in a nitrogen-limiting medium containing 2% (w/v) glucose to promote accumulation of PHA before the subsequent Nile Blue A staining. The PHA extracted from positive isolates was confirmed by nuclear magnetic resonance (NMR) spectroscopy. The proportion of PHA-positive bacterial isolates was higher in the POME ponds compared to the integrated-farming pond.  相似文献   

6.
Tube-grown potato (Solanum tuberosum L., cv. Nevskii) plants treated with arachidonic acid (AA) were used as a model to study the activity of phytohemagglutinins (PHA) during induction of the plant antiviral defense system. Plant treatment with 10–8 M AA and also their inoculation with potato viruses X, Y, and M resulted in the increased activity of PHAs in potato shoots. The inducer of antiviral resistance behaved as a modulator of the PHA activity providing for its various levels during the development of viral infection. During the development of AA-induced systemic resistance, the level of phytohemagglutinin activity did not essentially depend on the nature of the viral pathogen. We suggested that the mechanism of AA-induced plant antiviral defense was connected with changes in the PHA activity.  相似文献   

7.
Ralstonia eutropha has been considered as a bacterium, incorporating hydroxyalkanoates of less than six carbons only into polyhydroxyalkanoates (PHAs). Cells of the wild type cultivated with sodium octanoate as the carbon source in the presence of the fatty acid beta-oxidation inhibitor sodium acrylate synthesized PHAs composed of the medium chain length hydroxyalkanoates (3HA(MCL)) 3-hydroxyhexanoate (3HHx) and 3-hydroxyoctanoate (3HO) as well as of 3-hydroxybutyrate and 3-hydroxyproprionate as revealed by gas chromatography, (1)H NMR spectroscopy, and mass spectroscopy. The characterization of the polymer as a tetrapolymer was confirmed by differential solvent extraction and measurement of melting and glass transition temperature depression in the purified polymer compared to PHB. These data suggested that the R. eutropha PHA synthase is capable of incorporating longer chain substrates than suggested by previous in vitro studies. Furthermore, expression of the class II PHA synthase gene phaC1 from P. aeruginosa in R. eutropha resulted in the accumulation of PHAs consisting of 3HA(MCL) contributing about 3-5% to cellular dry weight. These PHAs were composed of nearly equal molar fractions of 3HO and 3-hydroxydecanoate (3HD) with traces of 3HHx. These data indicated that 3HA(MCL)-CoA thioesters were diverted from the fatty acid beta-oxidation pathway towards PHA biosynthesis in recombinant R. eutropha.  相似文献   

8.

Background

Polyhydroxyalkanoates are a good substitute for synthetic plastic because they are highly biocompatible, ecofriendly, and biodegradable. Bacteria in freshwater bodies such as rivers, tube wells, and canals are exposed to alternating high and low concentrations of substrates that induce PHA production.

Methods

Fresh water samples were collected for isolation of bacterial strains. Screening of PHA in bacterial cells was performed with Sudan and Nile Red staining. Extracted PHA was characterized by FTIR.

Results

In this study, nine bacterial isolates were selected for PHA production on the basis of phenotypic screening. Their ability to accumulate PHAs was determined using different monosaccharides and disaccharides. Two bacterial isolates Bacillus cereus T1 (KY746353) and Bacillus cereus R3 (KY746354) produced PHAs. Optimal growth of the bacterial strain (T1) was observed in the presence of glucose, followed by maximum production of PHAs (63% PHAs) during the logarithmic phase of growth. B. cereus R3 (KY746354) accumulated 60% PHAs by dry cell weight.

Conclusion

PHA accumulation was relatively less with fructose, but both strains showed increased production (up to 50%) with sucrose. The polymer produced was characterized by Fourier-transform infrared spectroscopy (FTIR), which showed that the compound contains short-chain PHAs.
  相似文献   

9.
This work revealed for the first time the possible use of a newly isolated Bacillus aryabhattai PKV01 for poly-β-hydroxyalkanoates (PHAs) production from fermentative sweet sorghum juice. Its growth and PHA production were investigated under different pH and nitrogen sources. Medium composition was optimized using statistical tools. The highest biomass and PHA content were reached at pH 6.5 with the use of urea. Plackett-Burman design was then applied to test the relative importance of medium components and process variables on cell growth and PHA production. Cell growth and PHAs production were affected by total sugar and urea and were subjected to optimize the sorghum juice medium using response surface methodology (RSM) via central composite design (CCD). The predicted optimal culture composition was achieved. Maximum dry cell weight and PHAs were obtained using a flask and almost double the amount was achieved using a bioreactor. After PHA recovery, the structure and thermal properties were characterised and revealed to be similar to the standard of poly-β-hydroxybutyrate (PHB).  相似文献   

10.
A novel system for surface-initiated enzymatic polymerization of a film of polyhydroxyalkanoate (PHA) on solid surfaces has been developed and characterized. PHAs are aliphatic polyesters produced by a variety of microorganisms as a reserve of carbon and energy, and their properties range from elastomers to thermoplastics, depending on their monomeric composition. The PHA synthase from Ralstonia eutropha H16 was expressed as a poly-histidine fusion in Escherichia coli and immobilized onto several solid substrates through a transition-metal complex, Ni(2+)-nitrilotriacetic acid. The immobilized PHA synthase catalyzed the surface-initiated polymerization of 3-(R)-hydroxybutyryl-CoA, forming a polymer film with a uniform thickness on the surface. In this work, we describe the patterned immobilization of the intact enzyme on silicon and subsequent enzymatic polymerization. The immobilized enzyme had a lower specific activity and did not exhibit a lag phase as compared to the soluble enzyme.  相似文献   

11.
The biosynthesis of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas putida KT2442 during growth on carbohydrates was studied. PHAs isolated from P. putida cultivated on glucose, fructose, and glycerol were found to have a very similar monomer composition. In addition to the major constituent 3-hydroxydecanoate, six other monomers were found to be present: 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydodecanoate, 3-hydroxydodecenoate, 3-hydroxytetradecanoate, and 3-hydroxytetradecenoate. The identity of all seven 3-hydroxy fatty acids was established by gas chromatography-mass spectrometry, one-dimensional 1H-nuclear magnetic resonance, and two-dimensional double-quantum filtered correlation spectroscopy 1H-nuclear magnetic resonance. The chemical structures of the monomer units are identical to the structure of the acyl moiety of the 3-hydroxyacyl-acyl carrier protein intermediates of de novo fatty acid biosynthesis. Furthermore, the degree of unsaturation of PHA and membrane lipids is similarly influenced by shifts in the cultivation temperature. These results strongly indicate that, during growth on nonrelated substrates, PHA monomers are derived from intermediates of de novo fatty acid biosynthesis. Analysis of a P. putida pha mutant and complementation of this mutant with the cloned pha locus revealed that the PHA polymerase genes necessary for PHA synthesis from octanoate are also responsible for PHA formation from glucose.  相似文献   

12.
Chitosan/poly(vinyl alcohol)/gelatin (CS/PVA/GA) ternary blend films were prepared by solution blending method in this study. The thermal properties of the CS/PVA/GA ternary blend films were examined by differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The melting point of the CS/PVA/GA ternary blend film was increased when the amount of GA in the blend film was increased based upon the DSC thermal analysis. Results of X-ray diffraction (XRD) analyses indicated that the intensity of diffraction peak at 19 degrees of PVA became lower and broader with increasing the amount of GA in the CS/PVA/GA ternary blend film. Although CS, PVA, and GA are hydrophilic biodegradable polymers, the results of water contact angle measurements are still as high as 83 degrees, 68 degrees, and 66 degrees, respectively. A minimum water contact angle (56 degrees) was observed when the ternary blend film contains 50 wt.% GA (i.e. GA5). This behavior is primarily due to the reorientation of polar functional groups toward to the top surface of CS/PVA/GA ternary blend films.  相似文献   

13.
Medium-chain-length polyhydroxyalkanoates (PHAs) are polyesters having properties of biodegradable thermoplastics and elastomers that are naturally produced by a variety of pseudomonads. Saccharomyces cerevisiae was transformed with the Pseudomonas aeruginosa PHAC1 synthase modified for peroxisome targeting by the addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. The PHAC1 gene was put under the control of the promoter of the catalase A gene. PHA synthase expression and PHA accumulation were found in recombinant S. cerevisiae growing in media containing fatty acids. PHA containing even-chain monomers from 6 to 14 carbons was found in recombinant yeast grown on oleic acid, while odd-chain monomers from 5 to 15 carbons were found in PHA from yeast grown on heptadecenoic acid. The maximum amount of PHA accumulated was 0.45% of the dry weight. Transmission electron microscopy of recombinant yeast grown on oleic acid revealed the presence of numerous PHA inclusions found within membrane-bound organelles. Together, these data show that S. cerevisiae expressing a peroxisomal PHA synthase produces PHA in the peroxisome using the 3-hydroxyacyl coenzyme A intermediates of the beta-oxidation of fatty acids present in the media. S. cerevisiae can thus be used as a powerful model system to learn how fatty acid metabolism can be modified in order to synthesize high amounts of PHA in eukaryotes, including plants.  相似文献   

14.
The feasibility of the simultaneous production of polyhydroxyalkanoates (PHAs) and rhamnolipids, as a novel approach to reduce their production costs, was demonstrated by the cultivation of Pseudomonas aeruginosa IFO3924. Fairly large amounts of PHAs and rhamnolipids were obtained from the bacterial cells and the culture supernatant, respectively. Decanoate was a more suitable carbon source than ethanol and glucose for the simultaneous production, although glucose was suitable for cell growth without an induction period under pH control. The kind of carbon source affected PHA monomer composition markedly and PHA molecular weight slightly. Monorhamnolipids and dirhamnolipids were included in the rhamnolipids extracted from the culture supernatant using decanoate, glucose, or ethanol as the carbon source. Both PHAs and rhamnolipids were synthesized after the growth phase. PHA content in the cell reached a maximum when the carbon source was exhausted. After exhaustion of the carbon source, PHA content decreased rapidly, but rhamnolipid synthesis, which followed PHA synthesis, continued. This resulted in a time lag for the attainment of maximum levels of PHAs and rhamnolipids. The reusability of the cells used in rhamnolipid production was evaluated in the repeated batch culture of P. aeruginosa IFO3924 for the simultaneous production of PHAs and rhamnolipids. High concentrations of rhamnolipids in the culture supernatant were attained at the end of both the first and second batch cultures. High PHA content was achieved in the resting cells that were finally harvested after the second batch. Simultaneous production of PHAs and rhamnolipids will enhance the availability of valuable biocatalysts of bacterial cells, and dispel the common belief that the production cost of PHAs accumulated intracellularly is almost impossible to become lower than that of cells themselves.  相似文献   

15.
The biosynthesis of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas putida KT2442 during growth on carbohydrates was studied. PHAs isolated from P. putida cultivated on glucose, fructose, and glycerol were found to have a very similar monomer composition. In addition to the major constituent 3-hydroxydecanoate, six other monomers were found to be present: 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydodecanoate, 3-hydroxydodecenoate, 3-hydroxytetradecanoate, and 3-hydroxytetradecenoate. The identity of all seven 3-hydroxy fatty acids was established by gas chromatography-mass spectrometry, one-dimensional 1H-nuclear magnetic resonance, and two-dimensional double-quantum filtered correlation spectroscopy 1H-nuclear magnetic resonance. The chemical structures of the monomer units are identical to the structure of the acyl moiety of the 3-hydroxyacyl-acyl carrier protein intermediates of de novo fatty acid biosynthesis. Furthermore, the degree of unsaturation of PHA and membrane lipids is similarly influenced by shifts in the cultivation temperature. These results strongly indicate that, during growth on nonrelated substrates, PHA monomers are derived from intermediates of de novo fatty acid biosynthesis. Analysis of a P. putida pha mutant and complementation of this mutant with the cloned pha locus revealed that the PHA polymerase genes necessary for PHA synthesis from octanoate are also responsible for PHA formation from glucose.  相似文献   

16.
Polyhydroxyalkanoates (PHAs) accumulating bacteria were isolated under various selective conditions such as pH, salt concentrations and types of heavy metal. Fifty strains of bacterial isolates were found to belong to Bacillus, Proteus, Pseudomonas, Aeromonas, Alcaligenes and Chromobacterium, based on phenotypical features and genotypic investigation. Only twenty five bacterial isolates were selected and observed for the production of PHAs. Interestingly, bacteria belonging to Firmucutes Bacillus sp. produced a high amount of PHAs. The maximum PHAs were accumulated by B. licheniformis PHA 007 at 68.80% of dry cell weight (DCW). Pseudomonas sp., Aeromonas sp., Alcaligenes sp. and Chromobacterium sp. were recorded to produce a moderate amount of PHAs, varying from 10.00-44.32% of DCW. The enzymatic activity was preliminarily analyzed by the ratio of the clear zone diameter to colony diameter. Bacillus gave the highest ratio of hydrolysis zone which corresponds to the highest hydrolytic enzyme activities. Bacillus licheniformis PHA 007 had the highest lipase and protease activity at 2.1 and 5.1, respectively. However, the highest amylase activity was observed in Bacillus sp. PHA 023 at 1.4. Determination of metabolic characteristics was also investigated to check for their ability to consume a wide range of substrates. Bacillus, Aeromonas sp. and Alcaligenes sp. had great ability to utilize a variety of substrates. To decrease high PHA cost, different sources of cheap substrates were tested for the production of PHAs. Bacillus cereus PHA 008 gave the maximal yield of PHA production (64.09% of DCW) when cultivated in anaerobically treated POME. In addition, the accumulation of PHA copolymers such as 3-hydroxyvalerate and 3-hydroxyhexanoate was also observed in Bacillus and Pseudomomas sp. strain 012 and 045, respectively. Eight of the nine isolates accumulated a significant amount of PHAs when inexpensive carbon sources were used as substrates. Here it varied from 1.69% of DCW by B. licheniformis PHA 007 to 64.09% of DCW by B. cereus PHA 008.  相似文献   

17.
Polyhydroxyalkanoates (PHAs) can be divided into three main types based on the sizes of the monomers incorporated into the polymer. Short-chain-length (SCL) PHAs consist of monomer units of C3 to C5, medium-chain-length (MCL) PHAs consist of monomer units of C6 to C14, and SCL-MCL PHAs consist of monomers ranging in size from C4 to C14. Although previous studies using recombinant Escherichia coli have shown that either SCL or MCL PHA polymers could be produced from glucose, this study presents the first evidence that an SCL-MCL PHA copolymer can be made from glucose in recombinant E. coli. The 3-ketoacyl-acyl carrier protein synthase III gene (fabH) from E. coli was modified by saturation point mutagenesis at the codon encoding amino acid 87 of the FabH protein sequence, and the resulting plasmids were cotransformed with either the pAPAC plasmid, which harbors the Aeromonas caviae PHA synthase gene (phaC), or the pPPAC plasmid, which harbors the Pseudomonas sp. strain 61-3 PHA synthase gene (phaC1), and the abilities of these strains to accumulate PHA from glucose were assessed. It was found that overexpression of several of the mutant fabH genes enabled recombinant E. coli to induce the production of monomers of C4 to C10 and subsequently to produce unusual PHA copolymers containing SCL and MCL units. The results indicate that the composition of PHA copolymers may be controlled by the monomer-supplying enzyme and further reinforce the idea that fatty acid biosynthesis may be used to supply monomers for PHA production.  相似文献   

18.
Polyhydroxyalkanoate (PHA) copolymers comprising the four monomers 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 3-hydroxy-2-methylvalerate (3HMV) and 3-hydroxy-2-methylbutyrate (3HMB) were generated using the recently discovered Defluviicoccus vanus-related glycogen accumulating organisms (DvGAOs) under anaerobic conditions without applying any nutrient limitations. The composition could be manipulated in a defined range by modifying the ratio of propionate and acetate provided in the feed stream. The PHAs produced were characterised as random copolymers (from propionate alone) or a mixture of random copolymers (from mixture of propionate and acetate) through microstructure analysis using 13C NMR spectroscopy. The sequence distribution of all eight comonomer pairs in the carbonyl region of 3HB and 3HV was identified and assigned with confidence utilising two-dimensional heteronuclear multiple bond coherence (HMBC) spectroscopy. Weight average molecular weights were in the range 390-560 kg/mol. Differential scanning calorimetry (DSC) traces showed that the melting temperature (Tm) varied between 70 and 161 degrees C and glass transition temperature (Tg) ranged from -8 to 0 degrees C. The incorporation of considerable amounts of 3HMV and 3HMB monomer units introduced additional "defects" into the PHBV copolymer structure and hence greatly lowered the crystallinity. The data indicate the potential of these four-monomer PHAs to be employed for practical applications, considering their favourable properties and the cost-effective production process using a mixed culture and simple carbon sources.  相似文献   

19.
The thermogenic curves of metabolism of two strains of Escherichia coli pUC19cab/XL-IBlue and XL-IBlue have been determined by using a LKB-2277 bioActivity Monitor and ampoule method at 37 degrees C. pUC19cab/XL-IBlue was a recombinant E. coli strain bearing a foreign plasmid pUC19cab which brought the polyhydroxyalkanoates (PHAs) production. XL-IBlue was a host bacterium without any foreign DNA. Our studies reveal that the PHA production of recombinant E. coli has an apparent influence on their thermogenic curves of metabolism and therefore the initial time of PHAs production can be determined from these thermogenic curves.  相似文献   

20.
To prepare medium-chain-length poly-3-hydroxyalkanoates (PHAs) with altered physical properties, we generated recombinant Escherichia coli strains that synthesized PHAs with altered monomer compositions. Experiments with different substrates (fatty acids with different chain lengths) or different E. coli hosts failed to produce PHAs with altered physical properties. Therefore, we engineered a new potential PHA synthetic pathway, in which ketoacyl-coenzyme A (CoA) intermediates derived from the beta-oxidation cycle are accumulated and led to the PHA polymerase precursor R-3-hydroxyalkanoates in E. coli hosts. By introducing the poly-3-hydroxybutyrate acetoacetyl-CoA reductase (PhbB) from Ralstonia eutropha and blocking the ketoacyl-CoA degradation step of the beta-oxidation, the ketoacyl-CoA intermediate was accumulated and reduced to the PHA precursor. Introduction of the phbB gene not only caused significant changes in the monomer composition but also caused changes of the physical properties of the PHA, such as increase of polymer size and loss of the melting point. The present study demonstrates that pathway engineering can be a useful approach for producing PHAs with engineered physical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号