首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Cytological analysis and genetic control of rice anther development   总被引:4,自引:0,他引:4  
Zhang D  Luo X  Zhu L 《遗传学报》2011,38(9):379-390
Microsporogenesis and male gametogenesis are essential for the alternating life cycle of flowering plants between diploid sporophyte and haploid gametophyte generations.Rice (Oryza sativa) is the world's major staple food,and manipulation of pollen fertility is particularly important for the demands to increase rice grain yield.Towards a better understanding of the mechanisms controlling rice male reproductive development,we describe here the cytological changes of anther development through 14 stages,including cell division,differentiation and degeneration of somatic tissues consisting of four concentric cell layers surrounding and supporting reproductive cells as they form mature pollen grains through meiosis and mitosis.Furthermore,we compare the morphological difference of anthers and pollen grains in both monocot rice and eudicot Arabidopsis thaliana.Additionally,we describe the key genes identified to date critical for rice anther development and pollen formation.  相似文献   

2.
In flowering plants, the tapetum, the innermost layer of the anther, provides both nutrient and lipid components to developing microspores, pollen grains, and the pollen coat. Though the programmed cell death of the tapetum is one of the most critical and sensitive steps for fertility and is affected by various environmental stresses, its regulatory mechanisms remain mostly unknown. Here we show that autophagy is required for the metabolic regulation and nutrient supply in anthers and that autophagic degradation within tapetum cells is essential for postmeiotic anther development in rice. Autophagosome-like structures and several vacuole-enclosed lipid bodies were observed in postmeiotic tapetum cells specifically at the uninucleate stage during pollen development, which were completely abolished in a retrotransposon-insertional OsATG7 (autophagy-related 7)-knockout mutant defective in autophagy, suggesting that autophagy is induced in tapetum cells. Surprisingly, the mutant showed complete sporophytic male sterility, failed to accumulate lipidic and starch components in pollen grains at the flowering stage, showed reduced pollen germination activity, and had limited anther dehiscence. Lipidomic analyses suggested impairment of editing of phosphatidylcholines and lipid desaturation in the mutant during pollen maturation. These results indicate a critical involvement of autophagy in a reproductive developmental process of rice, and shed light on the novel autophagy-mediated regulation of lipid metabolism in eukaryotic cells.  相似文献   

3.
Fruit and seed crop production heavily relies on successful stigma pollination, pollen tube growth, and fertilization of female gametes. These processes depend on production of viable pollen grains, a process sensitive to high‐temperature stress. Therefore, rising global temperatures threaten worldwide crop production. Close observation of plant development shows that high‐temperature stress causes morpho‐anatomical changes in male reproductive tissues that contribute to reproductive failure. These changes include early tapetum degradation, anther indehiscence, and deformity of pollen grains, all of which are contributing factors to pollen fertility. At the molecular level, reactive oxygen species (ROS) accumulate when plants are subjected to high temperatures. ROS is a signalling molecule that can be beneficial or detrimental for plant cells depending on its balance with the endogenous cellular antioxidant system. Many metabolites have been linked with ROS over the years acting as direct scavengers or molecular stabilizers that promote antioxidant enzyme activity. This review highlights recent advances in research on anther and pollen development and how these might explain the aberrations seen during high‐temperature stress; recent work on the role of nitrogen and carbon metabolites in anther and pollen development is discussed including their potential role at high temperature.  相似文献   

4.
《Autophagy》2013,9(5):878-888
In flowering plants, the tapetum, the innermost layer of the anther, provides both nutrient and lipid components to developing microspores, pollen grains, and the pollen coat. Though the programmed cell death of the tapetum is one of the most critical and sensitive steps for fertility and is affected by various environmental stresses, its regulatory mechanisms remain mostly unknown. Here we show that autophagy is required for the metabolic regulation and nutrient supply in anthers and that autophagic degradation within tapetum cells is essential for postmeiotic anther development in rice. Autophagosome-like structures and several vacuole-enclosed lipid bodies were observed in postmeiotic tapetum cells specifically at the uninucleate stage during pollen development, which were completely abolished in a retrotransposon-insertional OsATG7 (autophagy-related 7)-knockout mutant defective in autophagy, suggesting that autophagy is induced in tapetum cells. Surprisingly, the mutant showed complete sporophytic male sterility, failed to accumulate lipidic and starch components in pollen grains at the flowering stage, showed reduced pollen germination activity, and had limited anther dehiscence. Lipidomic analyses suggested impairment of editing of phosphatidylcholines and lipid desaturation in the mutant during pollen maturation. These results indicate a critical involvement of autophagy in a reproductive developmental process of rice, and shed light on the novel autophagy-mediated regulation of lipid metabolism in eukaryotic cells.  相似文献   

5.
In higher plants, timely degradation of tapetal cells, the innermost sporophytic cells of the anther wall layer, is a prerequisite for the development of viable pollen grains. However, relatively little is known about the mechanism underlying programmed tapetal cell development and degradation. Here, we report a key regulator in monocot rice (Oryza sativa), PERSISTANT TAPETAL CELL1 (PTC1), which controls programmed tapetal development and functional pollen formation. The evolutionary significance of PTC1 was revealed by partial genetic complementation of the homologous mutation MALE STERILITY1 (MS1) in the dicot Arabidopsis (Arabidopsis thaliana). PTC1 encodes a PHD-finger (for plant homeodomain) protein, which is expressed specifically in tapetal cells and microspores during anther development in stages 8 and 9, when the wild-type tapetal cells initiate a typical apoptosis-like cell death. Even though ptc1 mutants show phenotypic similarity to ms1 in a lack of tapetal DNA fragmentation, delayed tapetal degeneration, as well as abnormal pollen wall formation and aborted microspore development, the ptc1 mutant displays a previously unreported phenotype of uncontrolled tapetal proliferation and subsequent commencement of necrosis-like tapetal death. Microarray analysis indicated that 2,417 tapetum- and microspore-expressed genes, which are principally associated with tapetal development, degeneration, and pollen wall formation, had changed expression in ptc1 anthers. Moreover, the regulatory role of PTC1 in anther development was revealed by comparison with MS1 and other rice anther developmental regulators. These findings suggest a diversified and conserved switch of PTC1/MS1 in regulating programmed male reproductive development in both dicots and monocots, which provides new insights in plant anther development.  相似文献   

6.
7.
8.
One fundamental difference between plants and animals is the existence of a germ-line in animals and its absence in plants. In flowering plants, the sexual organs (stamens and carpels) are composed almost entirely of somatic cells, a small subset of which switch to meiosis; however, the mechanism of meiotic cell fate acquisition is a long-standing botanical mystery. In the maize (Zea mays) anther microsporangium, the somatic tissues consist of four concentric cell layers that surround and support reproductive cells as they progress through meiosis and pollen maturation. Male sterility, defined as the absence of viable pollen, is a common phenotype in flowering plants, and many male sterile mutants have defects in somatic and reproductive cell fate acquisition. However, without a robust model of anther cell fate acquisition based on careful observation of wild-type anther ontogeny, interpretation of cell fate mutants is limited. To address this, the pattern of cell proliferation, expansion, and differentiation was tracked in three dimensions over 30 days of wild-type (W23) anther development, using anthers stained with propidium iodide (PI) and/or 5-ethynyl-2′-deoxyuridine (EdU) (S-phase label) and imaged by confocal microscopy. The pervading lineage model of anther development claims that new cell layers are generated by coordinated, oriented cell divisions in transient precursor cell types. In reconstructing anther cell division patterns, however, we can only confirm this for the origin of the middle layer (ml) and tapetum, while young anther development appears more complex. We find that each anther cell type undergoes a burst of cell division after specification with a characteristic pattern of both cell expansion and division. Comparisons between two inbreds lines and between ab- and adaxial anther florets indicated near identity: anther development is highly canalized and synchronized. Three classical models of plant organ development are tested and ruled out; however, local clustering of developmental events was identified for several processes, including the first evidence for a direct relationship between the development of ml and tapetal cells. We speculate that small groups of ml and tapetum cells function as a developmental unit dedicated to the development of a single pollen grain.  相似文献   

9.
iaaM基因在烟草花粉中的表达及其在花粉发育中的作用   总被引:3,自引:0,他引:3  
试验利用花粉特异表达的启动子(Lat52)和绒毡层特异表达的启动子(TA29)引导外源生长素合成代谢基因(iaaM)在烟草花粉中表达以研究生长素在花粉发育中的作用。转Lat52-iaaM基因或转TA29-iaaM基因烟草在形态上表现出变异,如从茎上形成不定根,叶呈卷曲状等典型的生长素表达的性状。另外,与对照相比,转基因烟草花药中IAA水平显著增加,且植株矮化,开花期推迟,有的转基因烟草未能开花。上述现象表明:Lat52和TA29启动子的表达并不仅限于花粉或绒毡层,或者说这两个启动子的表达有些泄漏。转基因烟草的花药形状有较大的变异,早期的每个花药中花粉数明显减少,但这些花粉可被醋酸-洋红染色。所有能开花的转基因烟草均可收到种子,但收自某些转基因株系的种子不能萌发。所有这些结果表明生长素在花粉发育过程中起重要作用,过量的生长素会导致花粉发育的异常。  相似文献   

10.
试验利用花粉特异表达的启动子(Lat52)和绒毡层特异表达的启动子(TA29)引导外源生长素合成代谢基因(iaaM)在烟草花粉中表达以研究生长素在花粉发育中的作用。转Lat52-iaaM基因或转TA29-iaaM基因烟草在形态上表现出变异,如从茎上形成不定根,叶呈卷曲状等典型的生长素过量表达的性状。另外,与对照相比,转基因烟草花药中IAA水平显著增加,且植株矮化,开花期推迟,有的转基因烟草未能开花。上述现象表明:Lat52和TA29启动子的表达并不仅限于花粉或绒毡层,或者说这两个启动子的表达有些泄漏。转基因烟草的花药形状有较大的变异,早期的每个花药中花粉数明显减少,但这些花粉可被醋酸一洋红染色。所有能开花的转基因烟草均可收到种子,但收自某些转基因株系的种子不能萌发。所有这些结果表明生长素在花粉发育过程中起重要作用,过量的生长素会导致花粉发育的异常。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号