首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil microbes constitute an important control on nitrogen (N) turnover and retention in arctic ecosystems where N availability is the main constraint on primary production. Ectomycorrhizal (ECM) symbioses may facilitate plant competition for the specific N pools available in various arctic ecosystems. We report here our study on the N uptake patterns of coexisting plants and microbes at two tundra sites with contrasting dominance of the circumpolar ECM shrub Betula nana. We added equimolar mixtures of glycine-N, NH4+–N and NO3–N, with one N form labelled with 15N at a time, and in the case of glycine, also labelled with 13C, either directly to the soil or to ECM fungal ingrowth bags. After 2 days, the vegetation contained 5.6, 7.7 and 9.1% (heath tundra) and 7.1, 14.3 and 12.5% (shrub tundra) of the glycine-, NH4+- and NO315N, respectively, recovered in the plant–soil system, and the major part of 15N in the soil was immobilized by microbes (chloroform fumigation-extraction). In the subsequent 24 days, microbial N turnover transferred about half of the immobilized 15N to the non-extractable soil organic N pool, demonstrating that soil microbes played a major role in N turnover and retention in both tundra types. The ECM mycelial communities at the two tundras differed in N-form preferences, with a higher contribution of glycine to total N uptake at the heath tundra; however, the ECM mycelial communities at both sites strongly discriminated against NO3. Betula nana did not directly reflect ECM mycelial N uptake, and we conclude that N uptake by ECM plants is modulated by the N uptake patterns of both fungal and plant components of the symbiosis and by competitive interactions in the soil. Our field study furthermore showed that intact free amino acids are potentially important N sources for arctic ECM fungi and plants as well as for soil microorganisms. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
A sand-culture experiment was conducted to study the influence of a deficiency of and an excess of micronutrients on the uptake and assimilation of NH 4 + and NO 3 ions by maize. By studying the fate of15N supplied as15NH4NO3 or NH4 15NO3, it was demonstrated that in maize plants NH4−N was absorbed in preference to NO 3 −N. The uptake and distribution of N originating from both NH 4 + and NO 3 was considerably modified by deficiency of, or an excess of, micronutrients in the growth medium. The translocation of NH 4 + −N from roots to shoots was relatively less than that of NO 3 −N. Deficiency as well as excessive amounts of micronutrients, in the growth medium, substantially reduced the translocation of absorbed N into protein. This effect was more pronounced in the case of N supplied as NO 3 . Amino-N was the predominant non-protein fraction in which N from both NH 4 + and NO 3 tended to accumulate. The next important non-protein fractions were NO 3 −N when N was supplied as NO 3 and amide-N when NH 4 + was the source. The relative accumulation of15N into different protein fractions was also a function of imposed micronutrient levels.  相似文献   

3.
Human activities are altering biodiversity and the nitrogen (N) cycle, affecting terrestrial carbon (C) cycling globally. Only a few specialized bacteria carry out nitrification—the transformation of ammonium (NH 4 + ) to nitrate (NO 3 ), in terrestrial ecosystems, which determines the form and mobility of inorganic N in soils. However, the control of nitrification on C cycling in natural ecosystems is poorly understood. In an ecosystem experiment in the Patagonian steppe, we inhibited autotrophic nitrification and measured its effects on C and N cycling. Decreased net nitrification increased total mineral N and NH 4 + and reduced NO 3 in the soil. Plant cover (P < 0.05) and decomposition (P < 0.0001) decreased with inhibition of nitrification, in spite of increases in NH 4 + availability. There were significant changes in the natural abundance of δ15N in the dominant vegetation when nitrification was inhibited suggesting that a switch occurred in the form of N (from NO 3 to NH 4 + ) taken up by plants. Results from a controlled-condition experiment supported the field results by showing that the dominant plant species of the Patagonian steppe have a marked preference for nitrate. Our results indicate that nitrifying bacteria exert a major control on ecosystem functioning, and that the inhibition of nitrification results in significant alteration of the C cycle. The interactions between the C and N cycles suggest that rates of C cycling are affected not just by the amount of available N, but also by the relative availability for plant uptake of NH 4 + and NO 3 .  相似文献   

4.
Using an alkaline calcareous soil, pot experiments were conducted to elucidate the effects of NH 4 + vs. NO 3 nutrition (50 or 100 mg kg−1 soil) of wheat and maize on microbial activity in the rhizosphere and bulk soils. Dicyandiamide was used as nitrification inhibitor to maintain NH 4 + as the predominant N source for plants grown in NH 4 + -treated soil. While maize grew equally well on both N sources, root and shoot growth of wheat was higher under NH 4 + than under NO 3 nutrition. Bacterial population density on roots, but not in the rhizosphere soil, was higher under NH 4 + than under NO 3 supplied at 150 mg N kg−1 soil; whereas at both N levels applied, NH 4 + compared to NO 3 nutrition of wheat and maize significantly increased microbial biomass in the rhizosphere soil. Under both plant species, NH 4 + vs. NO 3 nutrition also increased aerobic and anaerobic respiration, and dehydrogenase activity in the rhizosphere. As microbial activity in the planted bulk and unplanted soils was hardly affected by the N-source, we hypothesize that the stimulation by NH 4 + of the rhizosphere microbial activity was probably due to higher availability of root exudates under NH 4 + than under NO 3 nutrition.  相似文献   

5.
Summary The uptake and distribution of15NH 4 + ,15NO 3 and15N2 was studied in greenhouse-grown beans (Phaseolus vulgaris L.) with a commercial cultivar and 2 recombinant inbred backcross lines;15N was supplied in the nutrient solution at the R3 (50% bloom) stage. Plants were harvested 1, 5 and 10 days after treatment, and were separated into nodules, roots, stems, mature leaflets, immature leaflets, and flowers/fruits. All 3 lines showed rapid increases in the N content of flowers/fruits after the R3 stage. However, the percentage N in these tissues decreased after the R3 stage. One of the recombinant lines showed a greater uptake of NH 4 + than the other 2 lines. Rates of15N2 fixation and NO 3 uptake were similar for all 3 lines, N2 fixation estimated from total N content showed the 2 recombinant lines with 24 and 34 percent greater activity than the commercial cultivar. Distribution of15N at the whole plant level was similar for all 3 lines for a similar N source.15NO 3 was transported first to leaflets and the label then moved into flowers/fruits. Transport of fixed N2 was from the nodules to roots, stems and into flowers/fruits; usually less than 10 percent entered the leaflets. This indicates that N2 fixation furnishes N directly to flowers/fruits with over 50 percent of the fixed N being deposited into flowers/fruits within 5 days after treatment.  相似文献   

6.
Tomato plants were cultivated (from 2 to 23 days after germination) in media with NO 3 , NH 4 + , or a mixture of both forms in different proportions used as the N source given with or without 5 mol dm−3 HCO 3 . The accumulation of soluble sugars (reducing sugars and sucrose) and free amino acids was higher in the roots and leaves of NH 4 + -fed plants than in NO 3 -fed plants. Starch accumulation in NH 4 + -fed plants was higher in leaves (about 28%) and lower in roots (about 37%) in comparison with that of NO 3 -fed plants. Plants cultivated in media containing a mixture of NO 3 /NH 4 + were characterized by a lower content of sugars and amino acids accumulation in comparison with that in plants fed with NO 3 or NH 4 + . An elevated HCO 3 concentration in the rhizosphere stimulated the accumulation of soluble sugars and free amino acids in all the experimental variants. There were only small differences in the starch content.  相似文献   

7.
After growth for 17 to 36 days on nutrient solutions with NH4NO3 as nitrogen source (pH 4.2) dry matter of sorghum genotype SC0283 was much less affected by Al (1.5 and 3.0 ppm) than that of genotype NB9040. In the absence of Al both cultivars released protons into the nutrient solution as a result of an excess of cationic nutrients taken up. When Al was present, this proton efflux per unit dry weight increased drastically, especially with the sensitive genotype NB9040. Chemical analysis of plant material and continuous analyses of NO 3 and NH 4 + in the nutrient solution indicated, that the Al-induced shift in H+-balance of both genotypes could almost completely be attributed to a decreased NO 3 /NH 4 + uptake ratio. In vivo nitrate reductase activity (NRA) was reduced in the shoot of NB9040 and to a lesser degree in SC0283. Al-induced decrease in NRA was accompanied by similar percentual decreases in NO 3 tissue concentrations. Therefore this decrease is interpreted as being indirect,i.e., the consequence of the reduced NO 3 uptake of the plants. A direct repression of NRA by Al seems also unlikely because nitrate reductase activity of the roots (where cellular Al-concentrations should be higher than in shoots) was not affected in Al-treated plants of either genotype.  相似文献   

8.
There is ample experimental evidence that, Na, if supplied in separate fertiliser granules or crystals to N, i.e., in blended fertiliser form, can improve both the yield and the recovery of fertiliser N by grassland swards in situations of limited K supply, but not in situations of K abundance. There is some evidence, though, that in K-replete situations, Na, if supplied in the same fertiliser granule as N, i.e. in concentrated complex fertiliser (CCF) form, also improves dry matter production and N recovery by swards whilst lowering the risk of grass tetany in grazing animals. However, the mechanism for the latter effect of Na on N uptake has never been elucidated, nor has it been clarified whether Na stimulates NH 4 + and NO 3 uptake by plants or simply NO 3 uptake alone. The aim of the present study was to see if supplying Na in the same fertiliser pellets (NNa-CCF) as NH4NO3 (differentially labelled with15N), or in separate pellets (NNa-blend), had any effect on the recovery of15N-labelled NH 4 + and NO 3 -N by perennial ryegrass plants growing in a glasshouse under K-replete conditions. The results of the experiment confirmed that using an NNa-CCF was more beneficial to shoot production than using an NNa-blend. However, the differential in shoot production occurred without any corresponding difference in total N (i.e. NH 4 + plus NO 3 -N) recovery in shoot tissue. Instead, Na, in the CCF appears to have stimulated NO 3 uptake at the expense of NH 4 + absorption, thereby altering the balance between NH 4 + and NO 3 -nutrition in favour of NO 3 -nutrition, and stimulating shoot production as a consequence. It was concluded that if grassland is already well supplied with K it would be more beneficial in terms of sward production to apply a Na and N-containing CCF than a blend of separate Na and N-containing granules or crystals.  相似文献   

9.
S. C. Jarvis 《Plant and Soil》1987,100(1-3):99-112
Summary Perennial ryegrass was grown in flowing solution culture with nitrogen supplied in amounts that increased exponentially,i.e. in parallel with the rate of increase in growth. Nitrogen was supplied as either NO 3 or NH 4 + , and the amounts to be added were calculated on the basis of extrapolated values for dry weights obtained from fitted curves. There were two rates of addition for each form of N aimed at providing adequate (5.0 per cent) and less than adequate (2.75 per cent) contents in the plants in each case. Measured plant weights and N concentrations were in close agreement with predicted values over a four week experimental period. There was no effect of N-form at high N, and these plants produced 46 per cent more dry matter than the plants at low N. Only minor differences in overall growth occurred with NO 3 or NH 4 + plants at low N, but the NH 4 + plants had a greater shoot:root ratio. The absorption rate (m mol Ng root d−1) for NH 4 + -N was therefore greater than for NO 3 -N. The cation/anion composition of the plants was affected in a predicable way, and to a greater or lesser extent at high or low N, respectively, in NO 3 or NH 4 + plants. The major changes in cation composition came through effects on potassium absorption. Plants with low NO 3 appeared to be under greater N stress than those with low NH 4 + because of the lower shoot:root ratio and the greater C∶N ratio in the shoots.  相似文献   

10.
Anthropogenic N deposition may change soil conditions in forest ecosystems as demonstrated in many studies of coniferous forests, whereas results from deciduous forests are relatively scarce. Therefore the influence of N deposition on several variables was studied in situ in 45 oak-dominated deciduous forests along a N deposition gradient in southern Sweden, where the deposition ranged from 10 to 20 kg N ha−1 year−1. Locally estimated NO 3 deposition, as measured with ion-exchange resins (IER) on the soil surface, and grass N concentration (%) were positively correlated with earlier modelled regional N deposition. Furthermore, the δ15N values of grass and uppermost soil layers were negatively correlated with earlier modelled N deposition. The data on soil NO 3 , measured with IER in the soil, and grass N concentration suggest increased soil N availability as a result of N deposition. The δ15N values of grass and uppermost soil layers indicate increased nitrification rates in high N deposition sites, but no large downward movements of NO 3 in these soils. Only a few sites had NO 3 concentrations exceeding 1 mg N l−1 in soil solution at 50 cm depth, which showed that N deposition to these acid oak-dominated forests has not yet resulted in extensive leaching of N. The δ15N enrichment factor was the variable best correlated with NO 3 concentrations at 50 cm and is thus a variable that potentially may be used to predict leaching of NO 3 from forest soils.  相似文献   

11.
In a greenhouse study, with and without rice plants, of five flooded Philippine rice soils whose organic C (OC) content varied from 0.5 to 3.6%, incorporation ofSesbania rostrata, Azolla microphylla and rice straw affected the kinetics of soil solution NH 4 + −N, K+, Fe2+, Mn2+, Zn2+, and P. Sesbania and Azolla increased NH 4 + −N concentration above the control treatment, whereas rice straw depressed it. In all soils Azolla released less NH 4 + −N than Sesbania. The apparent net N release depended on the soil and ranged from 44–81% for Sesbania and 27–52% for Azolla. These effects persisted throughout the growth of IR36. Soil solution and exchangeable NH 4 + −N increased initially but levelled off between 30 to 80 days and between 20 to 40 days after flooding (DF), respectively. With rice, soil solution NH 4 + −N concentration, reached a peak at 15–40 DF and declined to very low levels (<4mg L−1). In the 3 soils of low OC content nitrogen derived from green manure ranged from 34–53% and the apparent revovery of added green manure N varied from 29–67%. Almost all N released from both Azolla and Sesbania were recovered in the rice plant in all soils except Concepcion with only 77%. The concentration of K+, Fe2+, Mn2+ and P in the soil solution were higher with rice straw than Sesbania and Azolla in all soils except Hanggan which showed no change in Fe2+ and Mn2+ but increased K+ and P. In general, rice straw, Sesbania and Azolla decreased Zn2+ concentration in all soils.  相似文献   

12.
Forest die-back and impaired tree vitality have frequently been ascribed to Al-toxicity and Al-induced nutritional disorders due to increased acidification of forest soils. Therefore, in this experiment effects of Al were studied on growth and nutrient uptake with seedlings of five different forest tree species. During growth in culture solutions with and without Al all five species proved to be very Al-tolerant, despite high accumulation of Al in roots. In the coniferous evergreens Douglas-fir and Scots pine shoot as well as root Al concentrations were significantly higher than in the deciduous broad-leaved species oak and birch. Larch showed intermediate Al levels. In none of the five species did Al reduce nutrient concentrations or the Ca/Al ratio to values below the critical level. Besides differences in Al accumulation, coniferous and broad-leaved species also differed with respect to uptake and assimilation of nitrogen. Due to extra NH 4 + uptake, oak and birch showed a much higher N uptake and higher NH 4 + preference than the coniferous species. Especially with oak this high NH 4 + preference in combination with a low specific root surface area resulted in a high root proton efflux density. In comparison to both broad-leaved trees and Scots pine the NO 3 reduction capacity of larch and Douglas-fir was extremely low. This may have important consequences for both species if grown in NO 3 -rich soils.  相似文献   

13.
The ability of an ecosystem to retain anthropogenic nitrogen (N) deposition is dependent upon plant and soil sinks for N, the strengths of which may be altered by chronic atmospheric N deposition. Sugar maple (Acer saccharum Marsh.), the dominant overstory tree in northern hardwood forests of the Lake States region, has a limited capacity to take up and assimilate NO3. However, it is uncertain whether long-term exposure to NO3 deposition might induce NO3 uptake by this ecologically important overstory tree. Here, we investigate whether 10 years of experimental NO3deposition (30 kg N ha−1 y−1) could induce NO3 uptake and assimilation in overstory sugar maple (approximately 90 years old), which would enable this species to function as a direct sink for atmospheric NO3 deposition. Kinetic parameters for NH4+ and NO3 uptake in fine roots, as well as leaf and root NO3 reductase activity, were measured under conditions of ambient and experimental NO3 deposition in four sugar maple-dominated stands spanning the geographic distribution of northern hardwood forests in the Upper Lake States. Chronic NO3 deposition did not alter the V max or K m for NO3 and NH4+ uptake nor did it influence NO3 reductase activity in leaves and fine roots. Moreover, the mean V max for NH4+ uptake (5.15 μmol 15N g−1 h−1) was eight times greater than the V max for NO3 uptake (0.63 μmol 15N g−1 h−1), indicating a much greater physiological capacity for NH4+ uptake in this species. Additionally, NO3 reductase activity was lower than most values for woody plants previously reported in the literature, further indicating a low physiological potential for NO3 assimilation in sugar maple. Our results demonstrate that chronic NO3 deposition has not induced the physiological capacity for NO3 uptake and assimilation by sugar maple, making this dominant species an unlikely direct sink for anthropogenic NO3 deposition.  相似文献   

14.
Summary Soil pH, NH 4 + and NO 3 concentrations in soil, and take-all root rot of winter wheat grown in the field were measured concurrently from sowing to anthesis in order to relate disease development to liming and N fertilization practices. Experimental variables included soil pH (5.5 and 6.0) and three N sources (NH4NO3, (NH4)2SO4, NH4Cl) banded with the seed at sowing in factorial combination with the same three N sources topdressed in the spring. Take-all severity was increased by increasing soil pH and by fertilization with NO 3 . Disease severity on crown roots increased exponentially following spring N fertilization and was affected more by soil pH and N-form than was severity on seminal roots. Grain yield ranged from 4.70 Mgha−1 with spring NH4NO3 at soil pH 6.0 to 7.65 Mgha−1 with spring NH4Cl at soil pH 5.5. Sixty-six percent of the variability in grain yield was explained by the number of take-all infected crown roots per tiller at anthesis. Oregon Agric. Exp. Stn. technical paper no. 7707.  相似文献   

15.
Summary The N-metabolism ofArthrocnemum fruticosum (L.) Moq., growing in a saline area north-east of the Dead Sea in Jordan, was studied over its vegetative growth period from March to September 1981. Plant and soil samples were taken at monthly intervals. Water content, Na+, K+, Cl, NH 4 + , NO 2 and NO 3 concentrations were determined in the soil extracts, and the same determinations plus ash weight, soluble carbohydrates, proline, proteins andin vivo nitrate reductase in the plant roots and shoots. Soil humidity decreased and salinity increased from March to August, with re-wetting occurring in late July. K+ and Cl were much lower in the soils than Na+. Plant relative dry weight increased during summer due to the absorption of Na+ in addition to increased organic dry weight. The uptake of Na+ was not balanced by a similar uptake of Cl. Ammonium and nitrate decreased in soil and plants in parallel with increasing salinity. Nitrite was only found in the roots and always in very low quantities. Proline was found only in March. The total soluble carbohydrates in the roots showed a short increase in June when the sodium in the plants also increased. It was concluded that carbohydrates may be used to balance osmotic shocks, but that another compatible compounds is necessary to maintatin long-term osmotic equilibrium. The nitrate reductase activity, measuredin vivo, and the soluble protein changed roughly in parallel with the internal nitrate from May to August, suggesting that nitrogen uptake and reduction in the plant is inhibited during summer when the soil is dry and very saline. This could be a direct effect of drought and/or salinity on the plants, or an indirect onevia an inhibition of nitrifying bacteria.  相似文献   

16.
Intact amino acid uptake by northern hardwood and conifer trees   总被引:1,自引:0,他引:1  
Empirical and modeling studies of the N cycle in temperate forests of eastern North America have focused on the mechanisms regulating the production of inorganic N, and assumed that only inorganic forms of N are available for plant growth. Recent isotope studies in field conditions suggest that amino acid capture is a widespread ecological phenomenon, although northern temperate forests have yet to be studied. We quantified fine root biomass and applied tracer-level quantities of U–13C215N-glycine, 15NH4 + and 15NO3 in two stands, one dominated by sugar maple and white ash, the other dominated by red oak, beech, and hemlock, to assess the importance of amino acids to the N nutrition of northeastern US forests. Significant enrichment of 13C in fine roots 2 and 5 h following tracer application indicated intact glycine uptake in both stands. Glycine accounted for up to 77% of total N uptake in the oak–beech–hemlock stand, a stand that produces recalcitrant litter, cycles N slowly and has a thick, amino acid-rich organic horizon. By contrast, glycine accounted for only 20% of total N uptake in the sugar maple and white ash stand, a stand characterized by labile litter and rapid rates of amino acid production and turnover resulting in high rates of mineralization and nitrification. This study shows that amino acid uptake is an important process occurring in two widespread, northeastern US temperate forest types with widely differing rates of N cycling.  相似文献   

17.
The leaching of subterranean clover-derived N (15N) was investigated in a laboratory and a field experiment. In both experiments 30 cm i.d. ×50cm soil columns were used. In the laboratory experiment the clover material was buried in the soil in mesh bags, and leaching of clover-derived N was compared to leaching of added NH 4 + −N and NO 3 −N over a period of 75 days at 20°C. During that time 75% of the clover-N was released from the mesh bags and 17% of the clover-N, 50% of the NH 4 + −N and 70% of the NO 3 −N was leached through the soil column. In the field experiment 6 lysimeters and 7 control microplots were constructed. The clover material was buried in soil (to the soil of two control microplots within mesh bags) in October. During one year 2% of the added clover-N was leached. This was despite a release of 65% of the N from the mesh bag contents and despite a 26% loss of the clover-derived N in total from the controls.  相似文献   

18.
Natural 15N abundance measurements of ecosystem nitrogen (N) pools and 15N pool dilution assays of gross N transformation rates were applied to investigate the potential of δ15N signatures of soil N pools to reflect the dynamics in the forest soil N cycle. Intact soil cores were collected from pure spruce (Picea abies (L.) Karst.) and mixed spruce-beech (Fagus sylvatica L.) stands on stagnic gleysol in Austria. Soil δ15N values of both forest sites increased with depth to 50 cm, but then decreased below this zone. δ15N values of microbial biomass (mixed stand: 4.7 ± 0.8‰, spruce stand: 5.9 ± 0.9‰) and of dissolved organic N (DON; mixed stand: 5.3 ± 1.7‰, spruce stand: 2.6 ± 3.3‰) were not significantly different; these pools were most enriched in 15N of all soil N pools. Denitrification represented the main N2O-producing process in the mixed forest stand as we detected a significant 15N enrichment of its substrate NO3 (3.6 ± 4.5‰) compared to NH4+ (−4.6 ± 2.6‰) and its product N2O (−11.8 ± 3.2‰). In a 15N-labelling experiment in the spruce stand, nitrification contributed more to N2O production than denitrification. Moreover, in natural abundance measurements the NH4+ pool was slightly 15N-enriched (−0.4 ± 2.0 ‰) compared to NO3 (−3.0 ± 0.6 ‰) and N2O (−2.1 ± 1.1 ‰) in the spruce stand, indicating nitrification and denitrification operated in parallel to produce N2O. The more positive δ15N values of N2O in the spruce stand than in the mixed stand point to extensive microbial N2O reduction in the spruce stand. Combining natural 15N abundance and 15N tracer experiments provided a more complete picture of soil N dynamics than possible with either measurement done separately.  相似文献   

19.
Nitrogen excreted by cattle during grazing is a significant source of atmospheric nitrous oxide (N2O). The regulation of N2O emissions is not well understood, but may vary with urine composition and soil conditions. This laboratory study was undertaken to describe short-term effects on N2O emissions and soil conditions, including microbial dynamics, of urea amendment at two different rates (22 and 43 g N m−2). The lower urea concentration was also combined with an elevated soil NO 3 concentration. Urea solutions labelled with 25 atom%15N were added to the surface of repacked pasture soil cores and incubated for 1, 3, 6 or 9 days under constant conditions (60% WFPS, 14 °C). Soil inorganic N (NH 4 + , NO 2 and NO 3 ), pH, electrical conductivity and dissolved organic C were quantified. Microbial dynamics were followed by measurements of CO2 evolution, by analyses of membrane lipid (PLFA) composition, and by measurement of potential ammonium oxidation and denitrifying enzyme activity. The total recovery of15N averaged 84%. Conversion of urea-N to NO 3 was evident, but nitrification was delayed at the highest urea concentration and was accompanied by an accumulation of NO 2 . Nitrous oxide emissions were also delayed at the highest urea amendment level, but accelerated towards the end of the study. The pH interacted with NH 4 + to produce inhibitory concentrations of NH3(aq) at the highest urea concentration, and there was evidence for transient negative effects of urea amendment on both nitrifying and denitrifying bacteria in this treatment. However, PLFA dynamics indicated that initial inhibitory effects were replaced by increased microbial activity and net growth. It is concluded that urea-N level has qualitative, as well as quantitative effects on soil N transformations in urine patches.  相似文献   

20.
Two methods for measuring proton fluxes along intact maize roots grown with NH 4 + or NO 3 at pH 6.5 were compared. Videodensitometric measurement of changes in a pH-indicator dye by video camera was used to map pH around roots and determine the amounts of protons released by various root regions. This method was compared with potentiometric determination of the concentration of H+ in the unstirred layer at the root surface using ion-selective microelectrodes. With NH 4 + the roots released large amounts of H+ in preferential regions where the rate of flux can reach 1.4 or even 2.5 nmol m−1 s−1. Videodensitometry indicated a first region of root acidification in the subapical zone, but this was more difficult to localize with microelectrodes. With NO3 both methods showed that the roots released small amounts of H+ and that the apical region took up H+ in the first 10 mm then sometimes released H+ over the following 10 mm of root. The H+ flux profiles obtained by both methods were in good agreement in terms of both order of magnitude of the fluxes and spatial differences along the root. These results suggest that videodensitometry, which is easier to use than potentiometry, can be used to screen different plant species or cultivars under various experimental conditions. The microelectrode technique is indispensable, however, for studying the underlying mechanisms of net H+ fluxes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号