首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
We studied the ability of lambda, phi 80 and their hybrid lambda att80 to lysogenize homoimmune monolysogens and examined the prophage locations on the chromosome of the resulting polylysogens. We observed an effective integration of phi 80 and lambda att80, in contrast to lambda, into the host chromosome, exclusively, at the attachment sites that were not occupied by the resident prophage (nontandem). Besides, the lambda att80 (int+) prophage was observed to ensure effective nontandem integration of a homoimmune int mutant DNA. Hence, we inferred that the expression of the int gene in the phi 80 prophage is constitutive, cI-independent and results in nontandem integration of the homoimmune prophage. The validity of this inference has been supported experimentally: (i) the only lysogen that was found to contain a phi 80 tandem was highly unstable (spontaneous segregation of monolysogens occurred 6-7 times more frequently than with the lambda tandem); (ii) an int inactivating mutation stabilized the phi 80 tandem; as a result, the int mutant has the frequency of tandem integration as high as that of lambda, while no nontandem integration was observed. A hypothesis is proposed which accounts for the instability of the phi 80 tandems and explains the relation between this phenomenon and the prophage ability to integrate into secondary attachment sites in the presence of the primary (normal) one.  相似文献   

2.
A S Bo?tsov  O N Shaleva  V N Rybchin 《Genetika》1981,17(11):1895-1903
Hybrids lambda H lambda T80 with recombination in the region of structural genes have lambda head and phi 80 tail genes. In this paper the molecular structure of 5 independently isolated hybrids was established using restriction endonucleases. It has been shown that all of them have a recombinant head or tail. A deletion of 4,8% lambda was demonstrated in the immunity region of phi 80vir phage. Co-ordinates of restriction sites for BamHI, HindIII, EcoRI and SmaI restriction endonucleases on phi 80 DNA were calculated.  相似文献   

3.
4.
Genetics of bacteriophage phi 80--a review   总被引:4,自引:0,他引:4  
V N Rybchin 《Gene》1984,27(1):3-11
The genetic maps of bacteriophage lambda and lambdoid phage phi 80 are compared. The gene organization of phi 80 is very similar to that of lambda, as shown by isolation and characterization of many am, ts and c (clear) mutants of the phage. In general, the essential genes located in the same position on the genetic map of the phages lambda and phi 80 fulfill the same functions. These include the gene clusters coding for the head and tail proteins, genes for DNA synthesis, and the genes controlling lysogeny and late gene expression. The specific regulatory features of phi 80 in relation to the N function of lambda are discussed, but they require further clarification. The two phages differ in immunity specificity, host range, conversion property and temperature sensitivity.  相似文献   

5.
The family of lambdoid phages displays a varying specificity of integration into the host chromosome. The lambda phage DNA failed to get inserted at the secondary attachment site(s) of the gal operon (frequency less than 2.6 X 10(-8)) in the presence of the primary (normal) one. By contrast, phi 80 and the lambda att80 hybrid integrated into wild-type Escherichia coli at least, at two secondary att sites of the btuB locus, the latter phage being also capable of integration in the vicinity of purE and purC (frequency 2 X 10(-3) to 10(-4)). Integration of phi 80 and lambda att80 into btuB occurred with about the same frequency as in cells deleted for normal insertion site (0.7 divided by 4.0 X 10(-6)). An analysis of the secondary lysogens with the prophage in btuB showed them to be polylysogens; the additional prophage(s) was found in the primary att site. We also failed to observe integration of phi 80 and lambda att80 with formation of secondary monolysogens into other foci (frequency less than 0.0035, if multiplicity of infection was 10(-3) or 10). It is presumed that phi 80 and lambda att80 prophages get only integrated at secondary att sites in case the primary site is occupied.  相似文献   

6.
pMB9 plasmids bearing the Salmonella typhimurium his operon and gnd gene   总被引:5,自引:0,他引:5  
A plasmid containing the entire Salmonella typhimurium his operon was constructed from plasmid pM89 and an EcoRI fragment of phi 80 his imm lambda DNA. The recombinant pST41 also includes the glucose 6-phosphate dehydrogenase (gnd) gene and has one EcoRI endonuclease cleavage site in the integrated fragment. This plasmid served as a source for the construction of two additional plasmids, one carrying the OGDC-region of the his operon and the other a CBHAFIE segment of the his gene along with the gnd gene. The presence of the his operon in the constructed plasmids was confirmed by hybridization to S. typhimurium his RNA. The location of the gnd gene in the CBHAFIE fragment of the his gene was confirmed genetically: after transfection with the plasmid bearing the gnd gene, a gnd recipient gained the capacity to utilize gluconate as a sole carbon source. The DNAs of the three hybrid plasmids were analyzed by gel electrophoresis. By comparing the EcoRI endonuclease cleavage pattern of these three hybrid plasmids with the DNA cleavage pattern of phi 80 his imm lambda, phi 80 imm lambda and lambda phages, the EcoRI cleavage map of phi 80 his imm lambda was obtained.  相似文献   

7.
A set of c-mutants of the phage phi80 is isolated. These mutants fit into three genes. According to plaque morphology and frequency of lysogenization of mutants, the genes were named cI, cII and cIII as it was previously done for phage lambda. Their order, determinated by mutant phage crosses, is cIII-sus326-cI-cII-sus250. Sus326 is a mutation in the gene 15, so it is probably an analogue of the N gene of the phage lambda. Thermoinducible mutants of the phage phi80 cts11 and cts12 correspond to the mutant types cItsB and cItsA of the phage lambda and they complement each other. Thus, it is supposed that phi80 phage repressor molecules consist of few protein subunits.  相似文献   

8.
9.
The frequency of polylysogeny and the genetic structure of polylysogens were studied for phages lambda, phi 80 and lambda att80. For none of these phages does frequency of polylysogeny vary by more than a factor of 2 within a wide range of multiplicities of infection (from 10(-3) up to 10) but the relative location of the prophages on the host chromosome is different. In the case of lambda, polylysogens are formed with a high frequency (0.20-0.41) and the prophages are inserted in tandem into the primary (normal) att site. In the case of phi 80 and lambda att80, polylysogens occur about 10 times less frequently and usually have one prophage inserted into the primary attachment site and another (sometimes, also a third) in one of the secondary ones. Wild-type Escherichia coli was shown to possess at least four secondary att80 sites, two of which (close to the his and tolC loci) are preferred. The frequency of secondary integration of phi 80 and lambda att80 does not differ significantly in the wild-type host and in cells deleted for the primary att site (0.041 and 0.045, respectively, among surviving cells at MOI 10). Certain properties of the phi 80 lysogens make it more difficult to decode their genetic structure.  相似文献   

10.
Mutants ton A and ton B of Escherichia coli K12, known to be resistant to bacteriophage phi80, were found to be insensitive as well to albomycin, an analogue of the specific siderochrome ferrichrome. Ferrichrome at micromolar concentrations strongly inhibited plaque production by phi80. Preincubation with ferrichrome did not inactivate the phage. At a concentration at which ferrichrome allowed 90% inhibition of plaque formation, the chromium analogue of ferrichrome showed no detectable activity. Similarly, ethylenediaminetetraacetic acid, ferrichrome A, and certain siderochromes structurally distinct from ferrichrome, such as ferrioxamine B, schizokinen, citrate, and enterobactin, did not show detectable inhibitory activity. However, rhodotorulic acid showed moderate activity. A host range mutant of phi80, phi80h, was also inhibited by ferrichrome, as was a hybrid of phage lambda possessing the host range of phi80. However, phage lambdacI- and a hybrid of phi80 possessing the host range of lambda were not affected by ferrichrome. Finally, ferrichrome and chromic deferriferrichrome were shown to inhibit adsorption of phi80 to sensitive cells, ferrichrome giving 50% inhibition of adsorption at a minimal concentration of 8 nM. It is suggested that a component of the ferrichrome uptake system may reside in the outer membrane of E. coli K12 and may also function as a component of the receptor site for bacteriophage phi80, and that ferrichrome inhibition of the phage represents a competition for this common site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号