首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Glucose and glutamine utilization and production of glutamate and lactate were determined for up to 48 h in lymphocytes, monocytes and neutrophils cultured in medium rich in metabolites and vitamins. Glucose was utilized by the three cell types in culture in the following order: neutrophils > monocytes > lymphocytes, whereas lactate was produced in the order: monocytes > neutrophils > lymphocytes. The consumption of glucose followed the activity of glucose-6-phosphate dehydrogenase but it was not related to hexokinase activity. Glutamine was consumed by the three leukocyte types in culture as follows: neutrophils > lymphocytes > or = monocytes. The consumption of glutamine was not fully related to the activity of phosphate-dependent glutaminase. The production of glutamate was not remarkably different among the three cell types. For comparison, glutamine and glucose utilization and glutamate and lactate production were also evaluated using 1-h incubated leukocytes. Under this condition, only glucose or glutamine was added to the medium. Glucose was utilized as follows: neutrophils > monocytes > lymphocytes, whereas lactate was produced in the following order: monocytes > or = neutrophils > lymphocytes. Glutamine was consumed as follows: neutrophils > lymphocytes > monocytes, whereas glutamate was produced as follows: neutrophils > or = monocytes = lymphocytes. The ratio of the amount of glucose/glutamine consumed by 1-h incubated cells was 0.5 for neutrophils, 1.5 for monocytes, and 0.3 for lymphocytes. However, the three cell types cultured for 48 h utilized glucose to a much higher degree than glutamine. The ratio of the amount of glucose/glutamine utilized by the cultured cells was 8.9 for neutrophils, 16.4 for monocytes, and 6.7 for lymphocytes. These observations support the proposition that glutamine is required in much higher amounts than glucose to accomplish the total metabolic requirement of leukocytes. Under conditions closer to physiological when the availability of a variety of metabolites and vitamins is not restricted, glucose is the preferred substrate for lymphocytes, monocytes and neutrophils.  相似文献   

2.
We analyzed the effects of photobiomodulation (PBM) of various wavelengths on regeneration of the facial nerve using in vitro and in vivo experimental models. We assessed the antioxidative effect of PBM in geniculate ganglion neurons irradiated with a diode laser at 633 nm, 780 nm and 804 nm. Wavelengths of 633 and 780 nm but not 804 nm inhibited cell death by oxidative stress. We assessed the effects of PBM on functional and morphologic recovery in rats divided into control, facial nerve damage (FND) and FND irradiated with a 633 nm or 804 nm lasers. Injured rats treated with 633-nm light had better facial palsy scores, larger axon diameter and higher expression of Schwann cells compared with the FND group. No positive results were observed in rats irradiated at 804-nm light. These findings indicate that 633-nm PBM promotes accelerated nerve regeneration and improved functional recovery in an injured facial nerve.  相似文献   

3.
Tumor necrosis factor (TNF) has been implicated in the development and pathogenicity of infectious diseases and autoimmune disorders, such as septic shock and arthritis. The zinc-finger protein tristetraprolin (TTP) has been identified as a major regulator of TNF biosynthesis. To define its intracellular location and examine its regulation of TNF, a quantitive intracellular staining assay specific for TTP was developed. We establish for the first time that in peripheral blood leukocytes, expression of endogenous TTP is confined to the cytoplasm. Baseline expression of TTP was higher in monocytes than in lymphocytes or neutrophils. After in vitro incubation with lipopolysaccharide (LPS), leukocyte TTP levels increased rapidly, peaking after approximately 2 hours. Monocytes showed the greatest response to LPS stimulation and lymphocytes the least. TTP levels were also studied in leukocytes isolated from healthy volunteers infused with a bolus dose of LPS. TTP expression and initial upregulation in response to LPS infusion were consistent with the in vitro data. Neutrophil TTP levels responded first, reaching an initial peak within 1 hour, monocyte levels peaked next at 2 hours, followed by lymphocytes at 4 hours. This response paralleled plasma TNF levels, which peaked 2 hours after infusion and were no longer detectable after 12 hours. A second rise in intracellular TTP levels, which did not parallel plasma TNF levels, was observed in all leukocyte populations, starting 12 hours after infusion. These data establish the cytoplasmic location of TTP, supporting a major role for this protein in regulating TNF production, and suggest that TTP levels are not regulated solely by TNF.  相似文献   

4.
The binding of rough LPS (ReLPS from Salmonella minnesota R595) to human peripheral blood polymorphonuclear leukocytes (PMN), monocytes, and lymphocytes was examined by using fluorescein-labeled LPS and flow cytometry. At 4 degrees C, FITC-ReLPS bound rapidly in a concentration- and time-dependent way to PMN, monocytes, and lymphocytes. Because mononuclear cells showed both binding and nonbinding cell populations, FITC-ReLPS was used in conjunction with specific phycoerythrin-labeled mAb to identify these cell subpopulations. In contrast to T lymphocytes and NK cells, all monocytes and B lymphocytes efficiently bound FITC-ReLPS. PMN and monocytes showed two to three times more cell-associated FITC-ReLPS when cells were incubated at 37 degrees C compared with incubation at 4 degrees C. Binding of FITC-ReLPS to lymphocytes was similar for both 4 degrees C and 37 degrees C incubation conditions. In contrast to 4 degrees C, at 37 degrees C cell-associated LPS reflects surface-bound as well as internalized LPS, as demonstrated with fluorescence quenching of extracellular FITC-ReLPS by trypan blue. At 4 degrees C, binding of FITC-ReLPS was inhibited by polymyxin B. In addition, purified IgM mAb directed against hydrophobic acyl residues of ReLPS showed more than 95% inhibition of ReLPS binding to leukocytes, indicating the ability of specific mAb to prevent LPS-cell interactions necessary to exert biologic effects. The use of mAb, directed against different parts of the LPS molecule, provides an alternative method for LPS binding-inhibition studies.  相似文献   

5.
Leukocyte differential analysis was performed in various species, particularly laboratory animals, by the laser multi-angle polarized light scattering separation method. Venous blood specimens were drawn from the following subjects: healthy adult men and women ("humans"); cynomolgus monkeys ("monkeys"); common marmosets ("marmosets"); beagle dogs ("dogs"); miniature potbelly pigs ("swine"); Japanese white rabbits ("rabbits"); Hartley guinea pigs ("guinea pigs"); and Sprague-Dawley rats ("rats"). 90 degrees/10 degrees scatter plot: Basophils and mononuclear-polymorphonuclear cells were separated in all subjects, but individual 10 degrees and 90 degrees scatter plots overlapped in dogs and guinea pigs, respectively. 90 degrees depolarized /90 degrees scatter plot: Neutrophils and eosinophils were clearly separated in human, monkey, guinea pig, swine and rat subjects. The eosinophil cluster was not clearly plotted in marmoset, dog, or rabbit. 0 degree/10 degrees scatter plot: Regarding this plot for monocytes and lymphocytes, cells were plotted in the following order in all subjects: lymphocytes < basophils < or = monocytes in the 0 degree (size) scatter; and lymphocytes [symbol: see text] monocytes < or = basophils in the 10 degrees (complexity) scatter. Compared to other species, the rat scatter showed a tendency to overlapping plots in both the 0 degree and 10 degrees scatters in the monocyte and lymphocyte clusters. In both dog and guinea pig, the monocyte and neutrophil plots overlapped in the 0 degree and 10 degrees scatters. Basobox: In the human and rabbit subjects, the basophil cluster was plotted within the established basobox, but no clear cell cluster was plotted in the other subjects. As a result of comparing the percentage values for leukocytes in various species obtained by using the CD3500 apparatus versus the corresponding values obtained manually, good correspondence was found in the monkey, and eosinophils in the marmoset were lower with CD3500 than manually. In the rabbit, the mean measured value for basophils matched in the manual and CD3500 findings. In the guinea pig, the CD3500 values were lower than the manual values for lymphocytes, but higher for monocytes and neutrophils. The above findings suggest that the laser multi-angle polarized light scattering separation method is indeed capable of analyzing leukocytes from various species based on cell size and cell complexity, i.e., the presence or absence of nuclei, granules and cell enclosures.  相似文献   

6.
濒危鱼类稀有白甲鱼外周血细胞特征   总被引:2,自引:1,他引:1  
为了研究濒危鱼类稀有白甲鱼(Onychostoma rara)外周血细胞的特征,以采自长江中游沅江水系清水江共计21尾稀有白甲鱼的血液为材料,采用常规方法对稀有白甲鱼外周血细胞的组成、形态、大小和数量进行了观测。结果显示,稀有白甲鱼红细胞数量为(1.75±0.44)×106 个/ L,白细胞数量为(4.91±1.95)×105 个/ L。在血涂片上共计观察到了5种白细胞,包括淋巴细胞、血栓细胞、单核细胞、嗜中性粒细胞和嗜酸性粒细胞,没有发现嗜碱性粒细胞。其5种白细胞数量比例差异较大,其数量比例关系为:淋巴细胞>血栓细胞>嗜中性粒细胞>单核细胞>嗜酸性粒细胞。这5种白细胞的大小也有所不同,其大小关系为:单核细胞>嗜中性粒细胞>嗜酸性粒细胞>淋巴细胞>血栓细胞。与已报道的鱼类相比,稀有白甲鱼白细胞的数量明显较高,红细胞数量较多、体积相对较小,可能与其适应流水生活相关。  相似文献   

7.
The locomotor responses of human peripheral blood neutrophils and lymphocytes were measured by the change from spherical to polarized shapes in the presence of endotoxins (lipopolysaccharide, LPS) of enteric pathogens: S. dysenteriae type 1, V. cholerae Inaba 569B, S. typhimurium, and K. pneumoniae. We reported earlier that these endotoxins are chemotactic factors for the neutrophils since they stimulated cell polarization within a few minutes of incubation. Endotoxins had an inhibitory effect upon neutrophil phagocytosis of opsonized yeast and the cells engulfed fewer yeasts. Interestingly, endotoxins increased neutrophil adhesion to clean glass surfaces, but stimulated the cells to exhibit increased random locomotion (chemokinesis) through cellulose nitrate filters and show an enhanced ability to reduce nitroblue tetrazolium (NBT) dye. Unlike neutrophils, lymphocytes direct from blood do not show polarized morphology towards chemotactic factors but the cells acquire locomotor capacity during 24-72 h culture with mitogens such as phytohemagglutinin (PHA), phorbol myristate acetate or concanavalin A. Stimulation of blood lymphocytes with endotoxins did not induce cell polarization in short-term but long-term culture resulted in an increase in the proportion of polarized cells that acquired locomotor morphologies. The majority of these cells were identified as esterase negative B-lymphocytes that migrated through filters. Despite the optimum time of incubation for each of these cell types being different, we found that lymphocytes respond to much lower concentrations of endotoxins than the neutrophils. These findings suggest that endotoxins of enteric pathogens modulate the functions of human blood neutrophils and lymphocytes.  相似文献   

8.
A multiparameter flow cytophotometer was used to count and classify fixed human blood cells fluorochromed with a mixture of ethidium bromide (EB), brilliant sulfaflavine and a blue fluorescent stilbene disulfonic acid derivative (LN). The system measures light scattered by the cells and absorption at 420 nm for all cells. In addition, nuclear EB fluorescence (540 leads to 610 nm) and cytoplasmic fluorescence from LN (366 leads to 470 nm), brilliant sulfaflavine (420 leads to 520 nm) and EB exicted by energy transfer from LN (366 leads to 610 nm) are measured for all nucleated cells. This information is sufficient to perform red and white blood cell counts and to classify leukocytes as lymphocytes, monocytes, basophils, eosinophils or neutrophils. Light scattering and/or nuclear and cytoplasmic fluorescence values may be further analyzed to obtain the ratio of immature to mature neutrophils. Counts produced by the system are in reasonable agreement with those obtained by electronic cells counting and examination of Wright's-stained blood smears; some discrepancies appear to be due to systematic errors in the manual counting method.  相似文献   

9.
The shape of the fluidity gradient of the outer hemileaflet of the plasma membrane of normal, living, human white blood cells was determined using a series of n-(9-anthroyloxy) fatty acid probes where n = 2, 3, 6, 7, 9, 11, 12, and 16, to establish a baseline for future studies on the consequences of various pathological states. Fluorescence uptake and steady-state anisotropy values were obtained with a flow cytometer capable of continuous recording over time of vertical and horizontal emission intensities, with the output of these intensities as calculated anisotropy values. The fluorescence uptake of all of the membrane probes was rapid up to about 15 min. The magnitudes of the uptake of fluorescence was, for the n-(9-anthroyloxy) series, in the order 2 greater than 3 greater than 6 greater than 7 greater than 9 greater than 11 = 12 = 16 for neutrophils, lymphocytes, and monocytes. Anisotropy values were constant from 5 to 30 min after addition of the various probes. The orders of the anisotropy magnitudes, indicative of the shapes of the fluidity gradient, were, for neutrophils, 6 greater than 7 greater than 9 greater than 2 = 3 = 11 = 12 greater than 16, for lymphocytes, 7 greater than 6 greater than 9 greater than 11 greater than 2 = 3 greater than 11 = 12 greater than 16, and for monocytes, 9 greater than 7 greater than 6 greater than 11 greater than 2 = 3 greater than 12 greater than 16. The kinetics of anisotropy from 1 to 5 min after addition of the probes differed for each of the three cell types. Probes with an n-value less than or equal to the maxima (n = 6, neutrophils; n = 7, lymphocytes; n = 9, monocytes) rapidly (1.2 min) reached equilibrium, whereas those probes with n-values greater than the maxima took progressively longer times to equilibrate as n increased. This behavior is consistent with the existence of an energy barrier just below the approximate region sensed by the probes, which would correspond to just below 6AS for neutrophils, 7AS for lymphocytes, and 9AS for monocytes.  相似文献   

10.
L-leucine methyl ester (Leu-OMe) causes lysosomal disruption and death of human monocytes (M phi). In addition, Leu-OMe removed natural killer cell (NK) activity from human peripheral mononuclear cells (PBM). Thus, a brief preincubation of PBM with Leu-OMe (greater than 1 mM) caused irreversible loss of NK function as assessed by the lysis of K562 targets. By contrast, a variety of other amino acid methyl esters, including L-glutamic dimethyl ester, L-valine methyl ester, and L-isoleucine methyl ester caused reversible inhibition of NK activity in a manner that was similar to other lysosomotropic agents such as chloroquine and ammonium chloride, but did not cause irreversible loss of all NK function. Leu-OMe appeared to cause actual removal of NK effector cells from PBM, because K562 target binding cells, Leu-11b+ lymphocytes, and OKM1+ lymphocytes were depleted. If M phi were removed from PBM before the incubation, Leu-OMe caused only reversible inhibition of NK function in a manner similar to that observed with other amino acid methyl esters. Upon the addition of freshly isolated M phi, polymorphonuclear leukocytes, or sonicates of these cells to M phi-depleted lymphocyte populations, irreversible ablation of NK function was again observed as a result of Leu-OMe exposure. After in vitro culture, M phi lost their susceptibility to Leu-OMe toxicity and the ability to mediate the irreversible deletion of NK cells resulting from Leu-OMe incubation. These results indicate that in the absence of M phi, Leu-OMe and a variety of other amino acid methyl esters are reversible inhibitors of NK function. However, Leu-OMe is unique in that it can interact with M phi or granulocytes to effect an irreversible loss of NK activity from human peripheral blood lymphocytes.  相似文献   

11.
Platelet-activating factor (PAF) is a potent phospholipid mediator that may participate in inflammatory responses by virtue of its ability to activate platelets, leukocytes, and vascular cells. We examined the synthesis and release of PAF by human peripheral blood monocytes (PBM) isolated by countercurrent elutriation. PAF was produced after stimulation by calcium ionophore A23187 (IoA), opsonized zymosan (OpsZ), and PMA with a relative order of potency IoA much greater than OpsZ greater than PMA. The portion of PAF subsequently released from the cell was dependent on the specific agonist, the time of incubation, and the presence of albumin. Under optimal conditions, PBM released 67, 49 and 32% of the total PAF produced in response to IoA, OpsZ, and PMA, respectively. Changes in PAF metabolism were observed in PBM that were examined after short term adherence or differentiation into macrophages. Adherent PBM accumulated and released less PAF than suspended monocytes, and monocyte-derived macrophages produced less PAF than the parent PBM. The ability of monocytes to release significant amounts of newly synthesized PAF from the cell is unusual among human cell types, which in general retain the vast majority of the lipid, and may be of particular pathophysiologic importance.  相似文献   

12.
Summary At low cell density, the proliferative response of B cells to lipopolysaccharide (LPS) is not detectable. We investigated under these experimental conditions the role of several cell populations on the LPS-induced B-cell proliferation. The addition to murine B cells of irradiated peripheral blood leukocytes (PBL) from the C3H/ HeJ mouse strain, or of culture supernatants of these cells, efficiently restored a response to LPS. Similar results were also obtained with irradiated PBL from other mouse strains and from rabbits. The activities of the culture supernatants were not significantly modified when the PBL were depleted of adherent cells or of Thy-1.2 positive cells, thus suggesting that the active factors were secreted neither by T cells, nor by monocytes.Abbreviations BSS balanced salt solution - ConA concanavalin A - EBMR enhancement of B-cell mitogenic response - J-B, J-T, J-Th, J-MØ, J-PBL, J-RBC splenic bone marrow-derived lymphocytes, splenic thymus-derived lymphocytes, thymocytes, splenic macrophages, peripheral blood leukocytes, red blood cells, obtained from the LPS-non-responding C3H/ HeJ-Pas mouse strain - R-PBL peripheral blood leukocytes obtained from the LPS-responding C3H/ He-Pas mouse strain - LPS lipopolysaccharide - MO macrophages - PBL peripheral blood leukocytes  相似文献   

13.
Intense exercise is a physiological stress capable of inducing the interaction of neutrophils with muscle endothelial cells and their transmigration into tissue. Mechanisms driving this physiological inflammatory response are not known. Here, we investigate whether production of reactive oxygen species is relevant for neutrophil interaction with endothelial cells and recruitment into the quadriceps muscle in mice subjected to the treadmill fatiguing exercise protocol. Mice exercised until fatigue by running for 56.3±6.8 min on an electric treadmill. Skeletal muscle was evaluated by intravital microscopy at different time points after exercise, and then removed to assess local oxidative stress and histopathological analysis. We observed an increase in plasma lactate and creatine kinase (CK) concentrations after exercise. The numbers of monocytes, neutrophils, and lymphocytes in blood increased 12 and 24 hours after the exercise. Numbers of rolling and adherent leukocytes increased 3, 6, 12, and 24 hours post-exercise, as assessed by intravital microscopy. Using LysM-eGFP mice and confocal intravital microscopy technology, we show that the number of transmigrating neutrophils increased 12 hours post-exercise. Mutant gp91phox-/- (non-functional NADPH oxidase) mice and mice treated with apocynin showed diminished neutrophil recruitment. SOD treatment promoted further adhesion and transmigration of leukocytes 12 hours after the exercise. These findings confirm our hypothesis that treadmill exercise increases the recruitment of leukocytes to the postcapillary venules, and NADPH oxidase-induced ROS plays an important role in this process.  相似文献   

14.
A small population of cells with the ability to form rosettes with human erythrocytes was found in feline peripheral blood leukocytes (PBL) (10%) and bone marrow (9%), but not in purified granulocyte preparations, thymus, and lymph node tissues. The morphologic appearance and ability to phagocytize latex beads indicated these cells were monocytes. A monoclonal antibody, CM277, with a binding specificity for feline peripheral blood phagocytes was also characterized. Immunofluorescent microscopy revealed CM277 to bind specifically to monocytes and polymorphonuclear neutrophils. The binding of CM277 to monocytes was also shown by human erythrocyte-rosette formation wherein there was a high degree of correlation between these two phenotypic markers for cells ingesting latex beads. Monocytes, polymorphonuclear neutrophils, and T lymphocytes of the cat rosette with guinea pig erythrocytes (GPE) and using CM277 we were able to determine the contribution of the former two cell types to the GPE-rosetting population. Monocytes and polymorphonuclear neutrophils comprised the majority of the GPE-rosetting cells in fresh PBL (greater than 60%), but after culturing overnight, there was a substantial decrease in these cells (less than 35%). In contrast, GPE-rosetting T lymphocytes comprised approximately 10% of the cells in fresh PBL, and after in vitro culture for 1 day they constituted 35-45% of all cells. The removal of monocytes by human erythrocyte-rosetting did not affect the pokeweed mitogen-induced synthesis of Ig, but did lead to an increased production of interleukin 2. Removal of the GPE-rosetting population from PBL resulted in a marked decrease in interleukin 2 production, pointing to a positive contribution of GPE-rosetting T lymphocytes to the synthesis of this lymphokine.  相似文献   

15.
Total concentration of erythrocytes and leukocytes, a relative contents of neutrophils, lymphocytes, monocytes, average volume of these types of cells, were determined in humans. Changes in the cell indices seem to be correlated and sex-dependent. Thus, erythrocytes and leukocytes are correlated in their contents and volume characteristics. A control mechanism seems to exist in humans, involving microcirculation in capillaries.  相似文献   

16.
The interaction of leukocytes with endothelial cells is intrinsic to the process of leukocyte extravasation, whether during the entry of blood polymorphonuclear leukocytes and monocytes into sites of acute and chronic inflammation, or during the homing of lymphocytes to lymphoid organs. A lymphocyte surface glycoprotein, defined by monoclonal antibody MEL-14, has been described that appears to mediate lymphocyte recognition of postcapillary venules in peripheral lymph nodes, and to control the migration of lymphocytes from the blood into these lymphoid organs. We now report that the antigenic determinant recognized by MEL-14 is present at high levels on other leukocytes as well, including neutrophils, monocytes, and eosinophils; and we demonstrate involvement of the MEL-14 antigen in neutrophil-endothelial cell interactions. MEL-14 immunoprecipitates a neutrophil surface protein of Mr approximately 100,000, similar in m.w. to the 80,000 to 90,000 dalton lymphocyte surface MEL-14 antigen, and it blocks the interaction of neutrophils with endothelial cells in an in vitro model of adhesion to postcapillary venules in lymph node frozen sections. Neutrophil binding to lymph node venules is also inhibited by PPME, a mannose-6-phosphate-rich yeast polysaccharide that is thought to mimic the endothelial cell ligand for the MEL-14-defined lymphocyte receptor. Interestingly, neither MEL-14 nor PPME exhibit a major effect on neutrophil binding to postcapillary venules in Peyer's patches, suggesting that as for lymphocytes, the neutrophil MEL-14 antigen is involved in recognition of tissue-specific endothelial determinants. Finally, we show that MEL-14 inhibits the capacity of neutrophils to migrate from the blood into sites of acute inflammation in the skin. These observations lead us to propose that receptors for tissue-specific endothelial determinants are utilized by neutrophils and lymphocytes and probably other leukocytes during the physiologic process of leukocyte extravasation in vivo.  相似文献   

17.
18.
19.
Computer-assisted morphometry was performed to evaluate the number and cell characteristics of capillary and alveolar leukocytes in rabbit lungs. An image-processing system and a programmable spreadsheet program were used, which allowed morphometric analysis of a large reference area. Neutrophils represented the largest intracapillary leukocyte population (2.2×107/ml parenchyma, which corresponds to an approximately 104-fold microvascular enrichment of this cell type related to cell counts calculated for the capillary blood volume). In addition, large numbers of intracapillary lymphocytes (1.7×107/ml parenchyma; 47-fold enrichment) and monocytes (0.3×107/ml parenchyma; 86-fold enrichment) were detected. The total count of pulmonary leukocytes thus approximated the total number of pulmonary endothelial cells; and the total circulating pools of the different leukocytes were surpassed by the corresponding lung capillary pools, 3.2-fold for neutrophils, 1.2-fold for lymphocytes and 4.8-fold for monocytes. In contrast, alveolar cell numbers ranged from 1–2% of the capillary counts for all types of leukocytes. We conclude that the rabbit lung microvasculature harbours large pools of immunocompetent cells, which may contribute to host-defense mechanisms at the gas-exchange area.  相似文献   

20.

Background  

Leukocytes play an important role in the human immune system. The family of leukocytes is comprised of lymphocytes, monocytes, eosinophils, basophils, and neutrophils. Any infection or acute stress may increase or decrease the number of leukocytes. An increased percentage of neutrophils may be caused by an acute infection, while an increased percentage of lymphocytes can be caused by a chronic bacterial infection. It is important to realize an abnormal variation in the leukocytes. The five types of leukocytes can be distinguished by their cytoplasmic granules, staining properties of the granules, size of cell, the proportion of the nuclear to the cytoplasmic material, and the type of nucleolar lobes. The number of lobes increased when leukemia, chronic nephritis, liver disease, cancer, sepsis, and vitamin B12 or folate deficiency occurred. Clinical neutrophil hypersegmentation has been widely used as an indicator of B12 or folate deficiency.Biomedical technologists can currently recognize abnormal leukocytes using human eyes. However, the quality and efficiency of diagnosis may be compromised due to the limitations of the biomedical technologists' eyesight, strength, and medical knowledge. Therefore, the development of an automatic leukocyte recognition system is feasible and necessary. It is essential to extract the leukocyte region from a blood smear image in order to develop an automatic leukocyte recognition system. The number of lobes increased when leukemia, chronic nephritis, liver disease, cancer, sepsis, and vitamin B12 or folate deficiency occurred. Clinical neutrophil hypersegmentation has been widely used as an indicator of B12 or folate deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号