首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although multiple mating most likely increases mortality risk for social insect queens and lowers the kin benefits for nonreproductive workers, a significant proportion of hymenopteran queens mate with several males. It has been suggested that queens may mate multiply as a means to manipulate sex ratios to their advantage. Multiple paternity reduces the extreme relatedness value of females for workers, selecting for workers to invest more in males. In populations with female-biased sex ratios, queens heading such male-producing colonies would achieve a higher fitness. We tested this hypothesis in a Swiss and a Swedish population of the ant Lasius niger. There was substantial and consistent variation in queen mating frequency and colony sex allocation within and among populations, but no evidence that workers regulated sex allocation in response to queen mating frequency; the investment in females did not differ among paternity classes. Moreover, population-mean sex ratios were consistently less female biased than expected under worker control and were close to the queen optimum. Queens therefore had no incentive to manipulate sex ratios because their fitness did not depend on the sex ratio of their colony. Thus, we found no evidence that the sex-ratio manipulation theory can explain the evolution and maintenance of multiple mating in L. niger.  相似文献   

2.
The best known of the conflicts occurring in eusocial Hymenoptera is queen-worker conflict over sex ratio. So far, sex ratio theory has mostly focused on optimal investment in the production of male versus female sexuals, neglecting the investment in workers. Increased investment in workers decreases immediate sexual productivity but increases expected future colony productivity. Thus, an important issue is to determine the queen's and workers' optimal investment in each of the three castes (workers, female sexuals, and male sexuals), taking into account a possible trade-off between production of female sexuals and workers (both castes developing from diploid female eggs). Here, we construct a simple and general kin selection model that allows us to calculate the evolutionarily stable investments in the three castes, while varying the identity of the party controlling resource allocation (relative investment in workers, female sexuals, and male sexuals). Our model shows that queens and workers favor the investment in workers that maximizes lifetime colony productivity of sexual males and females, whatever the colony kin structure. However, worker production is predicted to be at this optimum only if one of the two parties has complete control over resource allocation, a situation that is evolutionarily unstable because it strongly selects the other party to manipulate sex allocation in its favor. Queens are selected to force workers to raise all the males by limiting the number of eggs they lay, whereas workers should respond to egg limitation by raising a greater proportion of the female eggs into sexual females rather than workers as a means to attain a more female-biased sex allocation. This tug-of-war between queens and workers leads to a stable equilibrium where sex allocation is between the queen and worker optima and the investment in workers is below both parties' optimum. Our model further shows that, under most conditions, female larvae are in strong conflict with queens and workers over their developmental fate because they value their own reproduction more than that of siblings. With the help of our model, we also investigate how variation in queen number and number of matings per queen affect the level of conflict between queens, workers, and larvae and ultimately the allocation of resource in the three castes. Finally, we make predictions that allow us to test which party is in control of sex allocation and caste determination.  相似文献   

3.
Sex-ratio conflict between queens and workers was explored in a study of colony sex ratios, relatedness, and population investment in the ant Pheidole desertorum. Colony reproductive broods consist of only females, only males, or have a sex ratio that is extremely male biased. Colonies producing females (female specialists) and colonies producing males (male specialists) occur at near equal frequency in the population. Most colonies apparently specialize in producing one reproductive sex throughout their life. Allozyme analyses show that relatedness does not differ within male-specialist and female-specialist colonies and they do not appear to differ in available resources. In the population, workers are nearly three times more closely related to females than males; however, the investment sex ratio is near equal (1.01, female/male), which is consistent with queen control. Selection should be strong on workers to increase investment in reproductive females, so why do workers in male-specialist colonies produce only (or nearly only) males? One hypothesis is that queens in male-specialist colonies prevent the occurrence of reproductive females, perhaps by producing worker-biased female eggs. An earlier simulation study of genetic evolution of sex ratios in social Hymenoptera (Pamilo 1982b) predicts that such mechanisms can result in the evolution of bimodal colony sex ratios and queen control. Results on P. desertorum are generally consistent with that study; however, information is not currently available to test some of the model's predictions and assumptions.  相似文献   

4.
Kin selection theory predicts potential conflict between queen and workers over male parentage in hymenopteran societies headed by one, singly mated queen, because each party is more closely related to its own male offspring. In ‘late-switching’ colonies of the bumblebee Bombus terrestris, i.e. colonies whose queens lay haploid eggs relatively late in the colony cycle, workers start to lay male eggs shortly after the queen lays the female eggs that will develop into new queens. It has been hypothesized that this occurs because workers recognize, via a signal given by the queen instructing female larvae to commence development as queens, that egg laying is now in their kin-selected interest. This hypothesis assumes that aggressive behaviour in egg-laying workers does not substantially reduce the production of new queens, which would decrease the workers' fitness payoff from producing males. We tested the hypothesis that reproductive activity inB. terrestris workers does not reduce the production of new queens. We used microsatellite genotyping to sex eggs and hence to select eight size-matched pairs of ‘late-switching’ colonies from a set of commercial colonies. From one colony of each pair we removed every egg-laying or aggressive worker observed. From the other colony, we simultaneously removed a nonegg-laying, nonaggressive worker. Removed workers were replaced with young workers from separate colonies at equal frequencies within the pair. There was no significant difference in queen productivity between colonies with reduced or normal levels of egg-laying or aggressive workers. Therefore, as predicted, reproductive B. terrestris workers did not significantly reduce the production of new queens.  相似文献   

5.
REPRODUCTIVE SKEW AND SPLIT SEX RATIOS IN SOCIAL HYMENOPTERA   总被引:1,自引:0,他引:1  
Abstract I present a model demonstrating that, in social Hymenoptera, split sex allocation can influence the evolution of reproductive partitioning (skew). In a facultatively polygynous population (with one to several queens per colony), workers vary in their relative relatedness to females (relatedness asymmetry). Split sex‐ratio theory predicts that workers in monogynous (single‐queen) colonies should concentrate on female production, as their relatedness asymmetry is relatively high, whereas workers in the polygynous colonies should concentrate on male production, as their relatedness asymmetry is relatively low. By contrast, queens in all colonies value males more highly per capita than they value females, because the worker‐controlled population sex ratio is too female‐biased from the queens' standpoint. Consider a polygynous colony in a facultatively polygynous population of perennial, social Hymenoptera with split sex ratios. A mutant queen achieving reproductive monopoly would gain from increasing her share of offspring but, because the workers would assess her colony as monogynous, would lose from the workers rearing a greater proportion of less‐valuable females from the colony's brood. This sets an upper limit on skew. Therefore, in social Hymenoptera, skew evolution is potentially affected by queen‐worker conflict over sex allocation.  相似文献   

6.
Abstract In a colony headed by a single monandrous foundress, theories predict that conflicts between a queen and her workers over both sex ratio and male production should be intense. If production of males by workers is a function of colony size, this should affect sex ratios, but few studies have examined how queens and workers resolve both conflicts simultaneously. We conducted field and laboratory studies to test whether sex-ratio variation can be explained by conflict over male production between queen and workers in the primitively eusocial wasp Polistes chinensis antennalis.
Worker oviposition rate increased more rapidly with colony size than did queen oviposition. Allozyme and micro-satellite markers revealed that the mean frequency of workers' sons among male adults in queen-right colonies was 0.39 ± 0.08 SE (n = 22). Genetic relatedness among female nestmates was high (0.654–0.796), showing that colonies usually had a single, monandrous queen. The mean sex allocation ratio (male investment/male and gyne investments) of 46 queen-right colonies was 0.47 ± 0.02, and for 25 orphaned colonies was 0.86 ± 0.04. The observed sex allocation ratio was likely to be under queen control. For queen-right colonies, the larger colonies invested more in males and produced reproductives protandrously and/or simultaneously, whereas the smaller colonies invested more in females and produced reproductives protogynously. Instead of positive relationships between colony size and worker oviposition rate, the frequency of workers' sons within queen-right colonies did not increase with colony size. These results suggest that queens control colony investment, even though they allow worker oviposition in queen-right colonies. Eggs laid by workers may be policed by the queen and/or fellow workers. Worker oviposition did not influence the outcome of sex allocation ratio as a straightforward function of colony size.  相似文献   

7.
Because workers in the eusocial Hymenoptera are more closely related to sisters than to brothers, theory predicts that natural selection should act on them to bias (change) sex allocation to favor reproductive females over males. However, selection should also act on queens to prevent worker bias. We use a simulation approach to analyze the coevolution of this conflict in colonies with single, once-mated queens. We assume that queens bias the primary (egg) sex ratio and workers bias the secondary (adult) sex ratio, both at some cost to colony productivity. Workers can bias either by eliminating males or by directly increasing female caste determination. Although variation among colonies in kin structure is absent, simulations often result in bimodal (split) colony sex ratios. This occurs because of the evolution of two alternative queen or two alternative worker biasing strategies, one that biases strongly and another that does not bias at all. Alternative strategies evolve because the mechanisms of biasing result in accelerating benefits per unit cost with increasing bias, resulting in greater fitness for strategies that bias more and bias less than the population equilibrium. Strategies biasing more gain from increased biasing efficiency whereas strategies biasing less gain from decreased biasing cost. Our study predicts that whether queens or workers evolve alternative strategies depends upon the mechanisms that workers use to bias the sex ratio, the relative cost of queen and worker biasing, and the rates at which queen and worker strategies evolve. Our study also predicts that population and colony level sex allocation, as well as colony productivity, will differ diagnostically according to whether queens or workers evolve alternative biasing strategies and according to what mechanism workers use to bias sex allocation.  相似文献   

8.
Both monogyne (single queen per colony) and polygyne (multiple queens per colony) populations of the fire ant Solenopsis invicta are good subjects for tests of kin selection theory because their genetic and reproductive attributes are well-characterized, permitting quantitative predictions about the degree to which sex investment ratios should be female-biased if workers and not queens control reproductive allocation. In the study populations, an investment ratio of 3 females: 1 male is predicted (a proportional investment in females of 0.75) in the monogyne form, whereas a proportional investment in females between 0.637 and 0.740 is expected in the polygyne form. To test these predictions, colonies from a single population of each social form were collected and censused during three different seasons. Consistent with their alternative modes of colony founding, monogyne colonies invested more in reproduction (sexual production) and less in growth/maintenance (worker production) than did the polygyne colonies. Overall, the sex investment ratios were female-biased in both forms, although there was considerable seasonal variation. After adjusting for sex-specific energetic costs, the proportional investment in females was 0.607 in the monogyne population, a value in between those expected under complete control by either the queen or the workers. However, when combined with data from four other previously studied monogyne populations in the U.S.A., the mean investment ratio did not differ significantly from the value predicted if workers have exclusive control. In the polygyne population, the proportional investment in females of 0.616 was consistent with the level of female bias expected under partial to complete worker control, although the potential influence of two confounding factors — possible contact with monogyne colonies and the preponderance of sterile diploid males — weakens this conclusion somewhat. Taken as a whole, the sex investment ratios of monogyne and polygyne populations of S. invicta are consistent with at least partial worker control. Of several ultimate and proximate explanations that have been proposed to explain inter-colonial variation in the sex investment ratio, only the effect of the primary sex ratio (female-determined eggs: male-determined eggs) laid by the queen appears to account for the observed variation among monogyne colonies. In the polygyne population, there is limited support for the hypothesis that greater resource abundance favors investment in females.  相似文献   

9.
Kin selection theory predicts conflict in social Hymenoptera between the queen and workers over male parentage because each party is more closely related to its own male offspring. Some aspects of the reproductive biology of the bumble-bee Bombus terrestris support kin selection theory but others arguably do not. We present a novel hypothesis for how conflict over male parentage should unfold in B. terrestris colonies. We propose that workers delay laying eggs until they possess information showing that egg laying suits their kin-selected interests. In colonies where queens start to lay haploid eggs early, we hypothesize that this occurs when workers detect the presence of queen-produced male brood in the brood's larval stage. In colonies where queens start to lay haploid eggs late, we hypothesize that it occurs when workers detect a signal from the queen to female larvae to commence development as queens. Our hypothesis accounts for previously unexplained aspects of the timing of reproductive events in B. terrestris, provides ultimate explanations for the results of a recent study of mechanisms underlying queen-worker conflict and helps explain this species' characteristic bimodal (split) sex ratios. Therefore, kin selection theory potentially provides a good explanation for reproductive patterns in B. terrestris.  相似文献   

10.
We compare the primary sex ratio (proportion of haploid eggs laid by queens) and the secondary sex ratio (proportion of male pupae produced) in the Argentine ant Iridomyrmex humilis with the aim of investigating whether workers control the secondary sex ratio by selectively eliminating male brood. The proportion of haploid eggs produced by queens was close to 0.5 in late winter, decreased to less than 0.3 in spring and summer, and increased again to a value close to 0.5 in fall. Laboratory experiments indicate that temperture is a proximate factor influencing the primary sex ratio with a higher proportion of haploid eggs being laid at colder temperatures. Production of queen pupae ceased in mid-June, about three weeks before that of male pupae. After this time only worker pupae were produced. During the period of production of sexuals, the proportion of male pupae ranged from 0.30 to 0.38. Outside this period no males were reared although haploid eggs were produced all the year round by queens. Workers thus exert a control on the secondary sex ratio by eliminating a proportion of the male brood during the period of sexual production and eliminating all the males during the remainder of the cycle. These data are consistent with workers preferring a more female-biased sex ratio than queens. The evolutionary significance of the production of male eggs by queens all the year round is as yet unclear. It may be a mechanism allowing queen replacement in the case of the death of the queens in the colony.  相似文献   

11.
Sex ratios in social insects have become a general model for tests of inclusive fitness theory, sex ratio theory and parent–offspring conflict. In populations of Formica exsecta with multiple queens per colony , sex ratios vary greatly among colonies and the dry-weight sex ratio is extremely male-biased, with 89% of the colonies producing males but no gynes (reproductive females). Here we test the queen-replenishment hypothesis, which was proposed to explain sex ratio specialization in this and other highly polygynous ants (i.e. those with many queens per nest). This hypothesis proposes that, in such ants, colonies produce gynes to recruit them back into the colony when the number of resident queens falls below a given threshold limiting colony productivity or survival. We tested predictions of the queen-replenishment hypothesis by following F. exsecta colonies across two breeding seasons and relating the change in effective queen number with changes in sex ratio, colony size and brood production. As predicted by the queen-replenishment hypothesis, we found that colonies that specialized in producing females increased their effective queen number and were significantly more likely to specialize in male production the following year. The switch to male production also coincided with a drop in productivity per queen as predicted. However, adoption of new queens did not result in a significant increase in total colony productivity the following year. We suggest that this is because queen production comes at the expense of worker production and thus queen production leads to resource limitation the following year, buffering the effect of greater queen number on total productivity.  相似文献   

12.
Inclusive fitness theory predicts that sex investment ratios in eusocial Hymenoptera are a function of the relatedness asymmetry (relative relatedness to females and males) of the individuals controlling sex allocation. In monogynous ants (with one queen per colony), assuming worker control, the theory therefore predicts female‐biased sex investment ratios, as found in natural populations. Recently, E.O. Wilson and M.A. Nowak criticized this explanation and presented an alternative hypothesis. The Wilson–Nowak sex ratio hypothesis proposes that, in monogynous ants, there is selection for a 1 : 1 numerical sex ratio to avoid males remaining unmated, which, given queens exceed males in size, results in a female‐biased sex investment ratio. The hypothesis also asserts that, contrary to inclusive fitness theory, queens not workers control sex allocation and queen–worker conflict over sex allocation is absent. Here, I argue that the Wilson–Nowak sex ratio hypothesis is flawed because it contradicts Fisher's sex ratio theory, which shows that selection on sex ratio does not maximize the number of mated offspring and that the sex ratio proposed by the hypothesis is not an equilibrium for the queen. In addition, the hypothesis is not supported by empirical evidence, as it fails to explain ‘split’ (bimodal) sex ratios or data showing queen and worker control and ongoing queen–worker conflict. By contrast, these phenomena match predictions of inclusive fitness theory. Hence, the Wilson–Nowak sex ratio hypothesis fails both as an alternative hypothesis for sex investment ratios in eusocial Hymenoptera and as a critique of inclusive fitness theory.  相似文献   

13.
1. Ant colonies commonly have multiple egg‐laying queens (secondary polygyny). Polygyny is frequently associated with polydomy (single colonies occupy multiple nest sites) and restricted dispersal of females. The production dynamics and reproductive allocation patterns within a population comprising one polygyne, polydomous colony of the red ant Myrmica rubra were studied. 2. Queen number per nest increased with nest density and the number of adult workers increased with the number of resident queens and with nest density. This suggests that nest site limitation promotes polygyny and that workers accumulate in nest units incapable of budding. 3. Nest productivity increased with the number of adult workers and production per queen was independent of queen number. Productivity increased with nest density, suggesting local resource enhancement. This shows that productivity can be a linear function of queen numbers and that the limiting factor is not the egg‐laying capacity of queens. 4. The total and per capita production of reproductives decreased towards the periphery of the colony, suggesting that the spatial location of nest units affects sexual production. Thus nests at the periphery of the colony invested more heavily in new workers. This is consistent with earlier observations in plants and could either represent investment in future budding or increased defence. 5. The colony produced only five new queens and 2071 males, hence the sex ratio was extremely male biased.  相似文献   

14.
A single-locus two-allele model is analyzed to determine the invasion conditions for facultative biasing of colony sex allocation by hymenopteran workers in response to queen mating frequency, for a situation in which colonies have a single queen mated to one or two males. Facultative biasing of sex allocation towards increased male production in double mated colonies and increased female production in single mated colonies can both invade when the population sex allocation ratio is at the worker optimum. However, when the population sex allocation ratio is more male biased than the worker optimum, plausibly due to mixed queen and worker control, it is likely that only increased female allocation in colonies perceived by the workers to have single mated queens can invade. In this case, the frequency of mistakes made by workers in assessing queen mating frequency is an important constraint on the invasion of facultative male biasing in colonies perceived to have a double mated queen. When the population sex allocation ratio is not between the optima for workers in single and double mated colonies, plausibly due to strong queen control, then facultative biasing cannot invade. In this situation, workers in all colonies should attempt to bias allocation towards increased females. Worker male production in queenright colonies (provided not all males are worker-derived), unequal sperm use by double mated queens, and the amount of facultative biasing, do not alter these results.  相似文献   

15.
Models of sex‐allocation conflict are central to evolutionary biology but have mostly assumed static decisions, where resource allocation strategies are constant over colony lifespan. Here, we develop a model to study how the evolution of dynamic resource allocation strategies is affected by the queen‐worker conflict in annual eusocial insects. We demonstrate that the time of dispersal of sexuals affects the sex‐allocation ratio through sexual selection on males. Furthermore, our model provides three predictions that depart from established results of classic static allocation models. First, we find that the queen wins the sex‐allocation conflict, while the workers determine the maximum colony size and colony productivity. Second, male‐biased sex allocation and protandry evolve if sexuals disperse directly after eclosion. Third, when workers are more related to new queens, then the proportional investment into queens is expected to be lower, which results from the interacting effect of sexual selection (selecting for protandry) and sex‐allocation conflict (selecting for earlier switch to producing sexuals). Overall, we find that colony ontogeny crucially affects the outcome of sex‐allocation conflict because of the evolution of distinct colony growth phases, which decouples how queens and workers affect allocation decisions and can result in asymmetric control.  相似文献   

16.
Summary: Genetic theory predicts that workers in monogynous ant colonies with singly-mated queens should capitalize on higher relatedness with sisters than with brothers by altering the sex investment ratio of a colony in favor of females. Sex investment ratios, however, may also be influenced by the amount of resources available to colonies, in part because more mating opportunities might be obtained by investing scarce resources in males, which are much smaller than queens. Female larvae that reach a critical size by a particular point in development become queens while underfed larvae develop into workers, so workers could potentially influence the sex investment ratio of a colony by selectively feeding female larvae. In a previous experiment on the ant, Aphaenogaster rudis, colonies increased female sex investment after their diet was supplemented with elaiosomes, a lipid-rich food gained from a seed dispersal mutualism. In order to investigate the mechanisms producing this shift, we radio-labeled Sanguinaria canadensis elaiosomes with fatty acids and compared uptake among castes within a colony. The experiment was performed in both the laboratory and field. Lab colonies produced female-biased sex investment ratios, while field colonies mainly invested in males. We hypothesize that this discrepancy is related to differing levels of background food availability in the lab and field. The results of the elaiosome distribution experiment do not support a hypothesis that elaiosomes play a qualitative role in queen determination, because all individuals in a colony receive this nutrient. There is, however, support for the hypothesis that elaiosomes have a quantitative effect on larval development because larvae that accumulated more radio-label from elaiosomes tended to develop into gynes (virgin queens), while other female larvae developed into workers.  相似文献   

17.
Because workers in colonies of eusocial Hymenoptera are more closely related to sisters than to brothers, theory predicts workers should bias investment in reproductive broods to favour reproductive females over males. However, conflict between queens and workers is predicted. Queens are equally related to daughters and sons, and should act to prevent workers from biasing investment. Previous study of the ant Pheidole desertorum showed that workers are nearly three times more closely related to reproductive females than males; however, the investment sex ratio is very near equal, consistent with substantial queen control of workers. Near-equal investment is produced by an equal frequency of colonies whose reproductive broods consist of only females (female specialists) and colonies whose reproductive broods consist of only males or whose sex ratios are extremely male biased (male specialists). Because natural selection should act on P. desertorum workers to bias investment in favour of reproductive females, why do workers in male-specialist colonies rear only (or mostly) males? We tested the hypothesis that queens prevent workers from rearing reproductive females by experimentally providing workers with immature reproductive broods of both sexes. Workers reared available reproductive females, while failing to rear available males. Worker preference for rearing reproductive females is consistent with queens preventing their occurrence in colonies of male specialists. These results provide evidence that queens and workers will act in opposition to determine the sex ratio, a fundamental prediction of queen-worker conflict theory. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

18.
Kin selection theory predicts conflict between queens and workers in the social insect colony with respect to male production. This conflict arises from the haplodiploid system of sex determination in Hymenoptera that creates relatedness asymmetries in which workers are more closely related to the sons of other workers than to those of the queen. In annual hymenopteran societies that are headed by a single queen, the mating frequency of the queen is the only factor that affects the colony kin structure. Therefore, we examined the mating structure of queens and the parentage of males in a monogynous bumblebee, Bombus ignitus, using DNA microsatellites. In the seven colonies that were studied, B. ignitus queens mated once, thereby leading to the prediction of conflict between the queen and workers regarding male production. In each of the five queen-right colonies, the majority of the males (95%) were produced by the colony’s queen. In contrast, workers produced approximately 47% of all the males in two queenless colonies. These results suggest that male production in B. ignitus is a conflict between queen and workers.  相似文献   

19.
1. Myrmecina nipponica has two types of colonies: a queen colony type, in which the reproductive females are queens and new colonies are made by independent founding, and an intermorphic female colony type, in which reproductive females belong to a wingless intermediate morphology between queen and worker, and where colonies multiply through colonial budding. 2. The mating frequencies of reproductive females in both types indicate monoandry. The relatedness among nestmates in both types was almost 0.75, however relatedness between mother and daughter in intermorphic female colonies was slightly higher than that of queen colonies. 3. The sex ratio (corrected investment female ratio) was 0.70 at the population level, suggesting that the sex ratio is controlled by workers in this species, however the ratio differed greatly between the two types of colonies. Queen colonies (n = 37) had a female‐biased sex ratio of 0.77 while intermorphic female colonies (n = 33) had a ratio of 0.56. 4. Each reproductive intermorphic female was accompanied by an average of 2.9 workers (including virgin intermorphic females) in the colonial budding, and when the investment to those workers was added to the female investment, the sex ratio reached 0.81. 5. The frequency distribution of sex ratio was bimodal, with many colonies producing exclusively males or females, however mean estimated relatedness within colonies was almost 0.75. These data are inconsistent with the genetic variation hypothesis, which is one of the predominant hypotheses accounting for the between‐colony variation in sex ratio.  相似文献   

20.
Sexual competition during colony reproduction in army ants   总被引:1,自引:0,他引:1  
We review the unusual processes of sexual reproduction and colony fission in army ants and briefly compare this to reproduction in other ants.
Army ants are a polyphyletic group and are characterized by a syndrome of convergently evolved traits including large colony size, group foraging for large prey, nomadism, cyclical brood production and queens who are large and wingless. Because queens are flightless and never leave their colony, workers are in a position to choose which queen will take over each new colony. Males fly between colonies and must run the gauntlet of the workers in alien ones before they can approach the queen. For this reason, workers can also choose which males will inseminate their queen.
Army ant workers may therefore be involved in choosing both the matriarch and patriarch of new colonies. We suggest that this unusual form of sexual selection has led to the close resemblance of conspecific males and females in all the separate lineages of army ants. Males are queen-like in that they are large and robust, have long cylindrical abdomens, with exocrine glands of similar form and location to those of females and shed their wings when they enter new colonies. Furthermore, when males enter new colonies they are followed by an entourage of workers which resemble those that accompany queens. We suggest that males resemble queens not as a form of deceitful mimicry but because under the influence of sexual selection they have come to use the same channels of communication to demonstrate their potential fitness to the workforce as those used by queens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号