首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
孟鹏  齐西珍  郑芳  任丽梅  白芳  白钢 《微生物学报》2010,50(8):1080-1086
【目的】针对人α-麦芽糖苷酶这个糖代谢途径中重要的靶蛋白,建立α-糖苷酶抑制剂高通量筛选模型。【方法】采用毕赤酵母表达系统克隆和表达人α-麦芽糖苷酶。利用酶的催化特性建立α-糖苷酶抑制剂筛选模型。应用该模型对放线菌代谢产物库进行高通量筛选。通过构建16SrRNA系统发育树分析阳性菌株的分类地位。【结果】首次成功克隆、表达了具催化活性的人α-麦芽糖苷酶N端结构域。针对人α-麦芽糖苷酶N端催化结构域,建立α-糖苷酶抑制剂的筛选模型。对包含近2000株放线菌代谢产物的天然产物库进行高通量筛选,最终得到20株α-麦芽糖苷酶抑制剂生产菌株。其中19株放线菌为链霉菌属,且在分类学上具有丰富的多样性。【结论】本研究建立的α-糖苷酶抑制剂高通量筛选模型具有很强的实用价值,可用于新型糖苷酶抑制剂类降糖药物的开发。  相似文献   

2.
利用酶的催化特性从520株土壤分离放线菌中筛选对α-淀粉酶和α-蔗糖酶均具有抑制作用的产α-糖苷酶抑制剂菌株,并对其进行菌株归属鉴定。试验结果表明:从土壤分离放线菌中筛选到对α-淀粉酶酶活力抑制率在75%以上的菌株45株,从这45株放线菌中筛选到1株对α-蔗糖酶抑制率在40%以上的菌株。通过对其进行形态学观察、生理生化特性鉴别,并结合16S rRNA基因序列分析,初步判定该菌株为天蓝色链霉菌Streptomyces coelicolo。  相似文献   

3.
目的:筛选新的α-葡萄糖苷酶抑制剂。方法:采用α-淀粉酶及蔗糖酶抑制试验,从2000株放线菌发酵液中筛选α-葡萄糖苷酶抑制剂。结果:从淡紫灰链霉菌HW110(Streptomyces lavedulae HW110)发酵液中分离到HW110,其抑酶活性与acarbose相当。结论:利用α-淀粉酶及蔗糖酶抑制试验筛选到deoxynorjirimycin。  相似文献   

4.
本研究用昆明种小鼠十二指肠上段提取的α-葡萄糖苷酶,以4-硝基苯-α-D-吡喃葡萄糖苷为反应底物,建立α-葡萄糖苷酶抑制剂高通量筛选模型。用该模型对1276株放线菌和132株细菌等共计2224个发酵液粗提物样品进行筛选。初筛得到抑制率超过50%的阳性样品23个,初筛阳性率为1.03%。将阳性菌株再次进行发酵提取,得到新发酵液的阳性样品数为17,复筛阳性率为0.74%。其中细菌3株,放线菌13株。3个阳性样品经α-葡萄糖苷酶验证后的抑制率均在75%以上。本研究建立的α-糖苷酶抑制剂高通量筛选模型具有很强的实用价值,可用于新型糖尿病药物的开发。  相似文献   

5.
【目的】从分离自北极海底沉积物Pseudoalteromonas sp.K8菌株克隆、重组表达α-淀粉酶Amy3,并研究其酶学性质。【方法】基于Pseudoalteromonas haloplanktis TAC125基因组分析,从亲缘关系较近的Pseudoalteromonas sp.K8克隆获得α-淀粉酶基因amy3,以大肠杆菌为宿主进行重组表达,经Ni-NTA亲和层析柱纯化获得重组蛋白Amy3。以可溶性淀粉等为底物,研究Amy3的酶学性质。【结果】Amy3最适催化pH为8.5,在pH 6.5–10.0范围内酶活力维持在40%以上;其在pH 7.5–8.5范围的稳定性较好,pH 8.0条件下的半衰期可达4 h。Amy3在低温下较稳定,25℃半衰期为5 h;最适反应温度为25℃,并且在0℃可以保持50%以上酶活力,显示良好的低温催化特性。NaCl能够有效提升Amy3的酶活力及稳定性;荧光光谱分析表明,NaCl并未引起Amy3酶蛋白三级结构的改变。动力学分析显示,NaCl影响了酶催化的K_m及k_(cat),进而提升了酶的催化效率。底物特异性分析表明,Amy3对支链淀粉的水解能力优于直链淀粉,并能够有效地水解小麦淀粉、玉米淀粉和木薯淀粉。【结论】来源于Pseudoalteromonassp.K8菌株的α-淀粉酶Amy3具有良好的低温催化及嗜盐性,在洗涤、食品、污水处理等行业中有潜在的应用前景。  相似文献   

6.
崔丹曦  李宁  黄卫宁  任聪  吴群  徐岩 《微生物学通报》2022,49(10):4194-4208
【背景】乳酸菌是面包、馒头等发酵食品中的重要功能微生物,对改善质地和风味均具有重要作用。淀粉利用能力高的乳酸菌,因其能够在生面粉中更好地定殖而具有重要的应用价值。【目的】筛选获得淀粉水解型乳酸菌并研究其淀粉利用特性。【方法】以浓香型白酒大曲为筛选源,采用淀粉基质碳源对大曲中乳酸菌进行定向富集,结合淀粉发酵能力筛选高淀粉利用能力菌株,并对筛选得到的优良菌株展开淀粉酶表达及其酶活力研究。【结果】以贮存3-6个月的大曲为优秀筛选源,以生面糊传代富集方法可较快筛选出具有良好淀粉利用能力的乳杆菌,主要物种为植物乳杆菌和类食品乳杆菌。对其中一株具有淀粉利用能力的类食品乳杆菌LBM12001的淀粉水解特征和淀粉酶活力展开研究,该菌株淀粉水解能力达10 g/L,并且其在面糊中具有良好的定殖能力;酶活力测定表明,其α-淀粉酶和麦芽糖淀粉酶为胞外酶;麦芽糖淀粉酶水解淀粉的最适pH值为3.5,比酶活为1 240 U/mg。【结论】建立起从我国传统白酒发酵大曲中高效筛选淀粉水解型乳酸菌的富集筛选方法,以及菌株的水解能力评价方法,获得的胞外麦芽糖淀粉酶分泌型乳杆菌在酸面团、馒头等需进行生面粉发酵食品的生产中具有重要应用前景。  相似文献   

7.
从土壤中分离并筛选得到了一株α-淀粉酶抑制剂生产菌,编号ZG0656.根据形态特征,培养特征、生理生化特征、细胞壁化学组成特征和16S rDNA全序列相似性比较分析等多相分类方法,确认菌株ZG0656为天蓝黄链霉菌的新变种,命名为天蓝黄链霉菌南开变种(Streptomyces coelicoflavus var.nankaiensis).该菌经10 L发酵罐水平发酵,发酵液中可积累一定量的α-淀粉酶抑制荆.采用浓缩,树脂吸附,凝胶过滤,减压干燥等方法得到α-淀粉酶抑制剂混合物.该α-淀粉酶抑制剂为含氮的拟低聚糖类物质.能强烈抑制哺乳动物来源的α-淀粉酶,对餐后高血糖的形成有明显改善作用.可用于制备治疗糖尿病,肥胖症的药物或功能性食品.  相似文献   

8.
曹小芳  王利强  白芳  白钢 《微生物学通报》2012,39(12):1762-1768
【目的】应用柱前衍生化高效液相色谱法筛选产1-脱氧野尻霉素(DNJ)菌株,并对其进行系统鉴定。【方法】利用芴甲氧酰氯(FMOC-Cl)柱前衍生化高效液相色谱法筛选DNJ产生菌;通过形态特征、培养特征、生理生化特征以及16S rRNA序列相似性分析等多项分类方法对DNJ产生菌进行鉴定;在10 L发酵罐水平进行发酵研究,利用FMOC-Cl柱前衍生化高效液相色谱法测定DNJ含量。【结果】从80株具有α-糖苷酶抑制剂活性的土壤放线菌中筛选得到一株DNJ产生菌,菌株编号为PW409,初步确定为戈壁三素链霉菌(Streptomyces gobitrici);发酵研究表明,DNJ为链霉菌PW409的次级代谢产物,发酵液中DNJ浓度为12.1 mg/L。【结论】首次将FMOC-Cl柱前衍生化高效液相色谱法应用于DNJ产生菌的筛选,并首次报道从戈壁三素链霉菌发酵液中鉴定到DNJ。  相似文献   

9.
从土壤中分离并筛选得到了一株α-糖苷酶抑制剂生产菌PW0852。根据形态特征、培养特征、生理生化特征及16S rRNA序列相似性分析等多相分类方法, 初步判定菌株PW0852为淡紫灰链霉菌(Streptomyces lavendulae)。该菌经10 L发酵罐水平发酵, 发酵液中可积累一定量的α-糖苷酶抑制剂。采用膜过滤技术、离子交换树脂吸附及冷冻干燥等方法, 从PW0852发酵液中分离获得混合型α-糖苷酶抑制剂GIB852。GIB852对人类胰腺α-淀粉酶和α-麦芽糖酶都有明显的抑制作用, 其对麦芽糖酶的抑制性比同剂量的市售双糖酶抑制剂米格列醇强28.7倍, 而对α-淀粉酶的抑制性较弱。通过小鼠糖耐量实验, 发现α-糖苷酶抑制剂GIB852对哺乳动物餐后高血糖的形成有明显改善作用, 具有开发为糖尿病药物的潜力。  相似文献   

10.
【目的】建立结核分枝杆菌PheRS抑制剂高通量模型,并运用此模型筛选化合物和发酵液样品。【方法】克隆和表达结核分枝杆菌PheRS蛋白并优化其酶活测定方法,在此基础上建立结核分枝杆菌PheRS抑制剂高通量筛选模型,并通过耻垢分枝杆菌作为检定菌对筛选到的样品进行抗菌活性测定及细胞毒性评价。【结果】运用此模型筛选了化合物样品11 600个,发酵液样品5 200个,筛选得到阳性化合物9个,阳性发酵液37个。而后通过耻垢分枝杆菌作为检定菌的抗菌活性测定及细胞毒性评价后,得到了6个发酵液阳性样品。【结论】建立的PheRS抑制剂模型可成功用于化合物和微生物发酵液的高效筛选,得到的6个发酵液阳性样品在酶水平和抗分枝杆菌方面均具有良好活性且毒性较低,值得进一步研究。  相似文献   

11.
The search for the effective and safe α-glucosidase and α-amylase inhibitors from Actinomycetaceae being antidiabetic agents is actual problem. Twenty one Streptomyces spp. of soil samples collected from different places of China were screened for the ability to produce this kind of inhibitory activities. Fermentation broth of isolated strains had absorbance between 350–190 nm. The Streptomyces strains PW003, ZG636, and ZG731 were characterized by special absorption at 280, 275, and 400 nm, respectively. Ten of the collected actinomycete strains had the ability to inhibit α-glucosidase or/and α-amylase and the fermentation broth of the same strain had inhibitory activity varied greatly depending on the enzyme source. In the process to screen the leading compounds used as antidiabetic agents, human α-glucosidase and α-amylase were revealed as the best used in trail compared with the same enzymes from other sources. Active α-glucosidase inhibitor was isolated from Streptomyces strain PW638 fermentation broth and identified as acarviostatin I03 by MS and NMR spectrometry. Its IC50 value was 1.25 and 12.23 μg/ml against human intestinal N-terminal maltase-glucoamylase and human pancreatic α-amylase, respectively.  相似文献   

12.
从野生苋属植物 (Amaranthuspaniculatus)籽实中分离纯化出α淀粉酶的一种新型蛋白质类抑制剂 .该抑制剂被命名为WAI 1 .MALDI TOF质谱测得其分子量为 986 5 ,是目前报道的α 淀粉酶的蛋白质类抑制剂中分子量最小的 .初步的组成和结构分析结果表明 ,WAI 1由 9个氨基酸残基组成 ,其N端为焦谷氨酸 .直接用RP HPLC纯化后 ,WAI 1能在弱酸性条件下 ,以非竞争性抑制作用方式有效抑制美洲蜚蠊消化道α淀粉酶的活性 ,最适抑制pH 6 0 ,但对人唾液淀粉酶活性无影响 .WAI 1在 37℃下与酶预温浴约 30min后显示最大抑制活性 .当α淀粉酶用量一定时 ,α淀粉酶活性的抑制率在约 5 0 %的范围内随抑制剂 酶比例的增大而呈线性增加 ,超过 5 0 %后 ,抑制率随抑制剂 酶比例的增大而缓慢上升 ,最终达到最大值 (约 6 5 % ) .  相似文献   

13.
Wheat albumins were extracted from whole wheat flour with 150 mM sodium chloride solution and precipitated between 0·4 and 1·8 M ammonium sulphate. The albumin precipitate was separated by gel filtration on Sephadex G100 into five peaks. Three peaks (II, III, and IV), whose MWs were 60 000, 24 000 and 12 500 daltons respectively, were active toward several insect α-amylases, whereas only peak III inhibited human saliva and pancreatic α-amylases. Peaks III and IV also inhibited trypsin. In each active peak, we found several α-amylase inhibitors slightly different in their electrophoretic mobilities in a Tris—glycine buffer system (pH 8·5), whereas only one major trypsin inhibitor was present in peaks III and IV. In contrast to α-amylase inhibitors that were all anodic, trypsin inhibitors migrated to the cathode under our experimental conditions. From a quantitative standpoint, wheat albumins that inhibit trypsin are negligible, whereas about 2/3 of the total albumin inhibits amylases from different origins. All inhibitor components of peak III were active toward both insect and mammalian α-amylases. Moreover, they reversibly dissociated in the presence of 6 M guanidine hydrochloride giving two similar subunits.  相似文献   

14.
Inhibition of α-glucosidase and α-amylase delays the digestion of starch and disaccharides to absorbable monosaccharides, resulting in a reduction of postprandial hyperglycemia. Finding effective mammalian α-glucosidase inhibitors from natural sources can be beneficial in the prevention and treatment of diabetes mellitus. We investigated the inhibitory activity of cinnamic acid derivatives against rat intestinal α-glucosidase and porcine pancreatic α-amylase in vitro. Among 11 cinnamic acid derivatives, caffeic acid, ferulic acid, and isoferulic acid were the most potent inhibitors against intestinal maltase with IC50 values of 0.74?±?0.01, 0.79?±?0.04, and 0.76?±?0.03?mM, respectively, whereas ferulic acid (IC50?=?0.45?±?0.01?mM) and isoferulic acid (IC50?=?0.45?±?0.01?mM) were effective intestinal sucrase inhibitors. However, all cinnamic acid derivatives were found to be inactive in pancreatic α-amylase inhibition. Kinetic analysis revealed that intestinal maltase was inhibited by caffeic acid, ferulic acid, and isoferulic acid in a mixed-inhibition manner. In addition, ferulic acid and isoferulic acid inhibited intestinal sucrase in a mixed type manner, whereas caffeic acid was a non-competitive inhibitor. The combination of isoferulic acid and acarbose showed an additive inhibition on intestinal sucrase. This study could provide a new insight into naturally occurring intestinal α-glucosidase inhibitors that could be useful for treatment of diabetes and its complications.  相似文献   

15.
【目的】开发一种新型的大肠杆菌表面展示系统,为C末端截短NCgl1221蛋白作为锚定蛋白提供科学依据,丰富并优化细菌表面展示系统。【方法】扩增C末端截短NCgl1221序列和β-淀粉酶基因,构建融合蛋白表达载体。将重组载体PET-NA和空载体PET-28a分别转入Rosetta(DE3)pLysS中,IPTG诱导表达,SDS-PAGE和Western blot鉴定融合蛋白表达情况。将诱导表达菌株进行免疫荧光染色,荧光显微镜观察和流式细胞分析检测β-淀粉酶的展示。酶活测定和淀粉水解分析验证被展示β-淀粉酶的活性。【结果】融合蛋白成功地在大肠杆菌中表达,有活性的β-淀粉酶通过与锚定蛋白C末端的融合被展示在了宿主菌表面,展示β-淀粉酶的重组菌可以水解利用培养基中的淀粉。【结论】成功开发了一种以C末端截短NCgl1221为锚定蛋白的新型大肠杆菌表面展示系统,并以此系统展示了分子量大小为56 kDa的活性酶,为该系统在全细胞催化剂或吸附剂等方面的应用奠定了基础。  相似文献   

16.
The complete nucleotide sequences of the cDNA and its gene that encode a bifunctional α-amylase/subtilisin inhibitor of rice (Oryza sativa L.) (RASI) were analyzed. RASI cDNA (939 bp) encoded a 200-residue polypeptide with a molecular mass of 21,417 Da, including a signal peptide of 22 amino acids. Sequence comparison and phylogenetic analysis showed that RASI is closely related to α-amylase/subtilisin inhibitors from barley and wheat. RASI was found to be expressed only in seeds, suggesting that it has a seed-specific function. A coding region of RASI cDNA without the signal peptide was introduced into Escherichia coli and was expressed as a His-tagged protein. Recombinant RASI was purified to homogeneity in a single step by Ni-chelating affinity column chromatography and characterized to elucidate the target enzyme. The recombinant inhibitor had strong inhibitory activity toward subtilisin, with an equimolar relationship, comparable with that of native RASI, and weak inhibitory activity toward some microbial α-amylases, but not toward animal or insect α-amylases. These results suggest that RASI might function in the defense of the seed against microorganisms.  相似文献   

17.
A screening test was carried out to obtain microbes which produce hog pancreatic α-amylase inhibitor and a new inhibitor was found in culture broth of an actinomycete, strain YM-25. This inhibitor was designated as Haim, an abbreviation for hog pancreatic α-amylase inhibitor from a microbe. The determined morphological and physiological properties of strain YM-25 led to the conclusion that the microorganism was Streptomyces griseosporeus.

When the microorganism was aerobically cultured at 30°C in a jar fermentor containing the most suitable medium for growth which consisted of 5% glycerol, 0.5% polypepton, 0.2% meat extract, 0.1% yeast extract, 0.4% Na2HPO4 ? 12H2O, 0.1% KH2PO4, and 0.05% MgSO4 ? 7H2O (pH 7.3), the highest activity of Haim was obtained on 23~26hr cultivation.

Haim had specific inhibitory activities against animal α-amylases but not against microbial and plant α-amylases.  相似文献   

18.
Two α-amylase inhibitors in aqueous extracts of wheat flour have been resolved by DEAE-Sephadex chromatography. α-Amylase inhibitor I, the major inhibitor, was homogeneous by disc gel electrophoresis. It had a MW of 20 000 daltons and an isoelectric point of 6·7. α-Amylase inhibitor II had two minor contaminants when analysed by electrophoresis. These inhibitors were classified as typical wheat albumin proteins. A third α-amylase inhibitor was discovered when it was observed that an albumin protein which is found only in Triticum aestivum varieties of wheat could also inhibit pancreatic α-amylase. All three of these inhibitors could be distinguished by their characteristic electrophoretic mobilities.  相似文献   

19.
Ren L  Cao X  Geng P  Bai F  Bai G 《Carbohydrate research》2011,(17):2688-2692
In humans, both the N-terminal catalytic domain (NtMGAM) and the C-terminal catalytic domain (CtMGAM) of small intestinal maltase glucoamylase (MGAM) are α-glycosidases that catalyze the hydrolysis of α-(1→4) glycosidic linkages in the process of starch digestion, and are considered to be the main therapeutic targets for type 2 diabetes. In this work, recombinant human CtMGAM has been cloned for the first time, and this, combined with the expression of NtMGAM in Pichia pastoris, made it possible for us to study the catalytic mechanism of MGAM in a well-defined system. The enzymatic kinetic assays of the two catalytic domains suggest that CtMGAM has the higher affinity for longer maltose oligosaccharides. Kinetic studies of commercially-available drugs such as 1-deoxynojirimycin (DNJ), miglitol, voglibose, and acarbose along with a series of acarviosine-containing oligosaccharides we isolated from Streptomyces coelicoflavus against NtMGAM, CtMGAM, and human pancreatic α-amylase (HPA) provide us an overall profile of the inhibitory ability of these inhibitors. Of all the inhibitors used in this paper, DNJ was the most effective inhibitor against MGAM; the Ki values for the two catalytic domains were 1.41 and 2.04 μM for NtMGAM and CtMGAM, respectively. Acarviostatins 2-03 and 3-03 were the best inhibitors against HPA with relatively high inhibitory activity against CtMGAM. The acarviostatins 2-03 and 3-03 inhibition constants, Ki, for HPA were 15 and 14.3 nM, and those for CtMGAM were 6.02 and 6.08 μM, respectively. These results suggest that NtMGAM and CtMGAM differ in their substrate specificities and inhibitor tolerance despite their structural relationship.  相似文献   

20.
Plant α-amylase inhibitors show great potential as tools to engineer resistance of crop plants against pests. Their possible use is, however, complicated by the observed variations in specificity of enzyme inhibition, even within closely related families of inhibitors. Better understanding of this specificity depends on modelling studies based on ample structural and biochemical information. A new member of the α-amylase inhibitor family of cereal endosperm has been purified from rye using two ionic exchange chromatography steps. It has been characterised by mass spectrometry, inhibition assays and N-terminal protein sequencing. The results show that the inhibitor has a monomer molecular mass of 13 756 Da, is capable of dimerisation and is probably glycosylated. The inhibitor has high homology with the bifunctional α-amylase/trypsin inhibitors from barley and wheat, but much poorer homology with other known inhibitors from rye. Despite the homology with bifunctional inhibitors, this inhibitor does not show activity against mammalian or insect trypsin, although activity against porcine pancreatic, human salivary, Acanthoscelides obtectus and Zabrotes subfasciatus α-amylases was observed. The inhibitor is more effective against insect α-amylases than against mammalian enzymes. It is concluded that rye contains a homologue of the bifunctional α-amylase/trypsin inhibitor family without activity against trypsins. The necessity of exercising caution in assigning function based on sequence comparison is emphasised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号