首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 31 毫秒
1.
宋刚  于萍 《生理学报》1996,48(1):59-64
实验在33只成年猫上进行。Botzinger复合体内微量注入麦角辣根过氧化酶(WGA-HRP,30-60nl,5%,9例)后,在脑桥呼吸调整中枢结合臂外侧核及Kolliker-Fuse核观察到大量HRP标记神经元。在20例动物中,检测了91个在呼吸调整中枢记录到的呼吸神经元对电刺激Botzinger复合体的反应。其中13个神经元(吸气性11个,跨时相2个)可被逆行兴奋。实验结果表明,发自脑桥呼吸调整中枢神经元的轴突可投射到Botzinger复合体,这一投射通路可能与呼吸调节有关。  相似文献   

2.
实验在62只家兔上进行。结果观察到,中缝大核(NRM)区562个单位中,有118个单位的自发放电频率低,放电比较规则,动作电位时程长,易被微电泳5-羟色胺所阻遏,称为A 组单位。其余444个单位的自发放电频率高,动作电位时程短,称为B 组单位。大多数 B组单位对微电泳5-羟色胺不起反应。脑桥臂旁内侧核(NPBM)区微量注射吗啡(200μg/2μl)或静脉注射吗啡(3mg/kg)后,20个A 组单位中有19个发生兴奋效应,而49个B 组单位中仅有29个发生兴奋效应,而且A组单位发生兴奋的程度也比B组单位的高。这些结果提示,NRM区的A 组单位可能是5-羟色胺神经元,吗啡对这些神经元有相对选择性的兴奋作用。 在另外11只家兔上,应用辣根过氧化物酶(HRP)逆行追踪技术观察到,NPBM 区与NRM 区有纤维联系。 本实验结果提示,静脉注射吗啡所致的呼吸抑制,可能与吗啡作用于 NPBM,通过纤维联系,引起NRM 5-羟色胺神经元兴奋有关。  相似文献   

3.
实验在33只浅麻醉、肌肉麻痹、人工呼吸及切断双侧颈迷走神经的家兔上进行。观察中缝大核区电解损毁或微量注射利多卡因对呼吸活动及臂旁内侧核区微量注射吗啡所致呼吸抑制效应的影响。结果是:电解损毀中缝大核区,使呼吸频率增加,膈神经放电的幅度和频率均无明显变化,而臂旁内侧核区微量注射吗啡抑制呼吸的程度减轻;中缝大核区微量注射利多卡因,则部分消除臂旁内侧核区微量注射吗啡的呼吸抑制效应。中缝大核旁网状结构电解损毁或微量注射利多卡因,不影响吗啡的呼吸抑制效应。上述结果提示,中缝大核区可能在脑桥臂旁内侧核区微量注射吗啡抑制呼吸的机制中起一定作用。  相似文献   

4.
目的:比较脑桥以上中枢损伤与腰骶段脊髓损伤患者的膀胱功能障碍及尿动力学特点。方法:回顾性分析2011年3月至2014年5月我院收治的78例中枢神经损伤患者的临床资料,包括临床表现、诊断、排尿方式、残余尿、尿动力学检查结果。其中,脑桥以上中枢损伤组43例,腰骶段脊髓损伤组35例,分析和比较两组患者的自由尿流率参数和完全膀胱测压参数。结果:两组间的最大尿流率、排尿量比较差异无统计学意义(P0.05),脑桥上中枢损伤组的残余尿量明显低于腰骶段脊髓损伤组,差异有统计学意义(P0.05)。与腰骶段脊髓损伤组比较,脑桥以上损伤组的膀胱容量明显减少,最大尿流率时的压力、逼尿肌的最大压力及平均压力明显增加,差异均有统计学意义(P0.05)。两组膀胱的顺应性、逼尿肌稳定性比较差异有统计学意义(P0.05),脑桥以上中枢损伤患者的多数表现为低顺应性膀胱(27/43),胸腰段脊髓损伤患者主要表现为高顺应性膀胱(21/35);脑桥以上损伤组多表现为逼尿肌的过度活动(29/43),而腰骶段脊髓损伤组更多表现为逼尿肌的无反射和弱反射(20/35)。结论:脑桥以上损伤患者主要表现为逼尿肌过度活动和膀胱容量的显著降低,以低顺应性膀胱为主;腰骶段脊髓损伤患者的逼尿肌多为无反射和弱反射,以高顺应性膀胱为主。  相似文献   

5.
内啡肽参与低氧呼吸抑制的中枢机制   总被引:1,自引:0,他引:1  
  相似文献   

6.
用生物素示踪法和P物质(SP)免疫组化技术研究表明:黄喉Jiu的高级发声中枢(HVc) 接受端脑听区(L)、新纹状体中部界面核、新纹状体巨细胞核(MAN)、丘脑葡萄形核、桥脑蓝斑核的传入,并有神经纤维投射到古纹状体栎核(RA)和嗅叶X区(X);HVc壳投射到RA壳并接受L的传入。听觉控制与学习通路与发声中枢之间有许多神经联系,提示黄喉Jiu发声学习依赖于听觉反馈。在HVc、RA和MAN有SP阳性细胞体,在X、中脑背内侧核和延髓舌下神经核气管鸣管部、丘脑卵圆核壳区、中脑背我 核壳区及中脑丘间核有SP阳性纤维和终末。SP广泛分布于发声-听觉中枢,可能参与了它们的活动。  相似文献   

7.
用生物素示踪法和P物质(SP)免疫组化技术研究表明:黄喉wu的高级发声中枢(HVc)接受端脑听区(L)、新纹状体中部界面核、新纹状体巨细胞核(MAN)、丘脑葡萄形核、桥脑蓝斑核的传入,并有神经纤维投射到古纹状体栎核(RA)和嗅叶X区(X);HVc壳投射到RA壳并接受L的传入。听觉控制与学习通路与发声中枢之间有许多神经联系,提示黄喉wu发声学习依赖于听觉反馈。在HVc、RA和MAN有SP阳性细胞体,在X、中脑背内侧核和延髓舌下神经核气管鸣管部、丘脑卵圆核壳区、中脑背外侧核壳区及中脑丘间核有SP阳性纤维和终末。SP广泛分布于发声-听觉中枢,可能参与了它们的活动。  相似文献   

8.
用生物素示踪法和P物质 (SP)免疫组化技术研究表明 :黄喉的高级发声中枢 (HVc)接受端脑听区 (L)、新纹状体中部界面核、新纹状体巨细胞核 (MAN)、丘脑葡萄形核、桥脑蓝斑核的传入 ,并有神经纤维投射到古纹状体栎核 (RA)和嗅叶X区 (X) ;HVc壳投射到RA壳并接受L的传入。听觉控制与学习通路与发声中枢之间有许多神经联系 ,提示黄喉发声学习依赖于听觉反馈。在HVc、RA和MAN有SP阳性细胞体 ,在X、中脑背内侧核和延髓舌下神经核气管鸣管部、丘脑卵圆核壳区、中脑背外侧核壳区及中脑丘间核有SP阳性纤维和终末。SP广泛分布于发声 -听觉中枢 ,可能参与了它们的活动  相似文献   

9.
用生物素示踪法和P物质(SP)免疫组化技术研究表明:黄喉(巫鸟)的高级发声中枢(HVc)接受端脑听区(L)、新纹状体中部界面核、新纹状体巨细胞核(MAN)、丘脑葡萄形核、桥脑蓝斑核的传入,并有神经纤维投射到古纹状体栎核(RA)和嗅叶X区(X);HVc壳投射到RA壳并接受L的传入.听觉控制与学习通路与发声中枢之间有许多神经联系,提示黄喉(巫鸟)发声学习依赖于听觉反馈.在HVc、RA和MAN有SP阳性细胞体,在X、中脑背内侧核和延髓舌下神经核气管鸣管部、丘脑卵圆核壳区、中脑背外侧核壳区及中脑丘间核有SP阳性纤维和终末.SP广泛分布于发声-听觉中枢,可能参与了它们的活动.  相似文献   

10.
用免疫组化(HRP)、H^+表面透入、核团微量注射、微电泳及损毁等方法探讨了延髓腹侧表面中枢化学感受机制。结果表明它与其浅层核团:斜方体核、外周橄榄腹外侧核(LVPO)、斜方体后核、巨细胞旁外侧核和外侧网状核等有神经结构联系。表面H^+可能被上述核团的突起或胞体感受。非呼吸相关神经元(LVPO)与呼吸相关神经元,同样可能参与中枢化学感受而调节呼吸活动。  相似文献   

11.
在大鼠尾部给以伤害性刺激后,外侧缰核和中缝大核的单位按其反应型式可分为四种类型,即痛兴奋单位、广动力型单位、痛抑制单位和无反应单位。电刺激下丘脑外侧区对外侧缰核中各种单位的自发放电主要产生抑制作用,对其中痛兴奋单位和痛抑制单位的自发放电尤为明显。刺激下丘脑外侧区对中缝大核中痛兴奋单位的自发放电有明显兴奋作用,刺激外侧缰核则有抑制作用,损毁外侧缰核后,下丘脑外侧区的兴奋作用消失。分别刺激下丘脑外侧区和外侧缰核对中缝大核中痛抑制单位的自发放电都有明显的抑制作用;损毁外侧缰核后下丘脑外侧区的抑制作用仍存在。以上结果提示,下丘脑外侧区影响中缝大核活动的途径有二。其一可能是通过去除外侧缰核对中缝大核中痛兴奋单位的紧张性抑制作用;另外还可能通过外侧缰核以外的途径抑制中缝大核中痛抑制单位的活动。  相似文献   

12.
1.在氯醛糖麻醉的猫上,观察了电刺激中脑导水管周围灰质(PAG)和中缝大核(NRM)对脊髓腰段背角神经元传入活动的影响。2.按照对刺激的反应型式,在背角记录到非伤害性低阈值传入、广动力范围、伤害性热敏以及高阈值传入诱发的自发放电抑制等四类神经元。3.刺激 PAG和 NRM对记录到的多数背角神经元皮肤传入反应有明显抑制效应,而对自发放电抑制性神经元产生去抑制。4.比较刺激两脑区的抑制效应:NRM 作用较PAG 强;PAG 活动对背角伤害性反应抑制的选择性较 NRM强;阿片肽拮抗剂-纳洛酮拮抗NRM刺激的抑制。5.这些结果提示PAG和NRM对脊髓的下行抑制,可能有一部分是通过不同神经机制实现的。  相似文献   

13.
清醒箭毒化雄性大白鼠,在人工呼吸维持下,1.分析下丘脑弓状核(AR)兴奋中缝大核(NRM)的机制:观察到电刺激 AR 对 NRM 的兴奋效应,可因切断双侧 AR 至导水管周围灰质(PAG)的β-内啡肽(β-End)能束、PAG 内双侧注射纳洛酮或抗β-End 血清而绝大部分消失,提示 AR 对 NRM 的兴奋效应,主要通过 AR 区β-End 能神经元轴突与 PAG-NRM 系统的直接联系而实现;2.检验 AR 至 PAG-NRM 的神经通路在电针效应中的作用:实验显示上丘水平去大脑后,电针兴奋 NRM 的效应完全消失,表明此效应主要依赖中脑以上结构实现;进一步分别用 Halász 氏刀游离 AR、切断 AR 至 PAG 的β-End 能束、PAG 内注射纳洛酮或抗β-End 血清后,也使电针效应基本上完全消失,说明电针使 NRM神经元兴奋的效应,主要通过 AR 与 PAG-NRM 间的β-End 能神经通路实现。  相似文献   

14.
在16只乌拉坦麻醉大鼠上用玻璃微电极记录束旁核(Pf)细胞外放电的方法,观察了刺激中缝大核(NRM)对pf神经元自发放电和夹尾引起的伤害性反应的影响。弱电流刺激NRM可抑制大多数(66.7%)Pf痛兴奋单位的夹尾诱发放电,其抑制率为48.4±4.6%,同样的刺激对这类单位的自发放电影响不明显。刺激NRM对Pf痛抑制单位的作用较为特殊,使82%的痛抑制单位的自发放电减少42.0±5.7%,使86%的单位对痛刺激时的减频反应进一步加深。  相似文献   

15.
中缝大核在刺激视上核镇痛中的作用   总被引:1,自引:0,他引:1  
运用核团灌流液的放免测定和高压液相色谱法以及核团内注射拮抗剂,观察了化学刺激下丘脑视上核(SON)对中缝大核(NRM)灌流液内催产素(OT)、精氨酸加压素(AVP)和5-羟色胺(5-HT)含量的影响以及NRM内注射AVP、5-HT或OT受体拮抗剂对痛阈(PT)的影响。结果表明:SON内注射L-谷氨酸(L-Glu)10μg后动物痛阈明显升高,NRM灌流液中OT和5-HT的含量明显高于对照组水平,AVP的含量仅有一过性增加。NRM内注射oT或5-HT拮抗剂可逆转化学刺激SON引起的镇痛作用;而AVP的V_(1/2)受体拮抗剂也轻度抑制这种镇痛作用,但V_1拮抗剂对此作用无影响。以上结果提示:在刺激SON镇痛中,OT起着重要作用,L-Glu刺激SON的OT细胞释放OT,作用于NRM细胞的OT受体和V_2受体而产生镇痛作用,5-HT在此过程中也发挥重要作用。  相似文献   

16.
Nucleus raphe magnus (NRM) sends the projection to spinal dorsal horn and inhibits nociceptive transmission. Analgesic effect produced by mu-opioid receptor agonists including morphine partially results from activating the NRM-spinal cord pathway. It is generally believed that mu-opioid receptor agonists disinhibit spinally projecting neurons of the NRM and produce analgesia by hyperpolarizing GABAergic interneurons. In the present study, whole-cell patch-clamp recordings combined with single-cell RT-PCR analysis were used to test the hypothesis that DAMGO ([D-Ala(2),N-methyl-Phe(4),Gly-ol(5)]enkephalin), a specific mu-opioid receptor agonist, selectively hyperpolarizes NRM neurons expressing mRNA of glutamate decarboxylase (GAD(67)). Homologous desensitization of mu-opioid receptors in NRM neurons could result in the development of morphine-induced tolerance. G protein-coupled receptor kinase (GRK) is believed to mediate mu-opioid receptor desensitization in vivo. Therefore, we also investigated the involvement of GRK in mediating homologous desensitization of DAMAMGO-induced electrophysiological effects on NRM neurons by using two experimental strategies. First, single-cell RT-PCR assay was used to study the expression of GRK2 and GRK3 mRNAs in individual DAMGO-responsive NRM neurons. Whole-cell recording was also performed with an internal solution containing the synthetic peptide, which corresponds to G(betagamma)-binding domain of GRK and inhibits G(betagamma) activation of GRK. Our results suggest that DAMGO selectively hyperpolarizes NRM GABAergic neurons by opening inwardly rectifying K(+) channels and that GRK2 mediates short-term homologous desensitization of mu-opioid receptors in NRM GABAergic neurons.  相似文献   

17.
Hyperresponsiveness to noxious stimulation (hyperalgesia) is observed with naloxone-precipitated morphine withdrawal in several experimental models, and may be due to changes in central nervous system neurons. Previous studies have demonstrated that certain neurons in the rostral ventromedial medulla (on-cells) discharge just prior to nocifensive withdrawal reflexes and are inhibited by morphine. Because the tail flick latency (TFL) is shorter when on-cells are active, it has been proposed that on-cells facilitate nocifensive reflexes. The present study examined the hypothesis that the hyperalgesia observed following naloxone-precipitated withdrawal from morphine is caused by increased on-cell discharge.

Rats were maintained in a lightly anesthetized state with chloral hydrate. Administration of saline (1.25 cc, i.v.) or morphine sulfate (1.25 mg/kg, i.v.) was followed by naloxone (1.0 mg/kg, i.v.). On- and off-cell activity was continuously recorded and was correlated with TFL and paw withdrawal threshold (PWT). As previously reported, morphine increased off-cell activity, blocked on-cell activity, and suppressed the tail flick and paw withdrawal reflexes. When naloxone was given after morphine, TFL and PWT were reduced to values significantly below baseline (hyperalgesia). Both spontaneous and reflex-related on-cell activity increased to levels greater than the premorphine baseline. Spontaneous off-cell activity decreased abruptly to near zero when morphine was followed by naloxone. Linear regression analysis during the hyperresponsive state revealed a significant correlation between increased on-cell activity and reduced TFL, but not between decreased off-cell activity and TFL.

These findings are consistent with the hypothesis that on-cells facilitate spinal nocifensive reflexes, and that the naloxone-precipitated hyperalgesia is at least in part accounted for by increased on-cell activity. A neural model of opiate dependence, tolerance, and withdrawal is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号