首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Increases in cytosolic free Ca2+ ([Ca2+]cyt) are common to many stress-activated signalling pathways, including the response to saline environments. We have investigated the nature of NaCl-induced [Ca2+]cyt signals in whole Arabidopsis thaliana seedlings using aequorin. We found that NaCl-induced increases in [Ca2+]cyt are heterogeneous and mainly restricted to the root. Both the concentration of NaCl and the composition of the solution bathing the root have profound effects on the magnitude and dynamics of NaCl-induced increases in [Ca2+]cyt. Alteration of external K+ concentration caused changes in the temporal and spatial pattern of [Ca2+]cyt increase, providing evidence for Na+-induced Ca2+ influx across the plasma membrane. The effects of various pharmacological agents on NaCl-induced increases in [Ca2+]cyt indicate that NaCl may induce influx of Ca2+ through both plasma membrane and intracellular Ca2+-permeable channels. Analysis of spatiotemporal [Ca2+]cyt dynamics using photon-counting imaging revealed additional levels of complexity in the [Ca2+]cyt signal that may reflect the oscillatory nature of NaCl-induced changes in single cells.  相似文献   

2.
3.
Abstract: The aim of this study was to elucidate the mechanisms by which retinal cells release endogenous amino acids in response to ascorbate/Fe2+-induced oxidative stress, as compared with chemical hypoxia or ischemia. In the absence of stimulation, oxidative stress increased the release of aspartate, glutamate, taurine, and GABA only when Ca2+ was present. Under hypoxia or ischemia, the release of aspartate, glutamate, glycine, alanine, taurine, and GABA increased mainly by a Ca2+-independent mechanism. The increased release observed in N -methyl- d -glucamine+ medium suggested the reversal of the Na+-dependent amino acid transporters. Upon oxidative stress, the release of aspartate, glutamate, and GABA, occurring through the reversal of the Na+-dependent transporters, was reduced by about 30%, although the release of taurine was enhanced. An increased release of [3H]arachidonic acid and free radicals seems to affect the Na+-dependent transporters for glutamate and GABA in oxidized cells. All cell treatments increased [Ca2+]i (1.5 to twofold), although no differences were observed in membrane depolarization. The energy charge of cells submitted to hypoxia or oxidative stress was not changed. However, ischemia highly potentiated the reduction of the energy charge, as compared with hypoglycemia or hypoxia alone. The present work is important for understanding the mechanisms of amino acid release that occur in vivo upon oxidative stress, hypoxia, or ischemia, frequently associated with the impairment of energy metabolism.  相似文献   

4.
ABSTRACT. We have determined the DNA sequence of the gene encoding the protein of the plasma membrane Ca2+-ATPase in Paramecium tetraurelia . The predicted amino acid sequence of the plasma membrane Ca2+-ATPase shows homology to conserved regions of known plasma membrane Ca2+-ATPases and contains the known binding sites for ATP (FITC), acylphosphate formation, and calmodulin, as well as the "hinge" region: all characteristics common to plasma membrane Ca2+-ATPases. The deduced molecular weight for this sequence is 131 kDa. The elucidation of this gene will assist in the studies of the mechanisms by which this excitable cell removes calcium entering through voltage gated calcium channels and the pump functions in chemosensory signal transduction.  相似文献   

5.
Light-induced stomatal opening in C3 and C4 plants is mediated by two signalling pathways. One pathway is specific for blue light and involves phototropins, while the second pathway depends on photosyntheticaly active radiation (PAR). Here, the role of Nt MPK4 in light-induced stomatal opening was studied, as silencing of this MAP kinase stimulates stomatal opening. Stomata of Nt MPK4-silenced plants do not close in elevated atmospheric CO2, and show a reduced response to PAR. However, stomatal closure can still be induced by abscisic acid. Measurements using multi-barrelled intracellular micro-electrodes showed that CO2 activates plasma membrane anion channels in wild-type Nicotiana tabacum guard cells, but not in Nt MPK4-silenced cells. Anion channels were also activated in wild-type guard cells after switching off PAR. In approximately half of these cells, activation of anion channels was accompanied by an increase in the cytosolic free Ca2+ concentration. The activity of anion channels was higher in cells showing a parallel increase in cytosolic Ca2+ than in those with steady Ca2+ levels. Both the darkness-induced anion channel activation and Ca2+ signals were repressed in Nt MPK4-silenced guard cells. These data show that CO2 and darkness can activate anion channels in a Ca2+-independent manner, but the anion channel activity is enhanced by parallel increases in the cytosolic Ca2+ concentration. Nt MPK4 plays an essential role in CO2- and darkness-induced activation of guard-cell anion channels, through Ca2+-independent as well as Ca2+-dependent signalling pathways.  相似文献   

6.
In neuroendocrine cells, Ca2+ triggers fusion of granules with the plasma membrane and functions at earlier steps by increasing the size of the readily releasable pool of vesicles. The effect of Ca2+ at early steps of secretion may be due to the recruitment at the plasma membrane of granules localized in the cytoplasm. To study the mechanism of granule docking, a new in vitro assay is designed using membrane fractions from mouse pituitary AtT-20 cells. By using this assay, it is found that granule docking to the plasma membrane is controlled by Ca2+ concentrations in the micromolar range, is reversible and requires intact SNAP-25, but not VAMP-2. In the docking assay, addition of Ca2+ induces the formation of a SNAP-25-Synaptotagmin 1 complex. The cytosolic domain C2AB of Synaptotagmin 1 and anti-Synaptotagmin 1 antibodies block granule docking. These results show that Ca2+ modulates dynamic docking of granules to the plasma membrane and that this process is due to a Ca2+-dependent interaction between SNAP-25 and Synaptotagmin 1 .  相似文献   

7.
Abstract: Upon addition of the cardiac glycoside ouabain to cultured cerebellar granule cells, an immediate increase in intracellular free sodium is evoked mediated by two pathways, a voltage-sensitive channel blocked by tetrodotoxin and a channel sensitive to flunarizine. Ouabain induces a steady plasma membrane depolarization in low Ca2+ medium; whereas in the presence of Ca2+, a distinct discontinuity is observed always preceded by a large increase in intracellular free Ca2+ ([Ca2+]c). The plateau component of the increase can be inhibited additively by the L-type Ca2+ channel antagonist nifedipine, the spider toxin Aga-Gl, and the NMDA receptor antagonist MK-801. Single-cell imaging reveals that the [Ca2+]c increase occurs asynchronously in the cell population and is not dependent on a critical level of extracellular glutamate or synaptic transmission between the cells. A prolonged release of glutamate is also observed that is predominantly Ca2+ dependent for the first 6–10 min after the evoked increase in [Ca2+]c. This release is four times as large as that observed with 50 m M KCl and is predominantly exocytotic because release was inhibited by tetanus toxin, the V-type ATPase inhibitor bafilomycin, and Aga-Gl. It is proposed, therefore, that ouabain induces a period of membrane excitability culminating in a sustained exocytosis above that observed upon permanent depolarization with KCl.  相似文献   

8.
Abstract In contrast to the phorbol ester oxidative response, which only develops during dimethyl-sulphoxide (DMSO)-induced differentiation of the human leukemic myeloblast HL-60 cell-line, the endotoxin response was observed in undifferentiated and differentiated cells. The Ca2+ response to endotoxin, detected in both differentiated and undifferentiated HL-60 cells, consisted of a transient 10–50 nM increase in intracellular Ca2+. A very slow, irreversible increase in intracellular Ca2+ was detected at high 1–100 μg/ml endotoxin concentrations, and this effect, and the inositol phosphate response, correlated with the surfactant activities of various endotoxins and Lipid A. Arachidonic acid and sodium arachidonate 1–50 μM stimulated a large 200–500 nM and transient Ca2+ response in undifferentiated HL-60 cells, which was significantly greater than that elicited by 1–50 μM eicosapentaenoic acid, and was not observed at similar concentrations of arachidonic acid methyl ester or myristic acid. These concentrations (1–50 μM) of arachidonic acid were observed to have surfactant activities on the plasma membrane. At lower arachidonic acid concentrations a marked potentiation of both Ca2+ and oxidative responses to the chemotactic peptide fMet-Leu-Phe was detected. It is possible that the arachidonic acid released during phospholipase A2 activation of neutrophils may be involved in cellular cross-talk and, at higher concentrations, in directly activating Ca2+ and superoxide production. It is also possible that previously reported effects of endotoxin at high concentrations are an vitro artefact of surfactant properties of endotoxin.  相似文献   

9.
Studies into the molecules underlying plant signal transduction events continue to reveal the involvement of highly conserved factors such as Ca2+, calmodulin, cyclic GMP and phospholipases in a remarkably diverse array of physiological processes. The hormonal response systems in the aleurone cells of the cereal grain and in the stomatal guard cell are beginning to reveal how diversity of response can be hard wired into these cells despite the use of these common signalling intermediates. In both the aleurone and the guard cell ABA signalling operates through the action of phospholipase D and alterations in a Ca2+-dependent signalling system. The role of phospholipase D is highly analogous in these two divergent cell types, perhaps reflecting the closeness of this enzyme to a conserved ABA receptor. However, specificity in response becomes evident in elements downstream from PLD, such as in the Ca2+ signalling system. For example, ABA has opposite effects on cytoplasmic Ca2+ in the aleurone and guard cell. Combining the Ca2+-dependent signalling activities in networks with parallel regulatory activities such as cyclic GMP appears to underlie the flexible regulatory systems that are the hallmark of plant cell function.  相似文献   

10.
Abstract: In a model recently developed to study the parameters altering vulnerability to oxidative stress, it was shown via image analysis that H2O2-exposed PC12 cells exhibited increased levels of intracellular Ca2+ (baseline), decreases in K+-stimulated Ca2+ levels (peak), and decreased poststimulation Ca2+ clearance (recovery). The present experiments were performed to determine if the response patterns in these parameters to oxidative stress would be altered after modification of membrane lipid composition induced by incubating the PC12 cells with 660 µ M cholesterol (CHL) in the presence or absence of 500 µ M sphingomyelin (SPH) before low (5 µ M ) or high (300 µ M ) H2O2 exposure. Neither CHL nor SPH had synergistic effects with high concentrations of H2O2 on baseline. However, CHL in the presence or absence of SPH reversed the effect of low concentrations of H2O2 on baseline. SPH decreased significantly the cell's ability to clear excess Ca2+ in the presence or absence of H2O2 and increased significantly the level of conjugated dienes (CDs). It is surprising that in the cells pretreated with CHL, the CD levels were not significantly different from controls. However, in the presence of SPH, the effects of CHL on CDs were altered. These results suggest that the ratios of membrane lipids could be of critical importance in determining the vulnerability to oxidative stress and Ca2+ translocation in membranes. This may be of critical importance in aging where there is increased membrane SPH and significant loss of calcium homeostasis.  相似文献   

11.
A low fluence of ultraviolet radiation (UV) causes cultured cells of Rosa damascena Mill cv. Gloire de Guilan to lose intracellular K+. This effect required the presence of Ca2+ in the medium. A reduction in the concentration of free Ca2+ to 10−5 M with ethyleneglycol-bis-(β-aminoethyl-ether)-N.N.N',N'-tetraacetic acid (EGTA) buffer inhibited the UV-stimulated efflux; this was correlated with a discharge of the membrane potential and a stimulation of the leakage of K+ from unirradiated cells. All the same effects were seen with La3+ at 0.2 m M. At 0.02 m M La3+, the UV-stimulated efflux of K+ was blocked without concomitant effects on the membrane potential or K+ efflux from control cells. It is suggested that removal of Ca2+ blocks or masks the UV-induced leakage of K+ by destabilizing the plasma membrane. In addition, La3+ may specifically inhibit the UV-stimulated opening of K+ or anion channels.  相似文献   

12.
We show here that, within 1–2 min of application, systemin triggers a transient increase of cytoplasmic free calcium concentration ([Ca2+]c) in cells from Lycopersicon esculentum mesophyll. The systemin-induced Ca2+ increase was slightly but not significantly reduced by L-type Ca2+ channel blockers (nifedipine, verapamil and diltiazem) and the Ca2+ chelator [ethylene glycol tetraacetic acid (EGTA)], whereas inorganic Ca2+ channel blockers (LaCl3, CdCl2 and GdCl3) and compounds affecting the release of intracellular Ca2+ from the vacuole (ruthenium red, LiCl, neomycin) strongly reduced the systemin-induced [Ca2+]c increase. By contrast, no inhibitory effect was seen with the potassium and chloride channel blockers tested. Unlike systemin, other inducers of proteinase inhibitor (PI) and of wound-induced protein synthesis, such as jasmonic acid (JA) and bestatin, did not trigger an increase of cytoplasmic Ca2+. The systemin-induced elevation of cytoplasmic Ca2+ which might be an early step in the systemin signalling pathway, appears to involve an influx of extracellular Ca2+ simultaneously through several types of Ca2+ permeable channels, and a release of Ca2+ from intracellular stores sensitive to blockers of inositol 1,4,5-triphosphate (IP3)- and cyclic adenasine 5'-diphosphoribose (cADPR)-mediated Ca2+ release.  相似文献   

13.
Suspension-cultured carrot ( Daucus carota L. cv. Kintoki) cells were grown in calcium (Ca2+)-deficient and normal liquid media. Cell growth was limited by the Ca2+ deficiency. Similar amounts of pectic fractions were extracted from the walls of control and Ca2+-deprived cells, but the fractions from the walls of Ca2+-deprived cells showed a substantial decrease in galacturonic acid content. However, after 15 days of culture, Ca2+-deprived cells released galacturonic acid-rich extracellular polysaccharides at twice the rate of control cells. The polysaccharides consisted of a mixture of several polymers containing predominantly arabinose, galactose and galacturonic acid. Ca2+-deprived cells also secreted three times more extracellular proteins, containing many glycan-hydrolytic enzymes, into the medium than did normal cells. SDS-PAGE analysis revealed several distinct changes in the polypeptide pattern in the medium of control and Ca2+-deprived cells. Activities of α -galactosidase, β -glucosidase and exo- polygalacturonase increased considerably during Ca2+ deficiency, whereas α - l -arabinofuranosidase and β -galactosidase activities were much reduced.  相似文献   

14.
Abstract: In the absence of neurotrophic factors, chronic depolarization of plasma membrane has been shown to maintain several populations of primary neurons in culture. We report that in the PC12 cell line, depolarization causes Ca2+ influx through voltage-gated Ca2+ channels, which is able to stimulate extracellular-regulated kinase (ERK) activity. We studied which mediators were responsible for ERK activation resulting from increased levels of Ca2+ in the cytoplasm and found that calmodulin was involved in this process. The addition of W13, a calmodulin inhibitor, to the culture medium, prevented ERK activation when PC12 cells were depolarized. In addition, we show that high K+ treatment did not induce Trk A phosphorylation, thus excluding the possibility of Ca2+ operating through this receptor to activate the ERK signal transduction pathway. Moreover, although high K+ treatment is able to phosphorylate the epidermal growth factor receptor (EGFR) and thus to activate the ERK signal transduction pathway, we demonstrate that W13 did not alter the state of EGFR phosphorylation in conditions that almost completely blocked ERK activation. These data suggest that calmodulin mediates ERK activation induced by increases in intracellular Ca2+ concentration in PC12 cells by a mechanism that seems to be independent of Trk A and EGFR activation.  相似文献   

15.
We recently reported the first molecular genetic evidence that Dictyostelium Ca2+ responses to chemoattractants include a contribution from the endoplasmic reticulum (ER) – responses are enhanced in mutants lacking calreticulin or calnexin, two major Ca2+-binding proteins in the ER, even though the influx of Ca2+ into the mutants is reduced. Compared with wild-type cells, the ER in the mutants contributes at least 30–70 nM additional Ca2+ to the responses. Here we report that this additional ER contribution to the cytosolic Ca2+ signal depends upon extracellular Ca2+– it does not occur in the absence of extracellular Ca2+, increases to a maximum as the extracellular Ca2+ levels rise to 10 μM and then remains constant at extracellular Ca2+ concentrations up to at least 250 μM. These results suggest that Ca2+ influx causes the intracellular release, in the simplest scenario by a mechanism involving Ca2+-induced Ca2+ release from the ER. By way of contrast, we show that Ca2+ responses to mechanical stimulation are reduced, but still occur in the absence of extracellular Ca2+. Unlike the responses to chemoattractants, mechanoresponses thus include contributions from the ER that are independent of extracellular Ca2+.  相似文献   

16.
ABSTRACT. We have demonstrated previously that crystal violet induces a rapid, dose-related collapse of the inner mitochondrial membrane potential of Trypanosoma cruzi epimastigotes. In this work, we show that crystal violet-induced dissipation of the membrane potential was accompanied by an efflux of Ca2+ from the mitochondria. In addition, crystal violet inhibited the ATP-dependent, oligomycin-, and antimycin A-insensitive Ca2+ uptake by digitonin-permeabilired epimastigotes. Crystal violet also induced Ca2+ release from the mitochondria and endoplasmic reticulum of digitonin-permeabilized trypomastigotes. Furthermore, crystal violet inhibited Ca2+ uptake and the (Ca2+-Mg2+)ATPase of a highly enriched plasma membrane fraction of epimastigotes, thus indicating an inhibition of other calcium transport mechanisms of the cells. Disruption of Ca2+ homeostasis by crystal violet may be a key process leading to trypanosome cell injury by this drug.  相似文献   

17.
Abstract: Some reports have suggested that dantrolene interacts directly with the membrane bilayer. We investigated effects of dantrolene on changes in membrane properties induced by compound 48/80 (C48/80), a membrane stimulator. The addition of C48/80 for 1 min elicited a rapid, dose-dependent Ca2+ influx, which was reduced to 14% by the absence of external Ca2+. Dantrolene inhibited the C48/80-induced increase in Ca2+ permeability of plasma membranes in a concentration-dependent manner (0.33–10 µ M , IC50 value was 5 µ M ). We next examined C48/80-induced changes in structural and dynamic membrane properties by electron spin resonance (ESR). The ratio h 0/ h −1 was determined to evaluate membrane fluidity. C48/80 increased the membrane fluidity in a concentration-dependent manner (0.1–0.56 mg/ml). Dantrolene (10 µ M ) itself did not change the membrane fluidity, but it significantly reduced the C48/80-induced increase in membrane fluidity (0.56 mg/ml). Moreover, the C48/80-induced increase in fluidity was dependent on extracellular Ca2+. We conclude that dantrolene protects neuroblastoma cell plasma membrane from C48/80-induced membrane perturbation, which causes Ca2+ influx and an increase in membrane fluidity. These findings strongly suggest that dantrolene directly stabilizes the neuronal plasma membrane.  相似文献   

18.
Abstract. The tonoplasts of internodal cells of Nitellopsis were removed by perfusing the vacuoles with media containing a Ca2 chelator, EGTA. Treatment of tonoplast-free cells with 100 mol m3 NaCl induces a large membrane depolarization, a drastic decrease in the membrane resistance and an increase in Na+ influx. These events are identical to those that occur in intact cells subjected to high NaCl. These responses to NaCl are prevented if 10 mol m3 Ca2+ is supplied together with 100 mol m3 NaCl. The protective effect of Ca2+ is evident only when the intracellular ATP concentration exceeds 0.1 mol m3 and does not occur full when the intracellular ATP is removed. AMP at concentrations greater than 0.5 mol m3 or 0.25 mol m3 AMPPNP can replace ATP. It is concluded that ATP does not act as an energy source nor as a substrate for protein phosphorylation. ATP seems to exert its effects as a coeffector with Ca2+ in regulating the Na+ permeability of the plasma membrane.  相似文献   

19.
Increase in the extracellular Ca2+ concentration from low (≤ 10−7 M) to normal (10−3 M) caused morphological changes of cultured myocardial cells obtained from fetal mouse heart. The extracellular Na+ and K+ concentrations of the normal medium (10−3 M Ca2+) did not significantly affect the genesis of these morphological changes. Like Ca2+, Ba2+ and Sr2+, but not Mg2+, Co2+ or Ni2+, could induce morphological changes. Increase in the extracellular Ca2+ concentration from 10−8 M to 10−3M also caused excess uptake of 45Ca2+ by cultured myocardial cells. B–16CW 1 cells, which did not show these morphological changes, did not take up excess 45Ca2+ on this treatment. Treatments, such as addition of verapamil or incubation at pH 6.3, which reduced the genesis of morphological changes, reduced the rate of 45Ca2+ uptake by myocardial cells. These facts show that the morphological changes of myocardial cells induced by increasing the extracellular Ca2+ concentration from low to normal are due to excess uptake of Ca2+ by the myocardial cells.
The morphological changes of cultured myocardial cells induced by increasing the extracellular Ca2+ concentration from low to normal were reversed on further incubation of the cells in medium with or without Ca2+.  相似文献   

20.
It is well known that the motility of spermatozoa in rainbow trout is suppressed by K+. We showed here that although trout sperm are completely immotile in medium containing 5 mM K+, motility was initiated by the subsequent addition of several mM Ca2+, suggesting that both K+and Ca2+are related to the process of the initiation of sperm motility. It was further found that K+channel blockers tetraethylammonium, nonyltriethylammonium, Ba2+and Cs+, as well as the Ca2+channel blocker verapamil, inhibited the initiation of sperm motility at doses at which these reagents inhibit chnnel-related functions in other cells. However, Na+channel blocker, tetrodotoxin and anion channel blocker 4, 4-diisothiocyatatostilbene-2, 2'-disulfonic acid inhibited the motility only at extremely high doses. These results suggest that transport of K+and Ca2+through ion channels at the plasma membrane of spermatozoa is the first event that triggers the initiation of sperm motility in rainbow trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号