首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
郭绪虎  肖德荣  田昆  余红忠 《生态学报》2013,33(5):1425-1432
选取滇西北高原湿地纳帕海湖滨带优势植物茭草(Zizania caducifolia)、水葱(Scirpus tabernaemontani)和刘氏荸荠(Heleocharis liouana),研究其生物量及其凋落物分解特征,结果表明:水葱、茭草、刘氏荸荠为纳帕海湿地湖滨带单优植物群落,均具有较高的地上生物量,不同植物群落地上生物量不同,其中,茭草地上生物量(853.6±58.2)g·m-2·a-1显著高于水葱(730.7±7.8)g·m-2·a-1与刘氏荸荠(338.9±32.6) g·m-2·a-1的地上生物量.3种植物群落凋落物分解速率不同、并随月平均气温升高均呈增加的趋势,其中,刘氏荸荠分解速率k值最大(0.067±0.0026)、茭草(0.062±0.0072)其次、水葱最小(0.039±0.0062).凋落物经过1年的分解,水葱、茭草和刘氏荸荠凋落物存留率分别为(62.0±8.8)%、(47.5±9.0)%和(44.5±7.9)%.综合3种湖滨带植物地上生物量与凋落物年分解,水葱地上生物量年存留量(453.1±4.9)g·m-2·a-1显著高于茭草(405.4±27.7)g·m-2·a-1和刘氏荸荠(150.9±14.5) g·m-2·a-1.研究进一步表明滇西北高原湿地湖滨带植物具有极高的生物量存留率,成为该类型湿地生态系统碳汇功能的基础,其碳汇过程及其贡献率需要进一步深入研究.  相似文献   

2.
Recent research indicates that many ecosystems, including intertidal marshes, follow the alternative stable states theory. This theory implies that thresholds of environmental factors can mark a limit between two opposing stable ecosystem states, e.g. vegetated marshes and bare mudflats. While elevation relative to mean sea level is considered as the overall threshold condition for colonization of mudflats by vegetation, little is known about the individual driving mechanisms, in particular the impact of waves, and more specifically of wave period. We studied the impact of different wave regimes on plants in a full scale flume experiment. Seedlings and adult shoots of the pioneer Scirpus maritimus were subjected to two wave periods at two water levels. Drag forces acting on, and sediment scouring occurring around the plants were quantified, as these are the two main mechanisms determining plant establishment and survival. Depending on life stage, two distinct survival strategies emerge: seedlings present a stress avoidance strategy by being extremely flexible, thus limiting the drag forces and thereby the risk of breaking. Adult shoots present a stress tolerance strategy by having stiffer stems, which gives them a higher resistance to breaking. These strategies work well under natural, short period wind wave conditions. For long period waves, however, caused e.g. by ships, these survival strategies have a high chance to fail as the flexibility of seedlings and stiffness of adults lead to plant tissue failure and extreme drag forces respectively. This results in both cases in strongly bent plant stems, potentially limiting their survival.  相似文献   

3.
Sweet and biomass sorghum are expected to contribute increasingly to bioenergy production. Better understanding the impacts of the genotypic and environmental variabilities on biomass component traits and their properties is essential to optimize energy yields. This study aimed to evaluate whether traits contributing to stem biomass growth and biochemical composition at different biological scales (co)vary with the genotype and the water status in sorghum. Height genotypes were studied over two years in field conditions in southern France under two water treatments (well watered vs. 25 days’ dry down during stem elongation). Main stem internode number, size, (non)structural carbohydrate, and lignin contents were measured at the end of the stress period and/or at final harvest, together with biochemical and histological analyses of the youngest expanded internode. The tallest genotypes showed the highest stem dry weights and lignin contents. Stem (structural) biomass density was positively correlated with lignin content, particularly in internode parenchyma. Stem soluble sugar and lignin contents were inversely proportional across genotypes and water conditions. Genotypes contrasted for drought sensitivity and recovery capacity of stem growth and biochemical composition. The length and cell wall deposition of internodes expanding under water deficit were reduced and did not recover, these responses being weakly correlated. Genotypic variability was pointed out in the growth recovery of internodes expanding under re‐watered conditions. According to the observed genotypic variability and the absence of antagonistic correlations between the responses of the different traits to water availability, it is suggested that biomass sorghum varieties optimizing their responses to water availability in terms of growth and cell wall deposition can be developed for different bioenergy targets.  相似文献   

4.
Breeding has transformed wild plant species into modern crops, increasing the allocation of their photosynthetic assimilate into grain, fiber, and other products for human use. Despite progress in increasing the harvest index, much of the biomass of crop plants is not utilized. Potential uses for the large amounts of agricultural residues that accumulate are animal fodder or bioenergy, though these may not be economically viable without additional efforts such as targeted breeding or improved processing. We characterized leaf and stem tissue from a diverse set of rice genotypes (varieties) grown in two environments (greenhouse and field) and report bioenergy-related traits across these variables. Among the 16 traits measured, cellulose, hemicelluloses, lignin, ash, total glucose, and glucose yield changed across environments, irrespective of the genotypes. Stem and leaf tissue composition differed for most traits, consistent with their unique functional contributions and suggesting that they are under separate genetic control. Plant variety had the least influence on the measured traits. High glucose yield was associated with high total glucose and hemicelluloses, but low lignin and ash content. Bioenergy yield of greenhouse-grown biomass was higher than field-grown biomass, suggesting that greenhouse studies overestimate bioenergy potential. Nevertheless, glucose yield in the greenhouse predicts glucose yield in the field (ρ?=?0.85, p?<?0.01) and could be used to optimize greenhouse (GH) and field breeding trials. Overall, efforts to improve cell wall composition for bioenergy require consideration of production environment, tissue type, and variety.  相似文献   

5.
Seismic Stress Responses of Soybean to Different Photosynthetic Photon Flux   总被引:1,自引:0,他引:1  
Physical agitation applied as periodic seismic stress (shaking)reduced stem clongation, leaf expansion, and biomass accumulationby vegetative soybeans. Level of photon flux (PPF) influencedthe type and extent of plant response to mechanical stress.Plant parts responded differently as PPF varied between 135and 592 µmol m–2 S–1. Stem length was significantlyreduced by seismic stress at 135 µmol m–2 s–1but this effect was insignificant at higher PPFs. Reduced stemlength resulted from an inhibition of internode elongation.Stem diameter was unaffected by stress at the PPFs tested. Incontrast to effects on stem elongation, leaf area was insensitiveto stress treatments at 135 µmol m–2 S–1 butwas progressively inhibited by stress as PPF increased. Statisticallysignificant reductions in shoot f. wt and d. wt by seismic stressoccurred only at 295 µmol m–2 S–1. Root biomassaccumulation was not affected by seismic stress at any PPF usedin this study. Glycine max (L.) Merr. cv. Century 84, mechanical stress, photosynthetic photon flux, seismic stress, soybean  相似文献   

6.
Abstract. In the Rhône delta, Juncus gerardi and Scirpus maritimus are often the dominant species in abandoned rice fields which are artificially flooded in early spring to improve forage production. Under these conditions they occur either in mixed communities, or form monospecific stands. Monitoring the vegetation dynamics in quadrats located in six abandoned rice fields artificially flooded from November to April confirmed the important role of grazing. In ungrazed plots, communities dominated by Scirpus maritimus mixed with Juncus gerardi developed fast. After 42 months of management Scirpus maritimus had established in nearly all quadrats and continued to expand, whereas Juncus gerardi had started to decline. In grazed plots Juncus gerardi alone dominated and continued to increase in cover up to the 42nd month. Scirpus maritimus established at low densities mainly in quadrats where Juncus gerardi was initially absent. Introduction of seeds of Scirpus maritimus in communities of Juncus gerardi under controlled conditions demonstrated the existence of the phenomenon of preemption. The increase in cover of Juncus gerardi suggests that the preemption of Juncus gerardi over Scirpus maritimus plays a more pronounced role in the field in the presence of grazing.  相似文献   

7.
The biomasses, carbon standing stocks, and exportations of three saltmarsh species – Scirpus maritimus, Spartina maritima and Zostera noltii – were determined and their isotopic composition analyzed to illustrate their role in carbon storage in a temperate Atlantic estuary (Mondego, Portugal). Biomass values were higher in the warmer seasons than in the cold seasons, with carbon contents following the same trend. Carbon content ranged from 27–39% in S. maritimus and S. maritima to 30–39% for Z. noltii. S. maritimus had the highest carbon production in the aboveground organs and had similar results with S. maritima in the belowground carbon production. These three species together occupied about 50% of the salt marsh area and they stored in 21 months of study 24,000 kg of carbon in their aboveground and belowground organs. Z. noltii presented highest carbon concentration in the sediment and S. maritimus the lowest. Stable carbon isotopic analysis showed that apparently, the sedimentary organic matter is composed by a mix of terrestrial sources, macro and microalgae. Regard the high carbon exportation, S. maritima and Z. noltii are constantly accumulating carbon. The studied species have both a sink and source behaviour simultaneously.  相似文献   

8.
Stem CO2 efflux (E S) is an important component of forest ecosystem carbon budgets and net ecosystem CO2 exchange, but little is known about E S in temperate forests in Northeastern China, an area with a large extent of forest. We measured E S along with stem temperature at 1?cm depth (Ts) over a 9?month period in 2007 on ten dominant tree species of secondary forests of the region. Other measurements included the autotrophic component of soil CO2 efflux (E A) and stem diameter at breast height (DBH). Our objectives were to (1) examine the seasonal patterns and species differences in E S, and (2) determine the correlations between E S and Ts, DBH and E A. Mean E S for the measurement period ranged from 1.09 to 1.74?μmol?CO2?m?2?s?1 among the ten species. The sensitivity of E S to Ts (Q 10 ) ranged from 1.87 to 2.61. Across the ten species 57–89% of variation in E S was explained by T S and DBH. There was also a linear relationship between mean E S and E A. E S was better predicted by Ts in the dormant season than the growing season, indicating that additional factors such as growth respiration and internal transport of CO2 in the xylem became more important contributors to E S during the growing season. Stem CO2 efflux increased, and Q 10 decreased, with increasing DBH in all species. Although temperature exerts strong control on the rate of cellular respiration, we conclude that in tree stems in situ, T S, DBH and many other factors affect the relationship between CO2 evolution by respiring cells and the diffusion of CO2 to the stem surface.  相似文献   

9.
Bolboschoenus maritimus (L.) Palla (=Scirpus maritimus L.) forms extensive stands in the littoral zone of small fishponds and as a weed in rice and maize fields. Within the species, two subspecies are distinguished: Bolboschoenus maritimus subsp. maritimus, B. maritimus subsp. compactus. They differ in ecology, especially in their relationships with trophic conditions and salinity of habitats. To determine growth response of these two types to different nutrient levels, we compared their seasonal development under experimental cultivation at four controlled nutrient levels. Some differences between the subspecies were found to be stable, regardless of nutrient level, namely greater amount of smaller underground tubers and more extensive rhizome system in subsp. compactus compared to less numerous larger tubers and simpler rhizome system in subsp. maritimus. In response to trophic conditions,the plants of subsp. compactus were more resistant to the conditions of the highest trophic level than those of subsp. maritimus, which were stressed. This demonstrates better adaptability and spreading ability of B. maritimus subsp. compactus at high trophic levels.  相似文献   

10.
11.
In an ecological field study, plants ofBolboschoenus maritimus (L.)Palla (Scirpus maritimus L. s. l.) growing in oligohaline and in mesohaline soils were compared. Differences between both populations mainly concerning osmotic potential, water potential and ionic concentrations could be related with the salt content at both sites, whereas transpiration and photosynthesis did not differ significantly. Water potential of the cell sap was affected by several external factors.  相似文献   

12.
Release from specialist insect herbivores may allow invasive plants to evolve traits associated with decreased resistance and increased competitive ability. Given that there may be genetic trade-off between resistance and tolerance, invasive plants could also become more tolerant to herbivores. Although it is widely acknowledged that light availability affects tolerance to herbivores, little information is available for whether the effect of light availability on tolerance differ between the introduced and native populations. We conducted a common garden experiment in the introduced range of Alternanthera philoxeroides using ten invasive US and ten native Argentinean populations at two levels of light availability and in the presence or absence of a specialist stem-boring insect Agasicles hygrophila. Plant biomass (total and storage root biomass), two allocation traits (root/shoot ratio and branch intensity, branches biomass/main stem biomass) and two functional traits (specific stem length and specific leaf area), which are potentially associated with herbivore resistance and light capture, were measured. Overall, we found that A. philoxeroides from introduced ranges had comparable biomass and tolerance to specialist herbivores, lower branch intensity, lower specific stem length and specific leaf area. Moreover, introduced populations displayed higher shade tolerance of storage root biomass and lower plastic response to shading in specific stem length. Finally, light availability had no significant effect on evolution of tolerance to specialist herbivores of A. philoxeroides. Our results suggest that post-introduction evolution might have occurred in A. philoxeroides. While light availability did not influence the evolution of tolerance to specialist herbivores, increased shade tolerance and release from specialist insects might have contributed to the successful invasion of A. philoxeroides.  相似文献   

13.
《Aquatic Botany》2010,92(4):267-272
We investigated the effects of different hydrological regimes (wet [flooded at a constant water depth for duration of the study], cycle [reflooded at eight weeks following natural drying], and wet–dry [initially flooded and allowed to naturally dry for duration of the study]) on the competitive ability of Schoenoplectus fluviatilis (Torr.) M. T. Strong with an annual, native wetland plant (Polygonum pensylvanicum L.) and a perennial, wetland plant (Schoenoplectus tabernaemontani [C. C. Gmel.] Palla). To assess competitive response of the plants, we used a greenhouse target-neighbor study with neighbor plants planted at varying densities (0 [control], 1, 10, and 15 plants pot−1). Our results suggest that S. fluviatilis is competitively superior to S. tabernaemontani and P. pensylvanicum. S. tabernaemontani and P. pensylvanicum biomass declined by 90% and 75% in presence of S. fluviatilis, respectively. However, the competitive ability of S. fluviatilis was generally not enhanced by flooding regime. The competitive coefficients of S. fluviatilis were similar among the three hydrological regimes under intraspecific competition and interspecific competition with S. tabernaemontani, but for interspecific competition with P. pensylvanicum, the competitive coefficient for S. fluviatilis was higher for the cycle treatment compared to the wet–dry and dry treatments. Interestingly, S. tabernaemontani was a strong competitor against S. fluviatilis in the wet and cycle treatments, indicating that maintaining longer hydroperiods could be used as a management tool to encourage growth of S. tabernaemontani and reduce encroachment of S. fluviatilis.  相似文献   

14.
Flooding regimes are a primary influence on the wetland plant community. Human-induced disturbance often changes the duration and frequency of flooding in wetlands, and has a marked influence on wetland plant composition and viability. Comprehensive studies of the environmental thresholds of wetland plants are required for the development of proper practices for wetland management and restoration after hydrological disturbance. This study provides a quantitative assessment of the establishment, growth, and community shifts in dominance of three emergent plant species (Scirpus tabernaemontani, Typha orientalis, and Zizania latifolia) typical of South Korean wetlands, under five hydrological regimes (waterlogged, low-level standing water, high-level standing water, intensive periodic flooding, and intermittent flooding) over four growing seasons. A mesocosm experiment was conducted in the campus of Seoul National University, South Korea. The number and biomass of shoots of Z. latifolia responded positively to increased water level and flooding frequency, while that of the other plants did not. Zizania latifolia outcompeted S. tabernaemontani and T. orientalis irrespective of hydrological regime. This study suggests that Z. latifolia can outcompete the other two macrophytes in the field. This study will improve our ability to predict the dynamics of wetland vegetation and so facilitate the formulation of wetland management and restoration strategies.  相似文献   

15.
Scirpus maritimus is widely distributed in the Camarque, South of France. Two dense homogenous stands of this helophyte (P. R.: Petit Riège and B. C.: Baisse des Courlis) were compared throughout the 1978 growing season.  相似文献   

16.
Seasonal growth of Typha latifolia L. stands in five oxbow lakes of the Athabasca River in the boreal forest zone of Alberta, Canada, was monitored by both the harvest technique and double sampling by regression. The technique for calculating mean biomass and variance for the double sampling procedure is described. The relationship between stem weight and height was linear for flowering stems, but a logarithmic transformation of weight was used for the non-flowering stem regressions. Growth began in late May and stems reached maximum weight by mid-August. Stem mortality (up to 14%) was highest at sites with high stem density, but mortality was limited to small stems at all sites. Total biomass of these stems was less than 4% of the peak above-ground standing crop. In nutrient-poor sites, Typha was found on floating organic mats, but in more nutrient rich sites on grounded substrates. Peak above-ground biomass ranged from 456 to 848 g m?2, generally in response to the successional and nutrient status of the oxbow lake. Sites returned to an earlier stage of succession by flooding had larger stems and greater biomass.  相似文献   

17.
Experiments were conducted in an outdoor facility to quantify growth responses of six mangrove species to rates of dissolved inorganic nitrogen and phosphorus supply mimicking the range of N and P mineralization rates in natural soils. Growth of all six species on nitrogen was nonlinear. Stem extension rates of Rhizophora apiculata and Xylocarpus granatum were enhanced to the highest rate of N supply (50 mmol m− 2 d− 1); Bruguiera gymnorrhiza, Avicennia marina, and Xylocarpus moluccensis stem growth leveled off by 10 mmol m− 2 d− 1. Stem growth of Ceriops tagal peaked at 24-26 mmol N m− 2 d− 1. Except for A. marina and C. tagal, rates of biomass increase declined at the highest supply rate, indicating NH4+ toxicity. At different rates of P supply, stem extension rates and rates of biomass increase of R. apiculata and C. tagal best-fit Gaussian curves and B. gymnorrhiza stem growth and biomass increase best-fit sigmoidal and Gaussian curves, respectively; X. moluccensis stem and biomass growth increased linearly, but stem and biomass growth rates of A. marina did not vary in relation to P supply. Stem growth of X. granatum was Gaussian but rates of biomass increase best-fit a quadratic equation. Changes in leaf and root N and P content mirrored the growth responses. As rates of N and P mineralization in natural mangrove soils overlap with the lowest rates of N and P supplied in these experiments, the growth responses imply that mangroves are intrinsically nutrient-limited at mineralization rates often encountered in nature. Such species specificity may have significant implications for recruitment success and the establishment of species gradients within mangrove forests.  相似文献   

18.
The switchgrass variety Alamo has been chosen for genome sequencing, genetic breeding, and genetic engineering by the US Department of Energy Joint Genome Institute (JGI) and the US Department of Energy BioEnergy Science Center. Lignin has been considered as a major obstacle for cellulosic biofuel production from switchgrass biomass. The purpose of this study was to provide baseline information on cell wall development in different parts of developing internodes of tillers of switchgrass cultivar Alamo and evaluate the effect of cell wall properties on biomass saccharification. Cell wall structure, soluble and wall-bound phenolics, and lignin content were analyzed from the top, middle, and bottom parts of internodes at different developmental stages using ultraviolet autofluorescence microscopy, histological staining methods, and high-performance liquid chromatography (HPLC). The examination of different parts of the developing internodes revealed differences in the stem structure during development, in the levels of free and well-bound phenolic compounds and lignin content, and in lignin pathway-related gene expression, indicating that the monolignol biosynthetic pathway in switchgrass is under complex spatial and temporal control. Our data clearly show that there was a strong negative correlation between overall lignin content and biomass saccharification efficiency. The ester-linked p-CA/FA ratio showed a positive correlation with lignin content and a negative correlation with sugar release. Our data provide baseline information to facilitate genetic modification of switchgrass recalcitrance traits for biofuel production.  相似文献   

19.
Stem mechanical strength is an important agricultural quantitative trait that is closely related to lodging resistance in rice, which is known to be reduced by fertilizer with higher levels of nitrogen. To understand the mechanism that regulates stem mechanical strength in response to nitrogen, we analysed stem morphology, anatomy, mechanical properties, cell wall components, and expression of cell wall-related genes, in two varieties of japonica rice, namely, Wuyunjing23 (lodging-resistant variety) and W3668 (lodging-susceptible variety). The results showed that higher nitrogen fertilizer increased the lodging index in both varieties due to a reduction in breaking strength and bending stress, and these changes were larger in W3668. Cellulose content decreased slightly under higher nitrogen fertilizer, whereas lignin content reduced remarkably. Histochemical staining revealed that high nitrogen application decreased lignin deposition in the secondary cell wall of the sclerenchyma cells and vascular bundle cells compared with the low nitrogen treatments, while it did not alter the pattern of cellulose deposition in these cells in both Wuyunjing23 and W3668. In addition, the expression of the genes involved in lignin biosynthesis, OsPAL, OsCoMT, Os4CL3, OsCCR, OsCAD2, OsCAD7, OsCesA4, and OsCesA7, were also down-regulated under higher nitrogen conditions at the early stage of culm growth. These results suggest that the genes involved in lignin biosynthesis are down-regulated by higher nitrogen fertilizer, which causes lignin deficiency in the secondary cell walls and the weakening of mechanical tissue structure. Subsequently, this results in these internodes with reduced mechanical strength and poor lodging resistance.  相似文献   

20.
Bioretention basins are man-made topographic depressions designed to collect and retain surface water runoff. In most cases these basins are used to prevent flooding and/or remove environmentally harmful pollutants and sediments from entering natural aquatic systems. To maximize environmental benefits, these systems are often planted with flood-tolerant wetland hydrophytes that are capable of withstanding extended periods of drought. Unfortunately, little is known about how these plants respond to extreme hydrologies while breaking seasonal dormancy. The purpose of this study was to better understand the morphological and physiological responses of three wetland species (Pontederia cordata L., Saururus cernuus L., and Schoenoplectus tabernaemontani C.C. Gmel. Palla) often used in bioretention basins while emerging from dormancy in either flooded or drought conditions. Results indicate that only S. tabernaemontani was affected morphologically by drought with lower leaf area and aboveground biomass. While significant reductions in stomatal surface indices were also observed in drought-treated S. tabernaemontani, all three species had reductions in stomatal conductance (g) when grown in drier soils. Moreover, drought conditions promoted decreases in leaf water potential (Ψ leaf) for all three species, and reductions in tissue water content (θ) for P. cordata and S. tabernaemontani. Based on the overall morphological and physiological responses, S. cernuus maintained the lowest productivity, and appeared to be the best suited for tolerating sustained soil water deficits. If high plant productivity is desired, however, S. tabernaemontani was able to maintain high plant growth while making necessary modifications that facilitated greater drought-resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号