首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 821 毫秒
1.
The explosive 2,4,6-trinitrotoluene (TNT) is considered a toxic environmental pollutant that contaminates the soil and ground water. The white rot fungus Phanerochaete chrysosporium is well known for the degradation of TNT under ligninolytic condition. Very few, if any, studies have been done using other white rot fungi. In this study four fungal species, namely, P. chrysosporium, Kuehneromyces mutabilis, Hypholoma fasciculare, and Phlebia radiata, were used to investigate TNT degradation. All fungi were grown under ligninolytic (low-nitrogen) and nonligninolytic (high-nitrogen) conditions containing 25 parts per million (ppm) (0.11 mM) of TNT. Analysis by high-performance liquid chromatography (HPLC) showed biotransformation of TNT under both conditions. Complete degradation occurred under ligninolytic conditions (peroxidase enzymes were present) by P. chrysosporium and P. radiata. A nitrite release assay at 6 days indicated the denitrifying abilities of all the tested varieties of white rot fungi. For both ligninolytic and non-ligninolytic conditions, mass-balance studies showed biotransformation of 0.5 μ Ci 14C-labeled TNT with pregrown mycelial pellets of all fungal species, in which 5% to 15% of the TNT was converted to CO2. These studies show that TNT may be degraded by several other species of white rot fungi and provided additional information on the biodegradation of nitroaromatic compounds in the environment.  相似文献   

2.
The ability of Phanerochaete chrysosporium to bioremediate TNT (2,4,6-trinitrotoluene) in a soil containing 12,000 ppm of TNT and the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine; 3,000 ppm) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 300 ppm) was investigated. The fungus did not grow in malt extract broth containing more than 0.02% (wt/vol; 24 ppm of TNT) soil. Pure TNT or explosives extracted from the soil were degraded by P. chrysosporium spore-inoculated cultures at TNT concentrations of up to 20 ppm. Mycelium-inoculated cultures degraded 100 ppm of TNT, but further growth was inhibited above 20 ppm. In malt extract broth, spore-inoculated cultures mineralized 10% of added [14C]TNT (5 ppm) in 27 days at 37 degrees C. No mineralization occurred during [14C]TNT biotransformation by mycelium-inoculated cultures, although the TNT was transformed.  相似文献   

3.
The ability of Phanerochaete chrysosporium to bioremediate TNT (2,4,6-trinitrotoluene) in a soil containing 12,000 ppm of TNT and the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine; 3,000 ppm) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 300 ppm) was investigated. The fungus did not grow in malt extract broth containing more than 0.02% (wt/vol; 24 ppm of TNT) soil. Pure TNT or explosives extracted from the soil were degraded by P. chrysosporium spore-inoculated cultures at TNT concentrations of up to 20 ppm. Mycelium-inoculated cultures degraded 100 ppm of TNT, but further growth was inhibited above 20 ppm. In malt extract broth, spore-inoculated cultures mineralized 10% of added [14C]TNT (5 ppm) in 27 days at 37 degrees C. No mineralization occurred during [14C]TNT biotransformation by mycelium-inoculated cultures, although the TNT was transformed.  相似文献   

4.
Extensive biodegradation of hexahydro-1,3,5 -trinitro-1,3,5 -triazine (RDX) by the white-rot fungus Phanerochaete chrysosporium in liquid and solid matrices was observed. Some degradation in liquid occurred under nonligninolytic conditions, but was approximately 10 times higher under ligninolytic conditions. Moreover, elimination was accounted for almost completely as carbon dioxide. No RDX metabolites were detected. The degradation rates in liquid appeared to be limited to RDX concentration in solution (approximately 80 mg/L), but degradation rates in soil were nonsaturable to 250 mg/kg. Manganese-dependent peroxidase (MnP) and cellobiose dehydrogenase (CDH) from P. chrysosporium, but not lignin peroxidase, were able to degrade RDX. MnP degradation of RDX required addition of manganese, but CDH degraded RDX anaerobically without addition of mediators. Attempts to improve biodegradation by supplementing cultures with micronutrients showed that addition of manganese and oxalate stimulated degradation rates in liquid, sawdust, and sand by the fungus, but not in loam soil. RDX degradation by P. chrysosporium in sawdust and sand was better than observed in liquid. However, degradation in solid matrices by the fungus only began after a lag period of 2 to 3 weeks, during which time extractable metabolites from wood were degraded.  相似文献   

5.
Bioremediation of munitions-contaminated soil requires effective transformation and detoxification of high concentrations of 2,4,6-trinitrotoluene (TNT). Pseudomonas aeruginosa strain MX, isolated from munitions-contaminated soil, aerobically transformed TNT (100 mg/L) in culture medium within 15 h, causing transient accumulation of hydroxylaminodinitrotoluenes (HADNTs). The predominance of 2-hydroxylamino-4,6-dinitrotoluene (2HADNT), as well as 2-amino-4,6-dinitrotoluene (2ADNT) and 4,4' ,6,6' -tetranitro-2,2' -azoxytoluene (2,2'AZT), indicated preferential reduction of the TNT ortho nitro group. While only 12% of the TNT was transformed to 2ADNT, up to 65% was transformed to tetranitroazoxytoluenes (AZTs), which accumulated as a precipitate. The precipitate was formed by microscopic particles adhering to bacterial cells, which subsequently formed clusters containing lysed cells. Toxicity toward bacteria was primarily attributed to 2ADNT, because pure AZTs preincubated with sterile medium had little effect on the strain. While the culture medium containing TNT exhibited toxicity toward corn (Zea mays L.) and witchgrass (Panicum capillare L.), little phytotoxicity was observed after incubating with P. aeruginosa strain MX for 4 d. Strong binding of HADNTs to soil and low AZT bioavailability may further promote the detoxification of TNT in soil.  相似文献   

6.
Soil contaminated with moderate concentrations (0.1 g to a few grams) of several chlorophenol (CP) congeners can be remediated by a combination of alkaline extraction and mineralization of the extracted CP in a bioreactor. This method could substitute energy-demanding thermal treatment or space-requiring composting of moderately CP-contaminated soils. 2,6-dichlorophenol (2,6-DCP) served as a model compound to study the alkaline extraction of a loamy sand soil, followed by a biological treatment of the extract. Alkaline extraction is shown to be applicable to different types of soil and a wide range of chlorophenol concentrations. Soil washing was optimal with 10 mM NaOH (pH 12). The procedure yielded 2,6-DCP comparable to amounts obtained by Soxhlet- or ethanol-extraction. With the model soil used in this study, three subsequent extraction steps led to 97% removal of the initially spiked 6.17 mmol 2,6-DCP × kg-1 soil (=1 g/kg), thus reaching the remediation goal of ≤ 0.2 mmol/kg remaining contaminant concentration. The resulting aqueous extract contained up to 6.8 mM 2,6-DCP and was treated in an aerobic fixed-bed bioreactor. The extraction medium was fed into a recirculation loop in order to dilute the pollutant to concentrations tolerated by the mixed bacterial culture in the reactor. 2,6-DCP was degraded to below the quantification limit (1.8 μiM), and significant detoxification was reached at volumetric loading rates up to 2.1 g/L-d.  相似文献   

7.
以刺芹侧耳菌丝球为受体,潮霉素(Hyg)为筛选标记,应用农杆菌介导法对刺芹侧耳菌丝进行了遗传转化研究。潮霉素敏感性测试结果表明,刺芹侧耳Hyg耐受浓度为50mg/L。农杆菌介导的刺芹侧耳菌丝最佳遗传转化体系为:菌液浓度OD600=0.6-0.7,侵染时间30-35min,共培养时间2d,侵染液和共培养培养基中乙酰丁香酮(AS)浓度为1mg/mL;经潮霉素抗性筛选、PCR鉴定和GUS活性的组织化学分析,表明外源基因GUS已转入到刺芹侧耳菌丝中,并获得表达。本实验成功地建立了稳定的农杆菌介导的刺芹侧耳遗传转化体系。  相似文献   

8.
White-rot fungi are known to degrade a wide range of xenobiotic environmental pollutants, including the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT). TNT is first reduced by the fungal mycelium to aminodinitrotoluenes and diaminonitrotoluenes. In a second phase, reduced TNT metabolites are oxidatively transformed and mineralized. The extracellular oxidative enzyme of the ligninolytic system of these fungi includes the lignin peroxidases (LiP) and the manganese-dependent peroxidases (MnP). In the present study, we have shown that a cell-free enzymatic system containing fast protein liquid chromatography (FPLC)-purified LiP (H8) from the white-rot fungus Phanerochaete chrysosporium was able to completely transform 50 mg/L of 2,4-diamino-6-nitrotoluene (2,4-DA-6-NT) and 2-amino-4,6-dinitrotoluene (2-A-4,6-DNT) in 1 and 48 h, respectively. Veratryl alcohol (VA), often described as a mediator in the LiP-catalyzed oxidative depolymerization of lignin, was not required for the enzymatic transformation of 2,4-DA-6-NT or 2-A-4,6-DNT. 2,4-DA-6-NT was also shown to be a competitive inhibitor of the LiP activity measured through the oxidation of VA. Experiments using 14C-U-ring labeled compounds showed that 2-A-4,6-DNT was converted to 2,2'-azoxy-4,4' ,6,6'-tetranitrotoluene. No significant mineralization, measured by the release of 14CO2, was observed over 5 d.  相似文献   

9.
Fungal enzyme preparations from Phanerochaete chrysosporium, Aspergillus oryzae, Aspergillus giganteus and Trichoderma virens, produced by solid-state fermentation (SSF) on cotton seed-coat fragment waste as substrate and enzyme inducer were investigated in biopreparation of cotton fabric. Cotton seed-coat fragment is rich in lignin, cellulose and hemicelluloses, therefore enzyme complexes produced by target fungi on such a substrate can be used effectively to degrade impurities in cotton fabrics during biopreparation. Activities of extracellular hydrolytic and ligninolytic enzymes were determined from the SSF extract materials. The potential of the hydrolytic and accompanying oxidative enzymes in the whole SSF cultures was exploited in degradation of seed-coat fragments and other coloring materials of greige cotton fabric. Enzyme assays indicated that many extracellular enzymes have been produced under these conditions including both hydrolytic and oxidative enzymes. A. oryzae NRRL 3485 produced significantly higher amounts of both hydrolytic and oxidative enzymes than other tested fungi. Best results in removal of seed-coat fragments from cotton fabric were obtained by P. chrysosporium NCAIM (=ATCC 34541), P. chrysosporium VKM F-1767 and A. oryzae NRRL 3485 SSF enzyme complexes.  相似文献   

10.
Heart rate, locomotor activity, and oxygen consumption were recorded simultaneously and continuously in seven individuals of the noble crayfish Astacus astacus (Linneus 1758) and seven individuals of the signal crayfish Pacifastacus leniusculus (Dana 1852). The recordings were made in the laboratory over 7 days at 15°C under a 12 : 12 h dark : light regime. Circadian rhythms in heart rate, locomotor activity and oxygen consumption were found both in A. astacus and P. leniusculus. Increased heart rate, locomotor activity, and oxygen consumption levels during night time in both A. astacus and P. leniusculus illustrated expression of nocturnal behaviour. No differences in oxygen consumption levels were observed between A. astacus and P. leniusculus. Also, no significant difference between heart rate levels or heart rate variances was found in A. astacus and P. leniusculus at night. During day, however, heart rate levels, heart rate variances and locomotor activity were higher in P. leniusculus than in A. astacus. The higher activity level in P. leniusculus than in A. astacus during daytime indicates that P. leniusculus is less strictly nocturnal than is A. astacus.  相似文献   

11.
采用甲醇、乙酸乙酯和水分别按液土比3∶1、6∶1和9∶1对三七连作土壤进行浸提,研究其浸提液对三七根腐病菌生长和种群数量的影响。结果表明: 平板培养72 h后,甲醇、乙酸乙酯和水浸提液对尖镰孢菌和腐皮镰孢菌的菌丝生长均表现为化感促进,其中,甲醇和乙酸乙酯浸提液对尖镰孢菌的化感效应指数为14.0%~19.8%和16.2%~20.2%,高于水浸提液的8.9%~14.2%,且不同浸提比例之间差异不显著;而甲醇浸提液对链格孢菌菌丝生长表现为化感抑制,且抑制效应在浸提比例为3∶1时最强,达到-33.2%~-38.5%,乙酸乙酯和水浸提液对链格孢菌菌丝生长无显著影响。土壤培养4周后,甲醇、乙酸乙酯和水浸提液均能增加土壤中尖镰孢菌的数量,其中,水浸提液的增加效应最强,达到每克干土3.49×106~9.56×106拷贝数,高于甲醇(每克干土1.68×104~6.73×104拷贝数)和乙酸乙酯浸提液(每克干土1.77×104~3.72×104拷贝数),且这种增加效应随浸提比例的增加逐渐减弱;水浸提液和低浸提比例的甲醇提取液均能增加土壤中腐皮镰孢菌的数量,而重茬土壤浸提液对链格孢菌的数量影响不显著。因此,三七连作土壤浸提液对根腐病菌如尖镰孢菌和腐皮镰孢菌均表现出明显的化感促进效应,这可能是再植三七易发生根腐病等土传病害的原因之一。  相似文献   

12.
Manganese peroxidases (MnP) from Phanerochaete chrysosporium and Bjerkandera sp. BOS55 were immobilised in glutaraldehyde–agarose gels. Four different strategies were considered concerning the activation of the support (low or high density) and the ionic strength (low or high). In terms of immobilisation rate and yield, better results were obtained when low ionic strength conditions and high density activated support (75 μEq/ml) were used. Immobilisation proceeds initially with an ionic adsorption which facilitates the further covalent attachment of the enzyme to the support. An almost complete immobilisation has been attained in a very short period (0.5–2 h). Immobilisation maintained a high percentage of MnP activity for long periods of time (activity levels of 50–60% after more than 1 year at room temperature storage). Other desirable effects such as increased thermostability at 50–60 °C for MnP from Bjerkandera and higher resistance to high H2O2 concentrations for MnP for P. chrysosporium were also obtained. This latter is quite an interesting feature because it avoids the inactivation of the enzyme in the presence of an unbalanced concentration of H2O2. The improved characteristics of the immobilised MnP make its application in several fields such as the enzymatic oxidation of hardly degradable compounds more feasible.  相似文献   

13.
Solid-state culture of the white-rot fungus Phanerochaete chrysosporium BKMF-1767 (ATCC 24725) has been carried out, using an inert support, polystyrene foam. Suitable medium and culture conditions have been chosen to favor the secretion of manganese peroxidase (MnP). The enzyme was isolated and purified from immobilized P. chrysosporium and partially characterized. Partial protein precipitation in crude enzyme was affected using ammonium sulphate, polyethylene glycol, methanol, and ethanol methods. Fractionation of MnP was performed by DEAE-Sepharose ion exchange chromatography followed by Ultragel AcA 54 gel filtration chromatography. This purification attained 23.08% activity yield with a purification factor of 5.8. According to data on gel filtration chromatography and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), the molecular weight of the enzyme was 45 000±1000 Da. The optimum pH and temperature of purified MnP were 4.5 and 30 °C, respectively. This enzyme was stable in the pH range 4.5–6.0, at 25 °C and also up to 35 °C at pH 4.5 for 1 h incubation period. MnP activity was inhibited by 2 mM NaN3, ascorbic acid, β-mercaptoethanol and dithreitol. The Km values of MnP for hydrogen peroxide and 2.6-dimetoxyphenol were 71.4 and 28.57 μM at pH 4.5, respectively. The effects of possible inhibitors and activators of enzyme activity were investigated.  相似文献   

14.
Piper nigrum finds an extensive application in antibacterial preparations belonging to Ayurvedic system of medicine. A bioguided extraction and fractionation of the petroleum ether extract of the berries of P. nigrum afforded 2E, 4E, 8Z-N-isobutyleicosatrienamide (1), pellitorine (2), trachyone (3), pergumidiene (4) and isopiperolein B (5). Pergumidiene and trachyone are isolated for the first time from P. nigrum. All the isolated compounds were active against Bacillus subtilis, Bacillus sphaericus, and Staphylococcus aureus amongst Gram +ve bacteria, and Klebsiella aerogenes and Chromobacterium violaceum among Gram –ve bacterial strains.  相似文献   

15.
Enhanced microbial activity and xenobiotic transformations take place in the rhizosphere. Degradation and binding of 2,4,6-trinitrotoluene (TNT) were determined in two rhizosphere soils (RS) and compared to respective unplanted control soils (CS). The rhizosphere soils were obtained after growing corn for 70 d in soils containing 2.8% (Soil A) or 5.9% (Soil B) organic matter. Aerobically agitated soil slurries (3:1, solution/soil) were prepared from RS and CS and amended with 75 mg TNT L-1 (14C-labeled). TNT degraded more rapidly and formed more un-extractable bound residue in RS than in CS. In Soil A, total extractable TNT decreased from 225 to 1.0 mg kg-1 in RS, whereas 11 mg kg-1 remained in CS after 15 d. Unextractable bound 14C residues accounted for 40% of the added 14C-TNT in RS and 28% in CS. The smaller differences in Soil B were attributed partially to the higher organic matter content. The predominant TNT degradation products were monoaminodinitrotoluenes (ADNT), which accumulated and disappeared more rapidly in RS than in CS, and hydroxylaminodinitrotoluenes (HADNT). When sterilized by γ-irradiation, no significant differences between RS and CS were observed in TNT loss or bound residue formation. More rapid TNT degradation and enhanced bound residue formation in the unsterilized RS was attributed to micro-bial-facilitated production and transformation of HADNT and ADNT, which are potential precursors to bound residue formation. If plants can be established on TNT-contaminated soil, these results indicate that the rhizosphere can accelerate reductive transformation of TNT and promote bound residue formation.  相似文献   

16.
Ergosterol content was determined in 20 white-rot fungi isolates and the values ranged from 2380 to 13 060 μg g−1 fungal biomass. Significant changes of ergosterol content according the physiological stage for Bjerkandera adusta 4312 and Coriolopsis gallica 8260 were found, showing the highest values during the stationary phase. However, in the case of Phanerochaete chrysosporium 3642, no changes were detected during growth. The effect of pollutants, such as heavy metals and fungicides, on the ergosterol content of C. gallica was determined. Heavy metals (Cu 80 ppm, Zn 50 ppm or Cd 10 ppm) and fungicides (thiram 3 ppm or pentachlorophenol 1.5 ppm) at concentrations that reduce the metabolic activity between 18% and 53% (pollutant-stressed cultures) did not affect the ergosterol content. Only the fungicide zineb (25 ppm) reduced significantly the ergosterol content in biomass basis. In soil experiments with Cu (80 ppm) or thiram (10 ppm) after 15 and 30 days of incubation, the ergosterol content in soil was linearly correlated to the fungal biomass C in both polluted and control soil cultures. The ergosterol content was independent of the presence or the absence of pollutants. Thus, these results indicate that ergosterol can be a useful indicator for fungal biomass in polluted soils, and can be applied for monitoring bioremediation processes.  相似文献   

17.
Strains of Pseudomonas fluorescens were investigated for biocontrol efficacy against tomato spotted wilt virus (TSWV) in tomato both alone and in mixtures. P. fluorescens strains applied to seed, soil and foliage or as a seedling dip significantly reduced TSWV, with a concomitant increase in growth promotion in both the glasshouse and field. Two native strains (CoP-1 and CoT-1) and one foreign strain (CHAO) reduced TSWV. In P. fluorescens-treated tomato plants, increased activity of polyphenol oxidase, β-1,3-glucanase and chitinase was observed, and induction of chitinase was confirmed by western blot analysis. Induction of new protein (18 kDa) detected by SDS-PAGE in P. fluorescens-treated tomato plants was not found in healthy and P. fluorescens-untreated virus inoculated control plants. Indirect ELISA clearly showed a reduction in viral antigen concentration in P. fluorescens-treated tomato plants corresponding to reduced disease ratings. All the P. fluorescens-treated tomato plants also showed enhanced growth and yield compared to control plants. Hence, plant growth promoting rhizobacteria (PGPR) could play a major role in reducing TSWV and increasing yield in tomato plants.  相似文献   

18.
Five indigenous fungal strains with characteristics of the genus Penicillium capable of degrading and utilizing pyrene, as sole carbon source were isolated from soil of a former gas work site. Two strains were identified as Penicillium ochrochloron. One of the strains was able to degrade a maximum of 75% of 50 mg l−1 pyrene at 22 °C during 28 days of incubation. The presence of pyrene in the medium resulted in an aggregation of hyphae into pellets by the two Penicillium ochrochloron strains. Formation of pellets was observed after 48 h of incubation with difference in size and texture between the two strains. This indicated the individual variation within the same genus of fungi. However, remaining strains did not show this behavior even though they were capable of utilizing pyrene as sole carbon source. The macro- and microscopic morphology of fungal pellets was studied using scanning electron microscopy. It was found that the addition of varying concentration of pyrene ranging from 10 to 50 mg l−1 in the medium influenced shape and structure of the mycelial pellets. A two-fold increase in hyphal branching (with concomitant decrease in the average hyphal growth unit) was observed at a concentration of 10 mg l−1. The relevance of fungal growth and morphology for bioremediation of polycyclic aromatic hydrocarbons (PAHs) contaminated sites are discussed.  相似文献   

19.
A polyethylene terephthalate (PET) model substrate, bis-(benzoyloxyethyl)terephthalate (3PET), was used to screen for micro-organisms producing enzymes hydrolyzing PET. From this screen, a strain growing on 3PET was isolated and identified as Penicillium citrinum. The polyesterase responsible for 3PET and PET hydrolysis was purified to electrophoretic homogeneity. The polyesterase had a molecular weight of 14.1 kDa, and the Km and Kcat values on 4-nitrophenyl butyrate were 0.57 mM and 0.21 s-1, respectively. Highest enzyme activities were obtained when P. citrinum was grown on a medium containing cutin, which was hydrolyzed by the polyesterase. Surface hydrolysis of PET with the enzyme lead to an increase in hydrophilicity based on rising height (+5.1 cm) and drop dissipation measurements (55 s). Both from PET and 3PET bis-(2-hydroxyethyl)terephthalate and mono-(2-hydroxyethyl)terephthalate were released, while only low amounts of terephthalic acid were liberated.  相似文献   

20.
Bioaugmentation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil was investigated using a mixed bacterial culture (community five) isolated from an abandoned industrial site. Community five was inoculated into contaminated soil containing a total PAH (two- to five-ring compounds) concentration of approximately 820 mg/kg soil. PAH degradation by the indigenous microbial population was restricted to the lower molecular weight compounds (naphthalene, acenaphthene, fluorene and phenanthrene) even with yeast extract addition: these compounds decreased by 14 to 37%, in soil hydrated to 50% water capacity, following 91 days of incubation at 24°C. Inoculation of community five into this PAH-contaminated soil resulted in significant decreases in the concentration of all PAHs over the incubation period: greater than 86% of naphthalene, acenaphthene, fluorene, and phenanthrene were degraded after 91 days, while anthracene, fluoranthene, and pyrene were degraded to lesser extents (51.7 to 57.6%). A lag period of 48 to 63 days was observed before the onset of benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene removal. However, significant decreases in the concentration of these compounds (32.6, 25.2, and 18.5%, respectively) were observed after 91 days. No significant decrease in the mutagenic potential of organic soil extracts (as measured by the Ames Test) was observed after incubation of the soil with the indigenous microflora; however, the Microtox toxicity of aqueous soil extracts was reduced sevenfold. In contrast, extracts from contaminated soil inoculated with community five underwent a 43% decrease in mutagenic potential and the toxicity was reduced 170-fold after 91 days incubation. These observations suggest that community five could be utilised for the detoxification of PAH-contaminated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号