首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Lantibiotics are small peptide antibiotics that contain the characteristic thioether amino acids lanthionine and methyllanthionine. As ribosomally synthesized peptides, lantibiotics possess biosynthetic gene clusters which contain the structural gene (lanA) as well as the other genes which are involved in lantibiotic modification (lanM, lanB, lanC, lanP), regulation (lanR, lanK), export (lanT(P)) and immunity (lanEFG). The lantibiotic mersacidin is produced by Bacillus sp. HIL Y-85,54728, which is not naturally competent.

Methodology/Principal Findings

The aim of these studies was to test if the production of mersacidin could be transferred to a naturally competent Bacillus strain employing genomic DNA of the producer strain. Bacillus amyloliquefaciens FZB42 was chosen for these experiments because it already harbors the mersacidin immunity genes. After transfer of the biosynthetic part of the gene cluster by competence transformation, production of active mersacidin was obtained from a plasmid in trans. Furthermore, comparison of several DNA sequences and biochemical testing of B. amyloliquefaciens FZB42 and B. sp. HIL Y-85,54728 showed that the producer strain of mersacidin is a member of the species B. amyloliquefaciens.

Conclusions/Significance

The lantibiotic mersacidin can be produced in B. amyloliquefaciens FZB42, which is closely related to the wild type producer strain of mersacidin. The new mersacidin producer strain enables us to use the full potential of the biosynthetic gene cluster for genetic manipulation and downstream modification approaches.  相似文献   

3.
4.
Bacillus amyloliquefaciens FZB42 has been shown to stimulate plant growth and to suppress the growth of plant pathogenic organisms including nematodes. However, the mechanism underlying its effect against nematodes remains unknown. In this study, we screened a random mutant library of B. amyloliquefaciens FZB42 generated by the mariner transposon TnYLB-1 and identified a mutant strain F5 with attenuated nematicidal activity. Reversible polymerase chain reaction revealed that three candidate genes RAMB_007470, yhdY, and prkA that were disrupted by the transposon in strain F5 potentially contributed to its decreased nematicidal activity. Bioassay of mutants impaired in the three candidate genes demonstrated that directed deletion of gene RBAM_007470 resulted in loss of nematicidal activity comparable with that of the F5 triple mutant. RBAM_007470 has been reported as being involved in biosynthesis of plantazolicin, a thiazole/oxazole-modified microcin with hitherto unknown function. Electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) analyses of surface extracts revealed that plantazolicin bearing a molecular weight of 1,354 Da was present in wild-type B. amyloliquefaciens FZB42, but absent in the ΔRABM_007470 mutant. Furthermore, bioassay of the organic extract containing plantazolicin also showed a moderate nematicidal activity. We conclude that a novel gene RBAM_007470 and its related metabolite are involved in the antagonistic effect exerted by B. amyloliquefaciens FZB42 against nematodes.  相似文献   

5.
In greenhouse and field trials, a bacterial mixture of Collimonas arenae Cal35 and Bacillus velezensis FZB42, but not Cal35 alone or FZB42 alone, was able to protect tomato plants from challenge with the soilborne fungal pathogen Fusarium oxysporum f.sp. lycopersici (Fol). To identify genes and mechanisms underlying this property in Cal35, we screened a random transposon insertion library for loss of function and identified two mutants that were impaired completely or partially in their ability to halt the growth of a wide range of fungal species. In mutant 46A06, the transposon insertion was located in a biosynthetic gene cluster that was predicted to code for a hybrid polyketide synthase–non-ribosomal peptide synthetase, while mutant 60C09 was impacted in a gene cluster for the synthesis and secretion of sugar repeat units. Our data are consistent with a model in which both gene clusters are necessary for the production of an antifungal compound we refer to as carenaemins. We also show that the ability to produce carenaemin contributed significantly to the observed synergy between Cal35 and FZB42 in protecting tomato plants from Fol. We discuss the potential for supplementing Bacillus-based biocontrol products with Collimonas bacteria to boost efficacy of such products.  相似文献   

6.
The complete genome sequence of Bacillus amyloliquefaciens type strain DSM7T is presented. A comparative analysis between the genome sequences of the plant associated strain FZB42 (Chen et al., 2007) with the genome of B. amyloliquefaciens DSM7T revealed obvious differences in the variable part of the genomes, whilst the core genomes were found to be very similar. The strains FZB42 and DSM7T have in common 3345 genes (CDS) in their core genomes; whilst 547 and 344 CDS were found to be unique in DSM7T and FZB42, respectively. The core genome shared by both strains exhibited 97.89% identity on amino acid level. The number of genes representing the core genome of the strains FZB42, DSM7T, and Bacillus subtilis DSM10T was calculated as being 3098 and their identity was 92.25%. The 3,980,199 bp genome of DSM7T contains numerous genomic islands (GI) detected by different methods. Many of them were located in vicinity of tRNA, glnA, and glmS gene copies. In contrast to FZB42, but similar to B. subtilis DSM10T, the GI were enriched in prophage sequences and often harbored transposases, integrases and recombinases. Compared to FZB42, B. amyloliquefaciens DSM7T possessed a reduced potential to non-ribosomally synthesize secondary metabolites with antibacterial and/or antifungal action. B. amyloliquefaciens DSM7T did not produce the polyketides difficidin and macrolactin and was impaired in its ability to produce lipopeptides other than surfactin. Differences established within the variable part of the genomes, justify our proposal to discriminate the plant-associated ecotype represented by FZB42 from the group of type strain related B. amyloliquefaciens soil bacteria.  相似文献   

7.
8.
9.
The environmental strain Bacillus amyloliquefaciens FZB42 promotes plant growth and suppresses plant pathogenic organisms present in the rhizosphere. We sampled sequenced the genome of FZB42 and identified 2,947 genes with >50% identity on the amino acid level to the corresponding genes of Bacillus subtilis 168. Six large gene clusters encoding nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) occupied 7.5% of the whole genome. Two of the PKS and one of the NRPS encoding gene clusters were unique insertions in the FZB42 genome and are not present in B. subtilis 168. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis revealed expression of the antibiotic lipopeptide products surfactin, fengycin, and bacillomycin D. The fengycin (fen) and the surfactin (srf) operons were organized and located as in B. subtilis 168. A large 37.2-kb antibiotic DNA island containing the bmy gene cluster was attributed to the biosynthesis of bacillomycin D. The bmy island was found inserted close to the fen operon. The responsibility of the bmy, fen, and srf gene clusters for the production of the corresponding secondary metabolites was demonstrated by cassette mutagenesis, which led to the loss of the ability to produce these peptides. Although these single mutants still largely retained their ability to control fungal spread, a double mutant lacking both bacillomycin D and fengycin was heavily impaired in its ability to inhibit growth of phytopathogenic fungi, suggesting that both lipopeptides act in a synergistic manner.  相似文献   

10.
11.
Harmful algal blooms, caused by massive and exceptional overgrowth of microalgae and cyanobacteria, are a serious environmental problem worldwide. In the present study, we looked for Bacillus strains with sufficiently strong anticyanobacterial activity to be used as biocontrol agents. Among 24 strains, Bacillus amyloliquefaciens FZB42 showed the strongest bactericidal activity against Microcystis aeruginosa, with a kill rate of 98.78%. The synthesis of the anticyanobacterial substance did not depend on Sfp, an enzyme that catalyzes a necessary processing step in the nonribosomal synthesis of lipopeptides and polyketides, but was associated with the aro gene cluster that is involved in the synthesis of the sfp-independent antibiotic bacilysin. Disruption of bacB, the gene in the cluster responsible for synthesizing bacilysin, or supplementation with the antagonist N-acetylglucosamine abolished the inhibitory effect, but this was restored when bacilysin synthesis was complemented. Bacilysin caused apparent changes in the algal cell wall and cell organelle membranes, and this resulted in cell lysis. Meanwhile, there was downregulated expression of glmS, psbA1, mcyB, and ftsZ—genes involved in peptidoglycan synthesis, photosynthesis, microcystin synthesis, and cell division, respectively. In addition, bacilysin suppressed the growth of other harmful algal species. In summary, bacilysin produced by B. amyloliquefaciens FZB42 has anticyanobacterial activity and thus could be developed as a biocontrol agent to mitigate the effects of harmful algal blooms.  相似文献   

12.
13.
14.
The colonization of three types of different plants, Zea mays, Arabidopsis thaliana, and Lemna minor, by GFP-labeled Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 was studied in gnotobiotic systems using confocal laser scanning microscopy and electron microscopy. It was demonstrated that FZB42 was able to colonize all the plants. On one hand, similar to some Gram-negative rhizobacteria like Pseudomonas, FZB42 favored the areas such as the concavities in root surfaces and the junctions where lateral roots occurred from the primary roots; on the other hand, we clearly demonstrated that root hairs were a popular habitat to the Gram-positive rhizobacterium. FZB42 exhibited a specific colonization pattern on each of the three types of plants. On Arabidopsis, tips of primary roots were favored by FZB42 but not so on maize. On Lemna, FZB42 accumulated preferably along the grooves between epidermal cells of roots and in the concave spaces on ventral sides of fronds. The results suggested L. minor to be a promising tool for investigations on plant-microbial interaction due to a series of advantages it has. Colonization of maize and Arabidopsis roots by FZB42 was also studied in the soil system. Comparatively, higher amount of FZB42 inoculum (∼108 CFU/ml) was required for detectable root colonization in the soil system, where the preference of FZB42 cells to root hairs were also observed.  相似文献   

15.
16.
17.
Beneficial microorganisms (also known as biopesticides) are considered to be one of the most promising methods for more rational and safe crop management practices. We used Bacillus strains EU07, QST713 and FZB24, and investigated their inhibitory effect on Fusarium. Bacterial cell cultures, cell-free supernatants and volatiles displayed varying degrees of suppressive effect. Proteomic analysis of secreted proteins from EU07 and FZB24 revealed the presence of lytic enzymes, cellulases, proteases, 1,4-β-glucanase and hydrolases, all of which contribute to degradation of the pathogen cell wall. Further proteomic investigations showed that proteins involved in metabolism, protein folding, protein degradation, translation, recognition and signal transduction cascade play an important role in the control of Fusarium oxysporum. Our findings provide new knowledge on the mechanism of action of Bacillus species and insight into biocontrol mechanisms.  相似文献   

18.
The genes of collagen-like proteins (CLPs) have been identified in a broad range of bacteria, including some human pathogens. They are important for biofilm formation and bacterial adhesion to host cells in some human pathogenic bacteria, including several Bacillus spp. strains. Interestingly, some bacterial CLP-encoding genes (clps) have also been found in non-human pathogenic strains such as B. cereus and B. amyloliquefaciens, which are types of plant-growth promoting rhizobacteria (PGPR). In this study, we investigated a putative cluster of clps in B. amyloliquefaciens strain FZB42 and a collagen-related structural motif containing glycine-X-threonine repeats was found in the genes RBAM_007740, RBAM_007750, RBAM_007760, and RBAM_007770. Interestingly, biofilm formation was disrupted when these genes were inactivated separately. Scanning electron microscopy and hydrophobicity value detection were used to assess the bacterial cell shape morphology and cell surface architecture of clps mutant cells. The results showed that the CLPs appeared to have roles in bacterial autoaggregation, as well as adherence to the surface of abiotic materials and the roots of Arabidopsis thaliana. Thus, we suggest that the CLPs located in the outer layer of the bacterial cell (including the cell wall, outer membrane, flagella, or other associated structures) play important roles in biofilm formation and bacteria-plant interactions. This is the first study to analyze the function of a collagen-like motif-containing protein in a PGPR bacterium. Knocking out each clp gene produced distinctive morphological phenotypes, which demonstrated that each product may play specific roles in biofilm formation. Our in silico analysis suggested that these four tandemly ranked genes might not belong to an operon, but further studies are required at the molecular level to test this hypothesis. These results provide insights into the functions of clps during interactions between bacteria and plants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号