首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 702 毫秒
1.
Summary The ultrastructure of the unconstricted superficial epigastric and femoral arteries is described in normal rats and in animals with hypertension induced by unilateral nephrectomy, by subcutaneous injections of desoxycorticosterone acetate and drinking of 1% NaCl. The femoral artery showed by far the greater response to the DOCA-saline treatment. In both vessels, the smooth-muscle cells changed from the normal spindle shape to a blunt ended outline with numerous pinocytotic vesicles and prolific collagen production. With long term hypertension, particularly in the femoral artery, the smooth-muscle cell profiles became very irregular. Hypertrophy of the organelles of the smooth-muscle cells was associated with an increase in the intercellular material which gradually changed from a mainly collagenous character to mainly vesicular. Lysosomal activity indicated cell disintegration. White blood cells adhere to the endothelium in hypertensive rats and there was an increase in subendothelial material. The number of intimal smooth-muscle cells increased noticeably in the femoral artery. In both arteries, the adventitial fibroblasts hypertrophied in hypertensive rats. In animals with an elevated blood pressure the morphological response was observed as early as 4 to 7 days after initiation of treatment.This work was supported by grants from the British Columbia Heart Foundation and the Medical Research Council of Canada.The authors are indebted to Miyoshi Nakashima for her invaluable assistance with these experiments.  相似文献   

2.
The effects of denervation of alpha 2 adrenoceptor binding sites were examined in canine arteries and veins. Denervation of the lower abdominal aorta, renal and femoral arteries and femoral veins marked reduced vessel norepinephrine concentrations. Denervation had little effect on the concentration of alpha 2 adrenoceptor binding sites or the affinity of (3H)yohimbine for these sites. The apparent lack of any significant reduction in receptor binding sites suggests that the majority of these sites are located on smooth muscle cells of blood vessels. The failure of any appreciable rise in receptor concentration following denervation is consistent with the hypothesis from functional studies that postsynaptic alpha 2 adrenoceptors on blood vessels are located extra-synaptically and hence not influenced by neurally released norepinephrine.  相似文献   

3.
This study was undertaken to investigate the cause of the early endothelial damage that is seen at sites of microvascular anastomosis and in particular to study the possibility of a connection between damage to the vasa vasorum and subsequent endothelial denudation. Rat femoral vessels were subjected to a variety of experimental injuries, including simple dissection, clamping, and ligation. The vessels were examined in longitudinal section by light microscopy at intervals ranging from 5 minutes to 1 day. The endothelial cells were counted and the numbers were analyzed statistically. In addition, the anatomy of the vasa vasorum was studied using india ink perfusion. Simple dissection of the femoral vessels and excision of the vasa vasorum without interruption of blood flow were followed by ischemic lesions of the tunica media with subendothelial edema and ballooning and exfoliation of endothelial cells. Endothelial denudation reached a maximum level in 30 minutes. Adherence of leukocytes was found on damaged endothelial cells. Mural thrombi were seen in 13.6 percent of arteries and in 40 percent of veins following simple dissection.  相似文献   

4.
In experiments on cats it was found using electromagnetic and resistographic methods that sodium hydroxybutyrate (100 mg/kg) considerably increases cerebral circulation. The drug also potentiates the blood flow to the brain during formation of pressor reflexes of the arterial pressure. The blood flow increase is also observed in the system of femoral arteries while in the intestinal artery, on the contrary, there is a reduction in the blood flow increase during vasomotor reflexes. The reflex changes of the resistance in regional vessels are also different: the inhibition of pressor reflexes in the cerebral vessels along with their facilitation in the intestinal and femoral arteries and the potentiation of the reflex dilatatory phase in the limb vessels are seen. Different sensitivity to the drug of synaptic formations in the central links of various regional vasomotor reflexes is likely to underlie the difference described.  相似文献   

5.
In sleeve anastomoses, stenoses at the suture site have been the main concern. Mechanical dilatation is one way to prevent the stenosis, as suggested by Lauritzen. In the present study, 50 vessels (femoral and carotid) and 10 veins were used for sleeve anastomoses and the same numbers of vessels were used for conventional anastomoses (as control) to evaluate the effect of mechanical dilatation using resin corrosion cast (Mercox) because the Mercox cast facilitates three-dimensional stereoscopic views. Gradual dilatations around the suture sites were observed in seven carotid arteries, and three of seven resulted into aneurysm formation due to weakening of the inner vascular wall in the sleeve anastomosis. No dilatation or aneurysm was observed in the femoral arteries. Newly proliferating capillaries formed on the endothelial surfaces of the inner vascular walls around the suture sites after 4 weeks in the sleeve anastomoses. Operative time and endothelial trauma were markedly reduced with sleeve anastomoses. The gradual dilatation and aneurysm formation in the carotid arteries show that sleeve anastomoses should be used carefully for high-pressure arteries in clinical practice if mechanical dilatation is performed.  相似文献   

6.
In order to study the morphological aspects of endothelial regeneration and vascular wall reaction after microvascular anastomosis, rat femoral arteries were sectioned and successively sutured (end-to-end anastomosis) with microsurgical techniques. Control arteries and anastomosed vessels (recovered after 1, 4, 7, 14, 21, 30, 60, 120, 180 and 360 days) were studied by means of scanning (SEM) and transmission electron microscopy (TEM). The reendothelialization phenomena started after 7 days and were mainly evident at 21 days. Areas of subendothelial connective tissue with fibrin deposition remained exposed to the blood stream up to 21-30 days. Thrombus formations or post-anastomotic stenosis have been occasionally observed. Regenerating endothelium showed evident morphological differences from the control. These changes mainly consisted of shortened cell length, absence of pinocytotic vesicles, presence of cytoplasmic prolongations, and microvillous proliferations. The arterial wall showed subintimal thickening. The anastomotic site appeared completely covered by new endothelium after 30-60 days. Subintimal vascular wall changes (thickening of the media) as well as slight alterations of endothelial cells (shortened length, reduced number of pinocytotic vesicles) were evident in 60-day vessels. Lumen reduction, due to the protruding of endothelial-covered sutures, was occasionally observed in 60- to 120-day arteries. Endothelial cell morphology normalized after 60-120 days. However, thickening of the media and occasional lumen reduction were observed also after 180-360 days. Although the endothelial regeneration phenomena were clearly evident after 2 weeks, nevertheless the reestablishment of arterial wall took longer time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
J.L. Hart 《Life sciences》1982,30(2):163-169
The barium responses of isolated aortic strips and femoral arteries from non-pregnant and pregnant rats were investigated. Barium caused concentration-related increases in tension of vessels from both pregnant and non-pregnant rats. The concentration-response curves of femoral arteries from non-pregnant and 3 week pregnant rats were not different; however contractility and slopes of concentration-response lines for thracic aortas from 1, 2 and 3 week pregnant rats were significantly less than those of aortas from non-pregnant rats. In addition, barium caused rhythmic contractions to develop in both femoral arteries and aortas of 3 week pregnant rats more frequently than vessels from non-pregnant rats. Rhythmic contractions did not develop in aortas from 3 week pregnant rats rats in calcium-free Krebs. Since the effects of barium on the electrical and mechanical activity of various muscles have been postulated to be similar to and/or dependent on calcium, these results may indicate that changes in calcium sensitivity of vascular smooth muscle occur during pregnancy. Such changes may contribute to the blood flow redistribution and other cardiovascular adaptations of pregnancy.  相似文献   

8.
The display of the two distinct intermediate filament proteins, desmin and vimentin, in rat vascular smooth muscle tissue was studied by immunofluorescence microscopy on frozen sections of aorta and other blood vessels. Vascular smooth muscle cells present in these vessels always appeared rich in vimentin. However, staining of sections covering six distinct but contiguous parts of the aorta showed that the number of desmin containing cells was low distal to the truncus brachiocephalicus, but increases until in distal parts of the aorta and in the arteria iliaca communis almost all cells appear positive for desmin. Thus blood vessels show heterogeneity of intermediate filament expression not only in cross-section but can also display heterogeneity along their length. Muscular arteries such as the renal artery and the arteria femoralis, as well as arterioles and veins including the vena jugularis and the vena cava also contain desmin. Thus it may be that low numbers of desmin-positive cells are typical of elastic arteries, while muscular arteries and other blood vessels are characterized by large numbers of desmin-positive cells. We discuss whether desmin-positive and desmin-negative vascular smooth muscle cells may perform different functions and raise the possibility that desmin expression may coincide with the turn on of a specially regulated contractility program.  相似文献   

9.
The adrenergic innervation of major arteries and veins was examined in DOCA-NaCl hypertensive rats using a histochemical fluorescent technique to detect the intraneuronal catecholamine content. The possible role of sodium and chloride ions was studied in DOCA-treated rats which were fed a low-salt diet which was supplemented with sodium bicarbonate instead of sodium chloride. Focal defects of adrenergic innervation were observed in blood vessels of DOCA-NaCl hypertensive rats. Nevertheless, the degree of these changes differed according to the vascular bed examined. A maximum decrease of the catecholamine content in varicosities of adrenergic terminals was found in the femoral vessels while there were nearly no changes in tail arteries and veins. Adrenergic innervation was usually more impaired in veins than in corresponding arteries of hypertensive animals. Pronounced changes in blood vessels of rats with DOCA-NaCl hypertension contrasted with the maximum alterations observed in those hypertensive DOCA-treated animals which were fed a NaHCO3-supplemented diet. Thus a chloride overload seems to be more important for alteration of adrenergic innervation than the degree of blood pressure elevation or the sodium overload per se.  相似文献   

10.
Transient receptor potential (TRP) cation channels are emerging in vascular biology. In particular, the expression of the capsaicin receptor (TRPV1) was reported in vascular smooth muscle cells. This study characterized the arteriolar TRPV1 function and expression in the rat. TRPV1 mRNA was expressed in various vascular beds. Six commercially available antibodies were tested for TRPV1 specificity. Two of them were specific (immunostaining was abolished by blocking peptides) for neuronal TRPV1 and one recognized vascular TRPV1. TRPV1 was expressed in blood vessels in the skeletal muscle, mesenteric and skin tissues, as well as in the aorta and carotid arteries. TRPV1 expression was found to be regulated at the level of individual blood vessels, where some vessels expressed, while others did not express TRPV1 in the same tissue sections. Capsaicin (a TRPV1 agonist) evoked constrictions in skeletal muscle arteries and in the carotid artery, but had no effect on the femoral and mesenteric arteries or the aorta. In blood vessels, TRPV1 expression was detected in most of the large arteries, but there were striking differences at level of the small arteries. TRPV1 activity was suppressed in some isolated arteries. This tightly regulated expression and function suggests a physiological role for vascular TRPV1.  相似文献   

11.
The effect of sodium hydroxybutyrate on the blood flow in the aorta, carotid, mesenteric and femoral arteries were studied on cats and dogs. The circulation was assessed by the electromagnetic and resistographic methods, in the anesthetized and nonanesthetized animals. The tonic activity was recorded in the sympathetic nerves and the EEG. Sodium hydroxybutrate was shown to decrease the sympathetic activity, resulting in the increase of the regional circulation and induced the EEG synchronization. The latter effect was more pronounced in the arotid arteries. It can be assumed that sodium hydroxybutyrate affects the nervous control of the blood vessels.  相似文献   

12.
At 110-111 days gestation, instrumented fetal sheep were administered saline or dexamethasone (2.2 microgram. kg(-1). h(-1) iv) for 48 h. Measurement of fetal blood pressure showed a greater increase in dexamethasone-treated (n = 6) compared with control (n = 5) fetuses (7.3 +/- 2.3 vs. 0.6 +/- 2.3 mmHg, P < 0.05). Fetuses were delivered by cesarean section, and the femoral muscle and brain were obtained under halothane anesthesia. Femoral and middle cerebral arteries (approximately 320-micrometer internal diameter) were evaluated using wire myography. Sensitivity to KCl (2.5-125 mM) and the magnitude of the maximal vasoconstriction to 125 mM K(+) were similar in femoral and middle cerebral arteries from dexamethasone-treated vs. control fetuses. Acetylcholine-induced vasorelaxation was similar in femoral arteries from control and dexamethasone-treated fetuses. Middle cerebral arteries did not relax to acetylcholine. Sensitivity to endothelin-1 (ET-1; 0.1 pM-0.1 microM) and magnitude of the ET-1-induced vasoconstriction were greater in femoral arteries from dexamethasone-treated vs. control fetuses (P < 0.05). Autoradiographical studies with receptor-specific ligands demonstrated increased ET(A)-receptor binding, the principal receptor subtype, in femoral muscle vessels (P < 0.001) but decreased ET(A)-receptor binding in middle cerebral arteries (P < 0.01) from dexamethasone-treated compared with control fetuses. Relatively little ET(B)-receptor binding was evident in all tissues examined. We conclude that hyperreactivity to ET-1, due to increased ET(A)-receptor binding, may be involved in the dexamethasone-induced increase in peripheral vascular resistance in fetal sheep in vivo.  相似文献   

13.
Responses to K(+), endothelin-1 (ET-1), and acetylcholine (ACh) of isolated adrenal, femoral, middle cerebral, and renal arteries from fetal [110--145 days gestational age (dGA, term approximately 148 dGA)] and 0- to 24-h newborn (NB) lambs were evaluated using the technique of wire myography. Responses at distinct developmental ages for each vascular bed were compared. In all arteries sensitivity to K(+)-induced vasoconstriction was similar at all fetal age points examined. In contrast, sensitivity to ET-1 increased with increasing fetal age in arteries from all vascular beds. The magnitude of the maximal vasoconstriction was positively correlated with GA for K(+) in adrenal, femoral, and cerebral arteries and for ET-1 in femoral, cerebral, and renal arteries. Cerebral arteries showed a greater sensitivity when compared with the other systemic arteries to K(+) and ET-1 at all fetal ages and to K(+) in NB. ACh evoked relaxatory responses in fetal and NB femoral and adrenal arteries. However, renal arteries relaxed comparatively less in response to ACh, and no vasodilation was noted in middle cerebral arteries at any age points examined. For femoral arteries ACh-induced vasorelaxation decreased with increasing GA but was restored in arteries from NB lambs. In summary, the responsiveness of isolated resistance arteries varies with developmental age in the fetal and perinatal sheep and these effects are both agonist and vascular bed specific. The augmented sensitivity in response to ET-1 of middle cerebral compared with other systemic arteries may reflect the importance of cerebral blood flow control during this critical developmental period.  相似文献   

14.
Maintenance of norepinephrine (NE)-induced contraction is dependent on Ca(2+) influx through L-type voltage-dependent Ca(2+) channels (VDCC), which is opposed by nitric oxide. Adrenergic receptors are coupled with different G proteins, including inhibitory G proteins (Gi) that can be inactivated by pertussis toxin (PTX). Our study was aimed to investigate the effects of endothelium removal, PTX pretreatment and acute VDCC blockade by nifedipine on the contractions of femoral arteries stimulated by norepinephrine. We used 12-week-old male WKY, half of the rats being injected with PTX (10 microg/kg i.v., 48 h before the experiment), which considerably reduced their blood pressure (BP). Contractions of isolated arteries were measured using Mulvany-Halpern myograph. NE dose-response curves determined in femoral arteries from PTX-treated WKY rats were shifted to the right compared to those from control WKY. On the contrary, removal of endothelium augmented NE dose-response curves shifting them to the left. Acute VDCC blockade by nifedipine (10(-7) M) abolished all differences in NE dose-response curves which were dependent on the presence of either intact endothelium or functional Gi proteins because all NE dose-response curves were identical to the curve seen in vessels with intact endothelium from PTX-treated animals. We can conclude that BP reduction after PTX injection is accompanied by the attenuation of NE-induced contraction of femoral arteries irrespective of endothelium presence. Moreover, our data indicate that both vasodilator action of endothelium and Gi-dependent vasoconstrictor effect of norepinephrine operate via the control of Ca(2+) influx through VDCC.  相似文献   

15.
The four paired gill arches of the South American lungfish Lepidosiren paradoxa contain single branchial arteries directly connecting dorsal and ventral arteries. In gill arches 3 and 4 the branchial arteries also supply looped arlerioles and capillaries to much-reduced gill filaments. Regulation of blood between these routes is thought to be by alteration of vascular resistance. Within the filaments, extensive subepithelial capillary networks and numerous small pumps connect lymphatic vessels in the central connective tissue compartment with venules which, in turn, drain to paired branchial veins.
The features of the endothelium of many of the filament blood vessels suggest extensive transporting, haematolytic and granulopoeitic functions. Large numbers of macrophages pack the connective tissue. Many contain extensive quantities of haemosiderin.  相似文献   

16.
VEGF promotes vascular sympathetic innervation   总被引:1,自引:0,他引:1  
The sympathetic nervous system, via postganglionic innervation of blood vessels and the heart, is an important determinant of cardiovascular function. The mechanisms underlying sympathetic innervation of targets are not fully understood. This study tests the hypothesis that target-derived vascular endothelial growth factor (VEGF) promotes sympathetic innervation of blood vessels. Western blot and immunohistochemical analyses indicate that VEGF is produced by vascular cells in arteries and that VEGF receptors are expressed on sympathetic nerve fibers innervating arteries. In vitro, exogenously added VEGF and VEGF produced by vascular smooth muscle cells (VSMCs) in sympathetic neurovascular cocultures inhibited semaphorin 3A (Sema3A)-induced collapse of sympathetic growth cones. In the absence of Sema3A, VEGF and VSMCs also increased growth cone area. These effects were mediated via VEGF receptor 1. In vivo, the neutralization of VEGF inhibited the reinnervation of denervated femoral arteries. These data demonstrate that target-derived VEGF plays a previously unrecognized role in promoting the growth of sympathetic axons.  相似文献   

17.
The constrictory reactions to long electrostimulation of renal, pulmonary femoral arteries and distal aorta segments of intact rabbits getting 200 mg/kg of holesterine during 4-12 months have been compared. It has been established that all artherosclerotic vessels exhibit higher initial amplitude of constriction using as indicator of phasic reactions. the tetanus stability increases, that expresses in longer conservation of initial constriction amplitude on relatively high level; this is evidence of vessels capacity to long tonic reactions. These changes of aorta and pulmonary vessels were more distinct.  相似文献   

18.
Contractile and relaxant responses of diabetic dog femoral arteries   总被引:2,自引:0,他引:2  
Strips of femoral arteries of normal and alloxan-treated dogs were set up for isometric recording. The contractile response to phenylephrine and the relaxant response to acetylcholine were determined. Neither alloxan treatment nor mechanical removal of endothelium altered the EC50 value for phenylephrine. The slope of phenylephrine dose-response curves of diabetic and healthy vessels with intact endothelium was similar, whereas the slope of phenylephrine dose-response curves of endothelium-denuded diabetic arteries was significantly greater than that of the denuded healthy arteries. Removal of the endothelium completely abolished the relaxant effect of acetylcholine. The relaxant potency (IC50) of acetylcholine was not affected by alloxan treatment. The results suggest that in canine femoral arteries the relaxant activity of acetylcholine is unaffected in experimental diabetes and the damage of the arterial endothelium may play a role in the increased responsiveness of diabetic vessels to adrenergic agonists.  相似文献   

19.
Possible involvement of cyclic GMP-dependent and cyclic AMP-dependent protein kinases, protein kinase modulators and cyclic nucleotide phosphodiesterases in functions of vascular tissues were investigated in the dog. All of the above activities, localized in the smooth muscle-rich inner layer of the blood vessels, were found to be higher in the arteries than in the veins. The peripheral arteries were disproportionately richer in cyclic GMP-dependent protein kinase (as indicated by high ratios of cyclic GMP-dependent to cyclic AMP-dependent protein kinase) than were the veins, with the exception of the pulmonary artery, an atypical arterial tissue exposed to low blood pressure. Interestingly, the protein kinase ratio for the aorta, an artery with no significant role in blood pressure regulation, was not higher than that for the vena cava. Creation of femoral arteriovenous fistulae in the dogs led to preferential reductions in the cyclic GMP-dependent enzyme activity both in the proximal and distal arteries, whereas it was elevated in the stressed vein distal to the anastomotic site. The cyclic GMP-dependent enzyme was preferentially reduced in the saphenous artery distal to occlusion. Changes in the cyclic GMP-dependent enzyme activity appeared to precede gross atrophy or hypertrophy of the vessels. It is suggested that the vascular cyclic GMP-dependent protein kinase may be closely related to peripheral resistance and its regulation.  相似文献   

20.
Possible involvement of cyclic GMP-dependent and cyclic AMP-dependent protein kinases, protein kinase modulators and cyclic nucleotide phosphodiesterases in functions of vascular tissues were investigated in the dog. All of the above activities, localized in the smooth muscle-rich inner layer of the blood vessels, were found to be higher in the arteries than in the veins. The peripheral arteries were disproportionately richer in cyclic GMP-dependent protein kinase (as indicated by high ratios of cyclic GMP-dependent to cyclic AMP-dependent protein kinase) than were the veins, with the exception of the pulmonary artery, an atypical arterial tissue exposed to low blood pressure. Interestingly, the protein kinase ratio for the aorta, an artery with no significant role in blood pressure regulation, was not higher than that for the vena cava. Creation of femoral arteriovenous fistulae in the dogs led to preferential reductions in the cyclic GMP-dependent enzyme activity both in the proximal and distal arteries, whereas it was elevated in the stressed vein distal to the anastomotic site. The cyclic GMP-dependent enzyme was preferentially reduced in the saphenous artery distal to occlusion. Changes in the cyclic GMP-dependent enzyme activity appeared to precede gross atrophy or hypertrophy of the vessels. It is suggested that the vascular cyclic GMP-dependent protein kinase may be closely related to peripheral resistance and its regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号