首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Addition of monensin or nigericin after poliovirus entry into HeLa cells prevents the inhibition of host protein synthesis by poliovirus. The infected cells continue to synthesize cellular proteins at control levels for at least 8 h after infection in the presence of the ionophore. Cleavage of p220 (gamma subunit of eukaryotic initiation factor 4 [eIF-4 gamma]), a component of the translation initiation factor eIF-4F, occurs to the same extent in poliovirus-infected cells whether or not they are treated with monensin. Two hours after infection there is no detectable intact p220, but the cells continue to translate cellular mRNAs for several hours at levels similar to those in uninfected cells. Nigericin or monensin prevented the arrest of host translation at all the multiplicities of poliovirus infection tested. At high multiplicities of infection, an unprecedented situation was found: cells synthesized poliovirus and cellular proteins simultaneously. Superinfection of vesicular stomatitis virus-infected HeLa cells with poliovirus led to a profound inhibition of vesicular stomatitis virus protein synthesis, while nigericin partially prevented this blockade. Drastic inhibition of translation also took place in influenza virus-infected Vero cells treated with nigericin and infected with poliovirus. These findings suggest that the translation of newly synthesized mRNAs is dependent on the integrity of p220, while ongoing cellular protein synthesis does not require an intact p220. The target of ionophore action during the poliovirus life cycle was also investigated. Addition of nigericin at any time postinfection profoundly blocked the synthesis of virus RNA, whereas viral protein synthesis was not affected if nigericin was added at 4 h postinfection. These results agree well with previous findings indicating that inhibitors of phospholipid synthesis or vesicular traffic interfere with poliovirus genome replication. Therefore, the action of nigericin on the vesicular system may affect poliovirus RNA synthesis. In conclusion, monensin and nigericin are potent inhibitors of poliovirus genome replication that prevent the shutoff of host translation by poliovirus while still permitting cleavage of p220.  相似文献   

3.
4.
Although host protein synthesis is preferentially inhibited, there is a steady decline in the ability of Chinese hamster ovary (CHO) cells infected with vesicular stomatitis virus (VSV) to synthesize both host and viral proteins. We previously reported finding an mRNA-ribonucleoprotein particle (mRNP) that contained all five VSV mRNAs and viral N protein exclusively. This particle apparently regulates translation by sequestering a majority of the VSV mRNA made late in infection and thus rendering it unavailable for protein synthesis. In the present investigation the mRNP was also shown to inhibit in vitro protein synthesis in rabbit reticulocyte and wheat germ lysates programmed with mRNA isolated from VSV-infected cells. The synthesis of eIF-2 X GTP X Met-tRNA (ternary) complex, the first step in initiation of protein synthesis, was markedly inhibited by the mRNP. The inhibition was partially reversed by addition of purified eIF-2 to the inhibited lysate or ternary complex formation reaction. These results indicate a dual role of the mRNP in regulating protein synthesis during infection. Nucleocapsid also inhibited in vitro protein synthesis, although this inhibition was not reversed by eIF-2. Nucleocapsid did not inhibit ternary complex formation in vitro. Consequently, nucleocapsid may also regulate in vivo protein synthesis, but by a mechanism different from the mRNP.  相似文献   

5.
Translation initiation by internal ribosome binding is a recently discovered mechanism of eukaryotic viral and cellular protein synthesis in which ribosome subunits interact with the mRNAs at internal sites in the 5' untranslated RNA sequences and not with the 5' methylguanosine cap structure present at the extreme 5' ends of mRNA molecules. Uncapped poliovirus mRNAs harbor internal ribosome entry sites (IRES) in their long and highly structured 5' noncoding regions. Such IRES sequences are required for viral protein synthesis. In this study, a novel poliovirus was isolated whose genomic RNA contains two gross deletions removing approximately 100 nucleotides from the predicted IRES sequences within the 5' noncoding region. The deletions originated from previously in vivo-selected viral revertants displaying non-temperature-sensitive phenotypes. Each revertant had a different predicted stem-loop structure within the 5' noncoding region of their genomic RNAs deleted. The mutant poliovirus (Se1-5NC-delta DG) described in this study contains both stem-loop deletions in a single RNA genome, thereby creating a minimum IRES. Se1-5NC-delta DG exhibited slow growth and a pinpoint plaque phenotype following infection of HeLa cells, delayed onset of protein synthesis in vivo, and defective initiation during in vitro translation of the mutated poliovirus mRNAs. Interestingly, the peak levels of viral RNA synthesis in cells infected with Se1-5NC-delta DG occurred at slightly later times in infection than those achieved by wild-type poliovirus, but these mutant virus RNAs accumulated in the host cells during the late phases of virus infection. UV cross-linking assays with the 5' noncoding regions of wild-type and mutated RNAs were carried out in cytoplasmic extracts from HeLa cells and neuronal cells and in reticulocyte lysates to identify the cellular factors that interact with the putative IRES elements. The cellular proteins that were cross-linked to the minimum IRES may represent factors playing an essential role in internal translation initiation of poliovirus mRNAs.  相似文献   

6.
7.
8.
Treatment of mouse L929 cells with mouse interferon (IFN) lowered the yield of vesicular stomatitis virus (VSV) in a dose-dependent manner. Accumulation of viral proteins was severely inhibited in IFN-treated cells, whereas cellular protein synthesis was not, indicating that the virus-induced shutoff of cellular protein synthesis was prevented by IFN. In order to identify the major target of IFN action precisely, the effect of IFN treatment on the synthesis of viral RNAs and proteins at various stages during the course of viral replication was examined. Accumulation of viral RNAs late in infection was inhibited, as was the case with viral proteins, but the synthesis of leader RNA and mRNAs early in infection was not significantly inhibited by treatment with a moderate dose of IFN. On the other hand, viral protein synthesis at an early stage of infection was strongly inhibited by IFN. The results indicate that the major target reaction of antiviral action of IFN against VSV multiplication is the translation of viral mRNA.  相似文献   

9.
Crude initiation factor preparations from poliovirus-infected cells stimulated the translation of poliovirus RNA in vitro, but were inactive for the translation of host cell or vesicular stomatitis virus mRNA's. In contrast, similar preparations from either uninfected or vesicular stomatitis virus-infected cells supported the initiation of translation of host cell mRNA's and both viral mRNA's. These results reflect a specific alteration of some components(s) of the initiation factor preparation from poliovirus-infected cells which is consistent with the ability of the virus to inhibit the translation of host cell and vesicular stomatitis virus-directed protein synthesis.  相似文献   

10.
The infection of cells by vesicular stomatitis virus results in the rapid inhibition of host-cell protein synthesis, but not of viral protein synthesis. To determine if this translational selectivity might be conferred by the viral mRNA, we constructed a plasmid (pUCLN beta-4) containing the 5' end of the viral nucleocapsid (N)-gene, including the ribosome binding site, fused in frame with the gene encoding beta-galactosidase, and compared it to a control plasmid (pMC1924) containing the cellular rabbit beta-globin gene 5' end fused with the beta-galactosidase encoding gene. Both plasmids contained identical promoter and 3' nontranslated regions and expressed similar levels of beta-galactosidase in the indicator cell line 293. In cells transfected with either plasmid, viral infection resulted in a approximately 70% decrease in protein synthesis by five hours. The level of beta-galactosidase from cells transfected with pMC1924 also decreased concomitantly with the decrease in total protein synthesis. However, the level of beta-galactosidase from cells transfected with pUCLN beta-4 was not affected by viral infection. Our data suggest that sequences in the 5' end of the viral mRNA allow for the selective translation of the viral message in the presence of an inhibited translational machinery.  相似文献   

11.
I Edery  K A Lee  N Sonenberg 《Biochemistry》1984,23(11):2456-2462
We examined the effects of a eukaryotic mRNA cap binding protein (CBP) complex purified by cap analogue affinity chromatography [Edery, I., Humebelin, M., Darveau, A., Lee, K.A. W., Milburn, S., Hershey, J.W.B., Trachsel, H., & Sonenberg, N. (1983) J. Biol. Chem. 258, 11398 11403], on translation of several capped and naturally uncapped mRNAs in extracts prepared from poliovirus-infected or mock-infected HeLa cells. The CBP complex has activity that restores capped mRNA (globin, tobacco mosaic virus, and others) function in extracts from poliovirus-infected HeLa cells. Translation of two naturally uncapped RNAs (poliovirus and mengovirus RNAs), the translation of which is not restricted in extracts from poliovirus-infected cells, is also not stimulated by the CBP complex. Translation of several capped eukaryotic mRNAs (vesicular stomatitis virus, reovirus, and tobacco mosaic virus) in extracts from mock-infected cells is inhibited when the potassium ion concentration is increased. However, translation of capped AMV-4 RNA, which has negligible secondary structure at its 5' end, is resistant to this inhibition. Furthermore, the CBP complex reverses the high salt induced inhibition of translation of the former mRNAs. Since mRNA secondary structure is more stable at elevated salt concentrations, these data are consistent with a model in which the CBP complex has a role in melting mRNA secondary structure involving 5'-proximal sequences, to facilitate ribosome binding.  相似文献   

12.
13.
14.
Poliovirus translation: a paradigm for a novel initiation mechanism   总被引:7,自引:0,他引:7  
All eukaryotic cellular mRNAs, and most viral mRNAs, are blocked at their 5' ends with a cap structure (m7GpppX, where X is any nucleotide). Poliovirus, along with a small number of other animal and plant viral mRNAs, does not contain a 5' cap structure. Since the cap structure functions to facilitate ribosome binding to mRNA, translation of polio-virus must proceed by a cap-independent mechanism. Consistent with this, recent studies have shown that ribosomes can bind to an internal region within the long 5' noncoding sequence of poliovirus RNA. Possible mechanisms for cap-independent translation are discussed. Cap-independent translation of poliovirus RNA is of major importance to the mechanism of shut-off of host protein synthesis after infection. Moreover, it is likely to play a role in determining poliovirus neurovirulence and attenuation.  相似文献   

15.
In cells infected by influenza virus type A, host protein synthesis undergoes a rapid and dramatic shutoff. To define the molecular mechanisms underlying this selective translation, a transfection/infection protocol was developed utilizing viral and cellular cDNA clones. When COS-1 cells were transfected with cDNAs encoding nonviral genes and subsequently infected with influenza virus, protein expression from the exogenous genes was diminished, similar to the endogenous cellular genes. However, when cells were transfected with a truncated influenza viral nucleocapsid protein (NP-S) gene, the NP-S protein was made as efficiently in influenza virus infected cells as in uninfected cells, showing that the NP-S mRNA, although expressed independently of the influenza virus replication machinery, was still recognized as a viral and not a cellular mRNA. Northern blot analysis demonstrated that the selective blocks to nonviral protein synthesis were at the level of translation. Moreover, polysome experiments revealed that the translational blocks occurred at both the initiation and elongation stages of cellular protein synthesis. Finally, we utilized this transfection/infection system as well as double infection experiments to demonstrate that the translation of influenza viral mRNAs probably occurred in a cap-dependent manner as poliovirus infection inhibited influenza viral mRNA translation.  相似文献   

16.
The relationship between attachment of mRNA to the cytoskeletal framework and its translation was examined using the mRNA for a polypeptide of 40 kDa (P-40) which is translated in rat L6 myoblasts but not in the myotubes. In both myoblasts and myotubes this mRNA was found to be associated with the cytoskeletal framework. Furthermore, the stability of the association between P-40 mRNA and the cytoskeletal framework in absence of RNA and protein synthesis was examined by using actinomycin D and NaF to block RNA and protein synthesis, respectively. In absence of RNA synthesis portions of both nontranslated P-40 mRNA and translated actin mRNA of myotubes were released into the soluble fraction. In myoblasts, however, both mRNAs remained associated with the cytoskeletal framework following inhibition of RNA synthesis. Inhibition of protein synthesis, on the other hand, had a more dramatic effect on the association between the cytoskeletal framework and P-40 mRNA in myoblasts but not in myotubes. In contrast, the association between actin mRNA and cytoskeletal framework was unaffected by inhibition of protein synthesis in both myoblasts and myotubes. The results of these studies show that the molecular nature of association between cytoskeletal framework and mRNA may differ among mRNAs and may also depend on whether the cells are dividing or are terminally differentiated. Furthermore, no direct relationship between the translation of mRNA and its attachment to the cytoskeletal framework was observed.  相似文献   

17.
The rate of protein synthesis in metaphase-arrested cells is reduced as compared to interphase cells. The reduction occurs at the translation initiation step. Here, we show that, whereas poliovirus RNA translation is not affected by the mitotic translational block, the translation of vesicular stomatitis virus mRNAs is. In an attempt to elucidate the mechanism by which initiation of protein synthesis is reduced in mitotic cells, we found that the interaction of the mRNA 24-kDa cap-binding protein (CBP) with the mRNA 5' cap structure is reduced in mitotic cell extracts, consistent with their lower translational efficiency. Addition of cap-binding protein complex stimulated the translation of endogenous mRNA in extracts from mitotic but not interphase cells. In addition, we found that the 24-kDa CBP from mitotic cells was metabolically labeled with 32P to a lesser extent than the protein purified from interphase cells. These results are consistent with a hypothesis that the 24-kDa CBP is implicated in the inhibition of protein synthesis in metaphase-arrested cells. Possible mechanisms for this inhibition are offered.  相似文献   

18.
19.
Based on the information that high salt inhibits the initiation of cellular mRNA translation which depends on the function of the 5'-terminal structure of mRNA, we compared the effect of high salt on translation of host cellular mRNAs and influenza viral mRNAs, both of which are of 5'-terminal structure. Brief exposure of influenza B virus-infected MDCK cells to high salt medium resulted in a dose-dependent inhibition of viral polypeptide synthesis as well as of cellular polypeptide synthesis, but it had less effect on synthesis of viral polypeptides, particularly nonstructural protein (NS). Under these conditions the Na+ content of the infected cells was significantly increased. A similar salt effect on in vitro translation of viral and cellular mRNAs extracted from infected cells was also observed. There was no significant difference in sensitivity to hypertonic block of in vivo translation of influenza viral mRNAs and vesicular stomatitis virus mRNAs, the latter of which possess a virus-directed structure at the 5'-terminus.  相似文献   

20.
Extracts from poliovirus-infected HeLa cells are unable to translate vesicular stomatitis virus or cellular mRNAs in vitro, probably reflecting the poliovirus-induced inhibition of host cell protein synthesis which occurs in vivo. Crude initiation factors from uninfected HeLa cells are able to restore translation of vesicular stomatitis virus mRNA in infected cell lysates. This restoring activity separates into the 0 to 40% ammonium sulfate fractional precipitate of ribosomal salt wash. Restoring activity is completely lacking in the analogous fractions prepared from poliovirus-infected cells. The 0 to 40% ammonium sulfate precipitates from both uninfected and infected cells contain eucaryotic initiation factor 3 (eIF-3), eIf-4B, and the cap-binding protein (CBP), which is detected by means of a cross-linking assay, as well as other proteins. The association of eIF-3 and cap binding protein was examined. The 0 to 40% ammonium sulfate precipitate of ribosomal salt wash from uninfected and infected cells was sedimented in sucrose gradients. Each fraction was examined for the presence of eIF-3 antigens by an antibody blot technique and for the presence of the CBP by cross-linking to cap-labeled mRNAs. From uninfected cells, a major proportion of the CBP cosedimented with eIF-3; however, none of the CBP from infected cells sedimented with eIF-3. The results suggest that the association of the CBP with eIF-3 into a functional complex may have been disrupted during the course of poliovirus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号