首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Island differentiation and relationships with congenerics were investigated in the endemic Canary Island bat Plecotus teneriffae, based on approximately 1 kb of mtDNA from the 16S rRNA and cytochrome b genes. P. teneriffae had closer affinities with P. austriacus than with P. auritus. Levels of differentiation between Canary Islands were quite high relative to Pipistrelle-like bats, consistent with philopatric behaviour in the Plecotus genus. Cladogenesis within P. teneriffae appears to have occurred after the emergence of the islands of El Hierro and La Palma during the Pleistocene. An intraspecific network shows that haplotypes from the younger islands of La Palma and El Hierro are connected to the Tenerife haplotype by a similarly large number of mutational steps. This suggests that they were both colonised at a similar time from the much older island of Tenerife. The other Plecotine bat species, Barbastellus barbastellus shows close affinities with B. barbastellus from mainland Spain, with levels of mtDNA divergence being comparable with intraspecific variation within other mammal species.  相似文献   

2.
Mitochondrial DNA (mtDNA) evolution was investigated in skinks of the genus Chalcides found in the Canary Islands ( Ch. sexlineatus, Ch. viridanus and Ch. simonyi ), together with some North African congenerics ( Ch. polylepis and Ch. mionecton ). Several sites were included within islands to cover areas of known within-island geographical variation in morphology. Skinks from the islands of El Hierro and La Gomera appear to be sister taxa. The relationships between this clade and the Tenerife and Gran Canarian skinks were not fully resolved, although the best working hypothesis indicated monophyly with the former, with the latter forming a closely related outgroup. Ch. simonyi from Fuerteventura was more distantly related to the Western Canary Island skinks and did not show close relationships with the North African species Ch. mionecton and Ch . polylepis . Possible colonization sequences for the four most Western Canary Islands were considered. El Hierro appears to have been colonized relatively recently from La Gomera, commensurate with the recent origin of this island, while dispersal between La Gomera and Tenerife and between Gran Canaria and Tenerife or La Gomera appears to have taken place considerably earlier. Substantial within-island haplotype divergence was found in Gran Canaria and Tenerife. This may be a result of recent periods of intense volcanic activity found within these two islands. Lower levels of within-island differentiation are found in La Gomera and El Hierro and may be explained by lower levels of volcanic activity during recent geological history and a more recent colonization, respectively.  相似文献   

3.
Chamaecytisus proliferus (L.fil.) Link (Fabaceae: Genisteae) represents a species complex in the Canary Islands. Floristic data from 147 releves from the whole complex were collected and analysed by classification (TWINSPAN) and ordination (DECORANA) methods. Results indicate that white escobon of Tenerife, escobon of El Hierro, white escobon of Gran Canaria and typical tagasaste in La Palma are associated with those plant communities from the north of these islands which are under the influence of the north-eastern trade winds. Narrow-leaved escobon in Tenerife and La Gomera, escobon of southern Gran Canaria and white tagasaste of La Palma are found in those areas which are not under the direct influence of these winds. Morphological forms from the more easterly islands (Gran Canaria and Tenerife-La Gomera) have the broadest ecological range and they have played an important role in the floristic changes which have taken place after the destruction of the forests in these islands. The highest priorities for in situ conservation should be given to wild populations of typical tagasaste, white escobon of Tenerife and escobon of El Hierro.Abbreviations IBPGR International Board for Plant Genetic Resources - DECORANA Detrended Correspondence Analysis - OTU Operational Taxonomic Unit - TWINSPAN Two Way Indicator Species Analysis  相似文献   

4.
Ancient mitochondrial DNA sequences (378 base pairs of cytochrome b and 368 of 12S rRNA) extracted from a mummified extinct giant lizard, Gallotia goliath , from eastern Tenerife, Canary Islands, were used to assess the species status and relationship of this form within the genus. G. goliath is clearly a member of the G. simonyi group of the western Canary islands (Tenerife, La Gomera, El Hierro and La Palma) and is not closely related to the giant G. stehlini of Gran Canaria. Contrary to recent opinion, it is phylogenetically distinct, within the G. simonyi group, from the extant G. simonyi of El Hierro and also from the recently discovered live G. gomerana on La Gomera and from G. intermedia in north-western Tenerife. It may be the sister taxon of either all the other members of the G. simonyi group or of G. intermedia . The phylogenetic distinctness of G. goliath makes Tenerife unique among oceanic islands in having had one giant and two medium-sized lizard species that were probably substantially herbivorous, the others being G. intermedia and G. galloti . Gallotia shows great community differences on other islands in the Canaries, two having a single small species, one a single giant, and three a giant and a medium-sized form. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 659–670.  相似文献   

5.
Phylogenetic relationships between goldcrest populations from the Atlantic Islands (Azores and Canary Islands) were investigated by two molecular markers (mitochondrial control region and cytochrome b sequences), and partly by morphology and territorial song. The Azorean goldcrest populations are closely related to European nominate R. r. regulus. Most probably, the Azores were colonized by goldcrests in a single late‐pleistocene invasion, while colonization of the Canary Islands presumably occurred in two steps: An early invasion to Tenerife and La Gomera 1.9–2.3 million years (my) ago and a more recent one to El Hierro and La Palma 1.3–1.8 my ago. Distribution of haplotypes on the Azores suggests a division of R. r. azoricus on São Miguel into an eastern population with close affinities to R. r. sanctaemariae and a western population belonging to the lineage of R. r. inermis on the central and western island group. The Canarian populations are genetically substructured into a northeastern group embracing Tenerife and La Gomera and a second, southwestern group including El Hierro and La Palma. Genetic distances between members of the two Canarian clades range at 3.1–3.4% (TrN distance, control region and cytochrome b). Differentiation between the two groups is also supported by morphology and by territorial song. Substitution rate estimates for the both genes range at approximately the same values of 0.0031 and 0.0044 substitutions per site and lineage per my which roughly corresponds 0.61–0.83% divergence between Regulus lineages per my. Highest local rates occur in island clades of the Azorean and the Canarian population and in R. r. japonensis from the Russian Far East and Japan. However, a general acceleration of a molecular clock in island populations is not evident from the Regulus data set due to extremely low local rate estimates in the Canarian clade of Tenerife and La Gomera. As a taxonomic consequence of the marked differentiation of the two Canarian goldcrest clades the populations from El Hierro and La Palma are described as a taxon new to science and are named Regulus regulus ellenthalerae n. ssp.  相似文献   

6.
The processes of island colonization and speciation are investigated through mtDNA studies on Canary Island beetles. The genus Nesotes (Coleoptera: Tenebrionidae) is represented by 19 endemic species on the Canary Islands, the majority of which are single island endemics. Nesotes conformis is the most widespread, occurring on Gran Canaria, Tenerife, La Palma and El Hierro. Nesotes conformis forms a paraphyletic assemblage, with a split between Gran Canaria and the other three islands. Nesotes conformis of the western Canary Islands cluster with Nesotes altivagans and Nesotes elliptipennis from Tenerife. Fifty‐two individuals from this western islands species complex have been sequenced for 675 base pairs of the mtDNA cytochrome oxidase II gene, representing Tenerife, La Palma and El Hierro. A neighbour joining analysis of maximum likelihood distances resulted in three distinct mtDNA lineages for N. conformis, two of which also include mitotypes of N. altivagans and N. elliptipennis. Through application of parametric bootstrap tests, we are able to reject hypotheses of monophyly for both N. conformis and N. altivagans. Nesotes altivagans and N. elliptipennis are poorly separated morphologically and mtDNA sequence data adds support to this being one species with a highly variable morphology. We propose that N. altivagans/N. elliptipennis is recently derived from two ancestral mtDNA lineages within N. conformis from the Teno region of Tenerife. We further propose colonization of the younger islands of La Palma and El Hierro by N. conformis from a mitochondrial lineage within the Teno massif (colonization; diversification; mitochondrial DNA; Canary Islands; Coleoptera).  相似文献   

7.
FRANCISCO-ORTEGA, J., JACKSON, M. T., SANTOS-GUERRA, A. & FORD-LLOYD, B. V., 1993. Morphological variation in the Chamaecytisus proliferus (L.f.) Link complex (Fabaceae: Genisteae) in the Canary Islands . A multivariate study (Principal Component Analysis and Cluster Analysis, Warďs method) of 47 morphological traits from 164 populations of Chamaecytisus proliferus (L.f.) Link from the Canary Islands confirmed that this species complex is formed by seven morphological types. At least eight traits discriminated between these types. Patterns of variation follow a cline within Gran Canaria, Tenerife and La Palma. These results also show that morphological variation is greater in the eastern islands (i.e. Gran Canaria and Tenerife) than in the western islands (La Gomera, El Hierro and La Palma) and that no morphological differences are found between plants of typical tagasaste from wild and cultivated populations.  相似文献   

8.
Abstract.— The genus Brachyderes Schönherr (Coleoptera: Curculionidae) is represented by the species B. rugatus Wollaston on the Canary Islands, with one subspecies on each of the islands of Gran Canaria, Tenerife, La Palma, and El Hierro. These four subspecies are associated with the endemic pine tree Pinus canariensis , and their distributions are broadly coincident. Eighty-eight individual Canarian Brachyderes , sampled from across the distributions of each subspecies, have been sequenced for 570 bp of the mitochondrial DNA (mtDNA) cytochrome oxidase II gene (COII). No mitotypes are shared among islands. Both maximum-likelihood and distance-based phylogenetic analyses have shown that: Tenerife is composed of a single monophyletic clade of mitotypes, El Hierro is composed of a single monophyletic clade occurring within a larger clade comprising all the La Palma mitotypes, and the mitotypes of these three islands form a monophyletic group distinct from Gran Canaria. New methods for estimating divergence times without the assumption of rate constancy have been used to reconstruct the direction and approximate timing of colonizations among the islands. Colonization has occurred from older to progressionally younger islands, and these colonizations are estimated to have occurred less than 2.6 million years ago, although the timing of the initial colonization of the archipelago is not discernable. New methods for the estimation of diversification rates that use branching times as the analyzed variable have been applied to each island fauna. Hypothesized effects of different levels of recent volcanism among islands were not apparent. All islands exhibit a gradually decreasing rate of genetic diversification that is marked by periodic sudden changes in rate.  相似文献   

9.
Coexistence of recently diverged and ecologically similar sister species in complete sympatry represents a particularly compelling case for sympatric speciation. This study investigates the possible sympatric origin of two coexisting bark beetle taxa that utilize the same host plant on the island of La Palma in the Canary Islands. Aphanarthrum subglabrum and Aphanarthrum glabrum ssp. nudum breed inside dead twigs of Euphorbia lamarckii plants and are closely related to the allopatric A. glabrum ssp. glabrum in Tenerife, El Hierro and La Gomera. We tested the various speciation hypotheses in a genealogical context, using mitochondrial gene fragments from Cytochrome Oxidase I and 16S, and nuclear gene fragments from Enolase, Elongation Factor 1alpha and Histone H3. Phylogenetic analyses of the combined nuclear DNA data strongly supported a sister relationship between two sympatric and reproductively isolated taxa in La Palma. However, network analyses of subdivided nonrecombinant segments of the Enolase locus indicated a closer relationship between the two allopatric A. glabrum subspecies, suggesting multiple colonizations of this island. A bimodal distribution of mtDNA haplotypes in La Palma further documented the independent colonization of this island, with asymmetric introgression of mtDNA between two lineages. Consequently, the sympatric origin of the La Palma species is concluded to have involved allopatric phases before the parallel colonization of this island and subsequent introgression at some loci. The clear genetic and morphological evidence for reproductive isolation between these species suggests that the sympatric completion of divergence was either due to initial genetic incompatibility, morphological character displacement in male genitalia, or a combination of these factors.  相似文献   

10.
Data on opportunistic sightings of diamond-shaped squid Thysanoteuthis rhombus egg masses in the Canary Islands (Atlantic Ocean) are presented. A total of 16 egg masses of this species were recorded and photographed from 2000 to 2010 around the western islands of the archipelago (El Hierro, Tenerife and La Gomera). These data reveal the existence of an important spawning area for diamond-shaped squid around the Canary Islands, in subtropical east Atlantic waters. We provide preliminary data for the potential development of an artisanal fishery focused on this species, and a discussion on its potential impacts on the marine ecosystem.  相似文献   

11.
Abstract.  We investigated the phylogenetic patterns, evolutionary processes, and their taxonomic implications, of two closely related shield-backed katydid genera endemic to the Macaronesian archipelagos: the monotypic Psalmatophanes Chopard, 1938 endemic to Madeira and Calliphona Krauss, 1892, which includes three species restricted to the Canary Islands. Two main hypotheses have been proposed to explain the origin and colonization pathways of these two genera: a single origin with subsequent sequential colonization of the islands, or three independent colonization waves from continental Africa. We used DNA sequence information from the mitochondrial genes cox1, tRNAleucine, rrnL and nad1 to infer phylogenetic relationships among Psalmatophanes and Calliphona species. Our results provide support for the independent colonization of Madeira and the Canary Islands, and suggest that Psalmatophanes is actually more closely related to the continental genus Tettigonia than to the Canarian representatives. Deep genetic divergence among Canarian species provides further support for the assignment of the Canarian species into two subgenera. Tree topology along with Bayesian-based estimates of lineage age suggest a pattern of colonization from Tenerife to La Palma, and from Tenerife to Gran Canaria with subsequent dispersal to La Gomera. We report the first collection of a Calliphona specimen in the island of El Hierro, which molecular data suggest is a recent immigrant from La Gomera. We hypothesize that the patterns of distribution and genetic divergence exhibited by Calliphona in the Canary Islands are compatible with a taxon cycle process. Our results have further implications for the higher level phylogeny of the subfamily Tettigoniinae and suggest that some of the tribes as currently delimited may not correspond to natural groups.  相似文献   

12.
The Canary archipelago, located on the northwestern Atlantic coast of Africa, is comprised of seven islands aligned from east to west, plus seven minor islets. All the islands were formed by volcanic eruptions and their geological history is well documented providing a historical framework to study colonization events. The Canary Island pine (Pinus canariensis C. Sm.), nowadays restricted to the westernmost Canary Islands (Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro), is considered an old (Lower Cretaceous) relic from an ancient Mediterranean evolutionary centre. Twenty seven chloroplast haplotypes were found in Canary Island pine but only one of them was common to all populations. The distribution of haplotypic variation in P. canariensis suggested the colonization of western Canary Islands from a single continental source located close to the Mediterranean Basin. Present-day populations of Canary Island pine retain levels of genetic diversity equivalent to those found in Mediterranean continental pine species, Pinus pinaster and Pinus halepensis. A hierarchical analysis of variance (AMOVA) showed high differentiation among populations within islands (approximately 19%) but no differentiation among islands. Simple differentiation models such as isolation by distance or stepping-stone colonization from older to younger islands were rejected based on product-moment correlations between pairwise genetic distances and both geographic distances and population-age divergences. However, the distribution of cpSSR diversity within the islands of Tenerife and Gran Canaria pointed towards the importance of the role played by regional Pliocene and Quaternary volcanic activity and long-distance gene flow in shaping the population genetic structure of the Canary Island pine. Therefore, conservation strategies at the population level are strongly recommended for this species.Communicated by D.B. NealeA. Gómez and S.C. González-Martínez as joint authors  相似文献   

13.
We determined habitat use by foraging bats by broad-band acoustic surveys in 10 habitat types from a Mediterranean area (southern Italy). We applied discriminant functions to identify time-expanded echolocation calls from free-flying bats.
Moon phase and cloud cover had no effect on bat activity. Only Hypsugo savii was influenced by temperature, and activity of Myotis daubentonii and Myotis capaccinii was reduced at higher wind speeds. Both total numbers of bat passes and feeding buzzes were highest over rivers and lakes. Pipistrellus kuhlii and H. savii were most frequently recorded. Pipistrellus kuhlii , Pipistrellus pipistrellus and Tadarida teniotis proved generalists in using foraging habitats.
Water sites and conifer plantations were respectively the most and the least used habitats by H. savii . Rivers were especially important to Myotis bats, Miniopterus schreibersii and Pipistrellus pygmaeus . Unlike P. kuhlii , P. pipistrellus was frequent in beech woodlands; P. pygmaeus made a considerable use of chestnut woodlands and Myotis spp. were moderately active in both these woodland types.
A large number of endangered or vulnerable species featured in riparian habitats, broadleaved woodlands and olive groves. Riparian and woodland habitats constitute an important target for conservation. Typical land use forms such as woodlands used for chestnut production and traditionally managed olive groves should be encouraged in conservation plans. The negative impact of urbanisation on bats might be counteracted by fostering trees, gardens and small cultivated patches. Farmland practices should encourage landscape complexity and limit the use of pesticides.  相似文献   

14.
The Canary Islands have been a focus for phylogeographic studies on the colonization and diversification of endemic angiosperm taxa. Based on phylogeographic patterns, both inter island colonization and adaptive radiation seem to be the driving forces for speciation in most taxa. Here, we investigated the diversification of Micromeria on the Canary Islands and Madeira at the inter- and infraspecific level using inter simple sequence repeat PCR (ISSR), the trnK-Intron and the trnT-trnL-spacer of the cpDNA and a low copy nuclear gene. The genus Micromeria (Lamiaceae, Mentheae) includes 16 species and 13 subspecies in Macaronesia. Most taxa are restricted endemics, or grow in similar ecological conditions on two islands. An exception is M. varia, a widespread species inhabits the lowland scrub on each island of the archipelago and could represent an ancestral taxon from which radiation started on the different islands. Our analyses support a split between the "eastern" islands Fuerteventura, Lanzarote and Gran Canaria and the "western" islands Tenerife, La Palma and El Hierro. The colonization of Madeira started from the western Islands, probably from Tenerife as indicated by the sequence data. We identified two lineages of Micromeria on Gomera but all other islands appear to be colonized by a single lineage, supporting adaptive radiation as the major evolutionary force for the diversification of Micromeria. We also discuss the possible role of gene flow between lineages of different Micromeria species on one island after multiple colonizations.  相似文献   

15.
The genetic structure of Apis mellifera populations from the Canary Islands has been assessed by mitochondrial (restriction fragment length polymorphisms of the intergenic transfer RNAleu-COII region) and nuclear (microsatellites) studies. These populations show a low level of genetic variation in terms of average number of alleles and degree of heterozygosity. Significant differences in the distribution of alleles were found in both data sets, confirming the genetic differentiation among some of the islands but not within them. Two mitochondrial haplotypes characteristic of the Canary Islands are found at high frequencies, although populations are introgressed by imported honeybees of eastern European C lineage. This introgression is rather high on Tenerife and El Hierro and low on Gran Canaria and La Gomera, whereas on La Palma it has not been recorded. The finding of microsatellite alleles characteristic of the eastern European lineage corroborates the genetic introgression. Phylogenetic analyses indicate that the Canarian honeybees are differentiated from other lineages and provide genetic evidence of their African origin.  相似文献   

16.
Forty-six species of the genus Dolichoiulus , all endemic, occur on the Canary Islands The highest number of species occur on the largest, highest island (Tenerife); fewest occur on Lanzarote, Fuerteventura (low, xeric), El Hierro and La Palma (small, remote). Most of the Dolichoiulus species live on one island only, as in other endemic Canarian species swarms. The scarcity of pluri-insular Dolichoiulus species, in connection with information on phylogeny, suggests that speciation has mainly taken place within individual islands. Distribution patterns are partly governed by habitat differences between species, but vicariance patterns between species living in the same kind of habitat are evident on La Gomera and Tenerife. Dolichoiulus species occur in all kinds of natural habitats. Laurisilva and cave species are generally paler than other species. In the laurisilva of eastern Tenerife, microhabitat differentiation between species is pronounced. In some, but far from all, cases, species coexisting in the same microhabitat are of different sizes. The ancestral colonizing species of Dolichoiulus is/are hypothesized to have been small and to have lived in coastal habitats. Colonization of higher altitudes was usually accompanied by an increase in body size. Invasion of the laurisilva was usually accompanied by a habitat shift from the ground layer to logs.  相似文献   

17.
The 14 species of Crambe L. sect. Dendrocrambe DC. (Brassicaceae) form a monophyletic group endemic to the Canary and Madeira archipelagos. Both parsimony and maximum likelihood analyses of sequence data from the two internal transcribed spacer regions of nuclear ribosomal DNA were used to estimate phylogenetic relationships within this section. These analyses support the monophyly of three major clades. No clade is restricted to a single island, and therefore it appears that inter-island colonization has been the main avenue for speciation in these two archipelagos. The two species endemic to Fuerteventura (C. sventenii) and Madeira (C. fruticosa) comprise a clade, providing the first evidence for a floristic link between the Eastern Canary Islands and the archipelago of Madeira. Both maximum likelihood and weighted parsimony analyses show that this clade is sister to the two other clades, although bootstrap support for this relationship is weak. Parsimony optimizations of ecological zones and island distribution suggest a colonization route from the low-altitude areas of the lowland scrub toward the high-elevation areas of the laurel and pine forests. In addition, Tenerife is likely the ancestral island for species endemic to the five westernmost islands of Gran Canaria, La Gomera, El Hierro, La Palma, and Tenerife.  相似文献   

18.
An analysis of the sequences of the mitochondrial cytochrome b gene (1005 bp) of the Parus teneriffae-group from the Canary Islands and North Africa revealed new insights into the phylogeography of this taxon. The origin of the radiation on the Canarian Archipelago was apparently one of the central islands—Tenerife or Gran Canaria. The populations on El Hierro (P. t. ombriosus) and La Palma (P. t. palmensis) represent distinct monophyletic lineages. Blue tits from Gran Canaria are genetically distinct from those of La Gomera and Tenerife (P. t. teneriffae), which supports the results of other studies and suggests the existence of an—until now—undescribed taxon there. In contrast, the populations on the eastern islands of Fuerteventura and Lanzarote (P. t. degener) could not be distinguished from North African blue tits (P. t. ultramarinus), and these populations should be subsumed under the subspecies ultramarinus. Taxonomic recommendations based on these results include the distinction of the northern European P. caeruleus from P. teneriffae, including blue tits from North Africa and the Canary Islands, the treatment of degener and ultramarinus as synonymous (P. teneriffae ultramarinus) and a new blue tit taxon on the island of Gran Canaria (P. t. hedwigii nov. ssp.), which is formally described. The genetic results are in parts supported by bioacoustic and morphological data.  相似文献   

19.
A novel source of nuclear DNA information from random amplified polymorphisms (RAPD) and a wide-range mitochondrial DNA information (cytochrome b, cytochrome oxidase, and 12s rRNA sequence, RFLP from 4-base and 6-base recognition endonucleases) are used to reconstruct the population phylogeny of the western Canary Island lizard, Gallotia galloti, which, for geological reasons, has been subject to dispersal but not vicariance. Interpretation of DNA phylogenies in terms of colonization sequence indicates that G. galloti arose in Tenerife and dispersed westward in two independent pathways: north from north Tenerife to La Palma, and south from south Tenerife to Gomera to Hierro. The direction and timing of colonization by DNA divergence is entirely compatible with geological time and sequence of island origin.  相似文献   

20.
The genus Calathus Bonelli comprises 24 species on the Canary Islands. Sequences of 927 and 687 bp of the mitochondrial cytochrome oxidase I and II genes, respectively, as well as the intervening tRNA leu gene in 21 of the 24 species, have identified three genetically divergent and unequivocally monophyletic groupings. A phylogeographic analysis is presented for the major monophyletic group comprising all the species of Gran Canaria, La Gomera, and El Hierro, and two Tenerifean species. A distance-based phylogenetic analysis and maximum parsimony analysis have clearly shown that this clade is composed of four distinct lineages. DNA sequence data suggest a recent origin for this clade and that lineages have not evolved at the same rate. Compared with diversification patterns observed in other Coleoptera on the Canary Islands, diversification has been recent relative to the time of colonization within the islands of Gran Canaria and La Gomera. Calathus diversification on La Gomera has been greater than on Gran Canaria. The influences of geological and ecological history are discussed in relation to Calathus diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号