首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
川楝素突触前阻遏作用的电生理学分析   总被引:4,自引:0,他引:4  
利用微电极技术在大鼠膈神经膈肌标本上观察了川楝素对神经肌肉传递的作用,并将所获结果与某些突触前阻遏剂如肉毒和β-银环蛇毒素等的作用进行了比较。(1)在川楝素作用下,间接刺激不能诱起肌肉收缩时,于终板区可记录到终板电位。此时串刺激可诱起一串振幅大小变化无规律的终板电位。(2)川楝素对终板电位和终板电位量子含量的影响是在使之逐渐下降之前有一暂时的升高。(3)小终板电位的发放最终可完全被川楝素所阻断,但在消失前其发放频率长时间维持高于对照,刺激神经使小终板电位发放频率的下降加速。(4)某些神经肌肉传递易化药物如Ca~( )、盐酸胍和4-氨基吡啶也有对抗川楝素的作用,如4-氨基吡啶可明显增大川楝素中毒接头的终板电位的振幅和量子含量,有时甚至恢复肌肉对间接刺激的收缩反应.  相似文献   

2.
川楝素是我国学者从驱蛔中药中分离、鉴定的一个三萜化合物,已证明具选择地影响神经递质释放,有效地对抗肉毒中毒,促进细胞分化、凋亡,抑制肿瘤增殖,抑制昆虫发育和取食,影响K 、Ca2 通道活动等多种生物效应.综述了证明川楝素抑制多种K 通道,选择地易化L型Ca2 通道和进而升高胞内Ca 浓度的研究资料,并对川楝素产生这些生物效应的机制进行了讨论.  相似文献   

3.
本文利用大鼠膈神经膈肌标本观察了川楝素对神经肌肉接头的作用,主要结果如下:1.川棟素不可逆地阻遏间接刺激引起的肌肉收缩,但不影响兴奋在神经的传导,也不降低肌肉对直接刺激的反应。2.在经川楝素作用下接近麻痹的标本,于终板区做细胞内记录可观察到肌肉动作电位的消失,终板电位下降、脱落和完全消失的过程。3.川楝素对肌细胞膜的静息电位无明显作用。用小鸡颈二腹肌标本检查,川棟素引起接头传递阻遏后,肌肉的乙酰胆碱敏感性不受影响。4.川棟素对在新斯的明存在下由单个间接刺激诱起的神经末梢的重复发放的作用是先加强然后减弱,在川楝素引起接头传递阻遏前重复发放完全消失。这些结果表明,川棟素是一个选择性地作用于突触前的神经肌肉传递阻遏剂。  相似文献   

4.
川楝素是我国学者从驱蛔中药中分离、鉴定的一个三萜化合物,已证明具选择地影响神经递质释放,有效地对抗肉毒中毒,促进细胞分化、凋亡,抑制肿瘤增殖,抑制昆虫发育和取食,影响K+、Ca2+通道活动等多种生物效应. 综述了证明川楝素抑制多种K+通道,选择地易化L型Ca2+通道和进而升高胞内Ca+浓度的研究资料,并对川楝素产生这些生物效应的机制进行了讨论.  相似文献   

5.
利用大白鼠离体膈神经膈肌标本,以肌肉对间接刺激的收缩反应为指标,观察了不同浓度川楝素、不同刺激频率、温度以及溶液中钙离子浓度等对川楝素阻遏作用的影响,主要结果如下: 1.川楝素的神经肌肉阻遏作用同温度和浓度有关。温度系数(Q_(10))(?)3.5,麻痹时间(?)K/(川楝素浓度)~(1/4)。 2.增加间接刺激频率,提高溶液中的钙离子浓度使肌肉麻痹加速;缺Ca~(++)或不施予刺激麻痹延缓,但不能阻止麻痹的最终发生。 3.川楝素引起的神经肌肉阻遏不能用冲洗解除,加药5分钟后便洗去川楝素,300分钟后仍出现神经肌肉传递阻遏。 4.在川楝素作用下肌肉逐渐不能对间接强直刺激维持强直收缩,并由强直后容易化转化为强直后抑制。  相似文献   

6.
本文用小白鼠离体膈神经膈肌标本,研究了川棟素的抗肉素作用。在我们所用的试验条件下,川棟素均显著地延长肉毒中毒标本对间接刺激收缩反应的麻痹时间,表明川楝素能在神经肌肉接头处对抗肉毒的阻遏作用。文中对川棟素的抗毒机理进行了讨论。  相似文献   

7.
据报道凡含有神经毒的蛇毒都具有与终板区乙酰胆碱受体结合,从而阻断神经肌肉传递的突触后阻遏作用,其中只有银环蛇毒和澳大利亚虎蛇毒等兼有突触前阻遏作用。本工作对蝮蛇(Agkistrodon halys Pallas)毒阻遏神经肌肉传递的作用点进行了分析。当小鸡颈二腹肌标本在蝮蛇毒作用下出现传递完全阻遏之后,其肌肉对乙酰胆碱还保持着约50%的敏感性,同时由离子电泳注射法测知,蝮蛇毒能降低大白鼠膈肌终板区的乙酰胆碱敏感性。蝮蛇毒对神经肌肉传递除具有突触后作用外,尚应具有突触前作用。在较低浓度(40~100微克/毫升)蝮蛇毒作用下,小终板电位频率和终板电位的量子含量都有一短暂的增加,然后逐渐下降,但在高浓度下(200微克/毫升),两者在逐渐下降之前均无暂时增加现象。增加溶液中的镁离子浓度或降低钙离子浓度均能使蝮蛇毒引起的神经肌肉完全阻遏的出现时间延长。这些又进一步证实了蝮蛇毒中除含有作用于突触后的成分外,尚含有作用于突触前的成分。从蝮蛇毒中分离神经毒成分的方法已初步建立,根据本工作的启示,再进一步分离突触前毒素的工作已初获成功,有关资料将另行发表。  相似文献   

8.
突触泡蛋白2(SV2)是一类跨膜糖蛋白,定位于脊椎动物神经元及内分泌细胞,与神经递质的释放、内分泌泡胞吐作用、突触泡稳态的维持、神经肌肉接头的形成及肾上腺素能受体α2C的定位密切相关。最近还发现SV2是肉毒神经毒素BoNT/A的受体,介导BoNT/A进入神经元。SV2可作为突触泡标记蛋白,广泛应用于生物学研究及肿瘤诊断。此外,SV2还是抗癫痫药物的作用靶标。  相似文献   

9.
蝮蛇神经毒素引起的神经肌肉接头超微结构变化   总被引:1,自引:0,他引:1  
当小鼠接受6—8微克(皮下注射、超最小致死量)的蝮蛇神经毒素后,一般经1—2小时便因呼吸麻痹而死亡。在中毒早期,即出现呼吸困难症状时所取出的样品中,神经肌肉接头超微结构均正常,但在中毒晚期,即呼吸即将停止之前所取出的样品中,接头前部分发生明显变化,主要是突触泡显著减少,甚至完全被排空,线粒体肿胀、破裂、变性和减少。但神经末梢轴突膜平滑匀整,未见Ω型凹陷的形成,突触裂隙和突触后皱褶亦未见变化。这些结果提示,蝮蛇神经毒素也可能和太攀蛇毒素等相似,通过影响突触泡再循环过程,以阻遏神经肌肉间的传递。文中还讨论了蝮蛇神经毒素与其它蛇毒突触前毒素对接头超微结构作用的异同。  相似文献   

10.
神经营养因子对神经肌肉接头传递的调制作用   总被引:3,自引:0,他引:3  
运动单位由运动神经元及其支配的肌纤维组成。神经肌肉接头(neuromuscular junction,NMJ)传递受到严密的调节,因而能和运动单位的活动协调一致。在NMJ,神经调制物质的释放与运动单位的活动有关,并能决定突触传递的效能。脑源性神经营养因子(brain—derived neurotrophic factor,BDNF)和神经营养因子4(neurotrophin-4,NT-4)由运动神经末梢和肌纤维产生。肌肉释放营养因子受肌肉活动调节。在NMJ,BDNF和NT-4通过激活酪氨酸激酶B受体(tyrosine kinase receptor B,TrkB),能加强自发性和诱导性的突触活动。突触前Ca^2 量的迅速增加或突触胞吐过程的易化,都能增加突触囊泡的释放,从而改善NMJ的突触传递。事实上,BDNF能促进突触前细胞内Ca^2 的释放,TrkB的激活也能通过有丝分裂活化蛋白激酶,引起突触素I(synapsinI)的磷酸化,进而增加可释放的突触囊泡的数量。在NMJ,神经营养因子还能通过影响神经调节素(neuregulin)或其他神经源性调制物质的局部释放,对接头传递进行调节。本文对近年来在NMJ突触传递的调节,运动单位的NMJ特性以及神经营养因子对突触传递效能的影响等方面的研究进展做一综述。  相似文献   

11.
Zhou JY  Wang ZF  Ren XM  Tang MZ  Shi YL 《FEBS letters》2003,555(2):375-379
Toosendanin (TSN), a triterpenoid derivative extracted from Chinese traditional medicine, has been demonstrated to be an effective cure for experimental botulism. This study is designed to explore its antibotulismic mechanism by Western blotting. The results showed that TSN incubation did not change the electrophoresis pattern and the amounts of synaptosomal-associated protein of 25 kDa (SNAP-25), syntaxin and synaptobrevin/vesicle-associated membrane protein in rat cerebral synaptosomes, but made the synaptosomes completely resistant to botulinum neurotoxin A (BoNT/A)-mediated cleavage of SNAP-25. After binding of BoNT/A to synaptosomes, TSN still partially antagonized the toxin-mediated cleavage of SNAP-25. However, TSN-incubated synaptosomal membrane fraction did not resist the cleavage of SNAP-25 by the light chain of BoNT/A. It is suggested that the antibotulismic effect of TSN results from blocking the toxin's approach to its enzymatic substrate.  相似文献   

12.
Glycerotoxin (GLTx) is capable of stimulating neurotransmitter release at the frog neuromuscular junction by directly interacting with N-type Ca2+ (Cav2.2) channels. Here we have utilized GLTx as a tool to investigate the functionality of Cav2.2 channels in various mammalian neuronal preparations. We first adapted a fluorescent-based high-throughput assay to monitor glutamate release from rat cortical synaptosomes. GLTx potently stimulates glutamate secretion and Ca2+ influx in synaptosomes with an EC50 of 50 pm. Both these effects were prevented using selective Cav2.2 channel blockers suggesting the functional involvement of Cav2.2 channels in mediating glutamate release in this system. We further show that both Cav2.1 (P/Q-type) and Cav2.2 channels contribute equally to depolarization-induced glutamate release. We then investigated the functionality of Cav2.2 channels at the neonatal rat neuromuscular junction. GLTx enhances both spontaneous and evoked neurotransmitter release causing a significant increase in the frequency of postsynaptic action potentials. These effects were blocked by specific Cav2.2 channel blockers demonstrating that either GLTx or its derivatives could be used to selectively enhance the neurotransmitter release from Cav2.2-expressing mammalian neurons.  相似文献   

13.
Losavio A  Muchnik S 《Life sciences》2000,66(26):2543-2556
Regulation of neurotransmitter release is thought to involve modulation of the release probability by protein phosphorylation. Activation of the cAMP-protein kinase A (PKA) pathway has been shown to facilitate synaptic transmission in mammalian neuromuscular synapses, although the relevant phosphorylation targets are mostly unknown. We found that the inhibitor of the phosphodiesterase aminophylline (1 mM AMIN), the membrane-permeable analog of cAMP, 8-Br-cAMP (5 mM) and, the direct adenylate cyclase activator, forskolin (20 microM), induced an increase of miniature end-plate potentials (MEPPs) frequency in rat neuromuscular junctions. We investigated the possible involvement of the voltage-dependent calcium channels (VDCC), since these proteins are known to be phosphorylated by PKA. But this possibility was ruled out, since the increase in MEPPs frequency was not attenuated by the VDCC blocker Cd2+ (100 microM) and it was observed when AMIN was studied on hyperosmotic response, which is independent of [Ca2+]o and of Ca2+ influx through the VDCC. The lack of action of AMIN on MEPPs frequency when [Ca2+]i was diminished by exposing the preparations to zero Ca2+-EGTA solution (isotonic condition) or when nerve terminals were loaded with a permeant Ca2+ chelator (BAPTA-AM) (hypertonic condition), indicate that cAMP-mediated presynaptic facilitation is a function of nerve terminal Ca2+ concentration. We also found that AMIN exerted a comparable increase in MEPPs frequency in control and high K+ (10 and 15 mM), suggesting a single mechanism of action for spontaneous and K+-induced secretion.  相似文献   

14.
1. With the aim of gaining insight into the mechanism of Ca2(+)-dependent secretion, inhibition of transmitter release by botulinum neurotoxins or their fragments was studied at mammalian motor nerve terminals, cerebrocortical synaptosomes and PC-12 cells. 2. Relative to BoNT type A, the feeble neuromuscular paralytic activity of its two chains and the lack of activity observed with a proteolytic fragment, H2L (lacking H1, the C-terminal half of the heavy chain) highlight a requirement of the intact, disulphide-linked dichain protein for efficient targetting (binding/uptake) to peripheral cholinergic nerve endings. 3. In PC-12 cells, the renatured light chain alone proved equally potent as the whole toxin in reducing Ca2(+)-evoked noradrenaline release, when digitonin-permeabilization was used to overcome the uptake barrier. Treatment of BoNT A with 10 mM dithiothreitol, under non-denaturing conditions, was not very effective in reducing its inter-chain disulphide bond(s) and had little influence on the level of inhibition seen. 4. Altering the intra-synaptosomal concentrations of cyclic nucleotides (c-AMP, c-GMP) or protein kinase C activity failed to affect the reduction of Ca2(+)-dependent K(+)-stimulated noradrenaline release caused by BoNT A or B. On the other hand, raising the cytosolic Ca2+ concentration with the ionophore A23187 reversed the inhibitory effect of BoNT A to a greater extent than that of type B, revealing differences in their actions. 5. Whereas BoNT-induced decrease of Ca2(+)-dependent K(+)-evoked release of noradrenaline was unaffected by destruction of the actin-based cytoskeleton in synaptosomes with cytochalasin D, disassembly of microtubules with colchicine, nocodazole or griseofulvin antagonised the intracellular action of type B but not A. It is speculated that BoNT B blocks transmitter release by interfering with the proposed detachment of synaptic vesicles from microtubules. Establishing the precise involvement of tubulin in the toxin's action may provide a valuable clue to the mechanism of neurotransmitter release or its control.  相似文献   

15.
Spider toxins selectively block calcium currents in Drosophila   总被引:6,自引:0,他引:6  
Toxins from spider venom, originally purified for their ability to block synaptic transmission in Drosophila, are potent and specific blockers of Ca2+ currents measured in cultured embryonic Drosophila neurons using the whole-cell, patch-clamp technique. Differential actions of toxins from two species of spiders indicate that different types of Drosophila neuronal Ca2+ currents can be pharmacologically distinguished. Hololena toxin preferentially blocks a non-inactivating component of the current, whereas Plectreurys toxin blocks both inactivating and non-inactivating components. These results suggest that block of a non-inactivating Ca2+ current is sufficient to block neurotransmitter release at Drosophila neuromuscular junction.  相似文献   

16.
In the present study, we have investigated the role of Ca2+ in the coupling of membrane depolarization to neurotransmitter secretion. We have measured (a) intracellular free Ca2+ concentration ([Ca2+]i) changes, (b) rapid 45Ca2+ uptake, and (c) Ca2+-dependent and -independent release of endogenous glutamate (Glu) and gamma-aminobutyric acid (GABA) as a function of stimulus intensity by elevating the extracellular [K+] to different levels in purified nerve terminals (synaptosomes) from rat hippocampus. During stimulation, Percoll-purified synaptosomes show an increased 45Ca2+ uptake, an elevated [Ca2+]i, and a Ca2+-dependent as well as a Ca2+-independent release of both Glu and GABA. With respect to both amino acids, synaptosomes respond on stimulation essentially in the same way, with maximally a fourfold increase in Ca2+-dependent (exocytotic) release. Ca2+-dependent transmitter release as well as [Ca2+]i elevations show maximal stimulation at moderate depolarizations (30 mM K+). A correlation exists between Ca2+-dependent release of both Glu and GABA and elevation of [Ca2+]i. Ca2+-dependent release is maximally stimulated with an elevation of [Ca2+]i of 60% above steady-state levels, corresponding with an intracellular concentration of approximately 400 nM, whereas elevations to 350 nM are ineffective in stimulating Ca2+-dependent release of both Glu and GABA. In contrast, Ca2+-independent release of both Glu and GABA shows roughly a linear rise with stimulus intensity up to 50 mM K+. 45Ca2+ uptake on stimulation also shows a continuous increase with stimulus intensity, although the relationship appears to be biphasic, with a plateau between 20 and 40 mM K+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The cytoplasmic concentration of ionized Ca2+ [( Ca2+]i) was determined in 3T3-L1 cells during their differentiation from fibroblasts to adipocytes, suspended and loaded with the fluorescent Ca2+ indicators quin2 or indo-1. In undifferentiated fibroblasts, as well as in differentiated adipocytes up to day 9, [Ca2+]i was steady around 170 nM, and it increased significantly only in old adipocytes (day 12). During differentiation, stimulation of glucose uptake by insulin increased from a few percent to severalfold. Stimulation of uptake was already apparent after 10 min of addition of the hormone, and 10 nM insulin produced maximal stimulation in 30 min. Insulin (10(-6) M) added to quin2- or indo-1-loaded, suspended adipocytes had no detectable effect on [Ca2+]i for at least 10 min. In contrast, addition of the general anesthetic halothane increased [Ca2+]i from 172 to 251 nM in 3 min. In EGTA solution, the Ca2+ ionophore ionomycin elicited release of Ca2+ from intracellular stores that resulted in a transient increase in [Ca2+]i. A smaller but measurable Ca2+ release from intracellular stores (increasing [Ca2+]i by 20 nM) resulted upon addition of 20 micrograms/ml phosphatidic acid. In contrast, insulin did not produce any detectable release of Ca2+ from intracellular stores. Incubation of 3T3-L1 adipocytes with insulin in the presence of EGTA (the latter in excess over the Ca2+ concentration of the medium) did not prevent the stimulation of hexose uptake by the hormone, indicating that extracellular Ca2+ does not play a role in the insulin response. Furthermore, incubation of cells with quin2/AM in EGTA medium during exposure to insulin did not prevent stimulation of hexose uptake. Under these conditions it is demonstrated that intracellular quin2 suffices to chelate cytoplasmic Ca2+ even if releasable Ca2+ from intracellular stores were to pour into the cytoplasm. Thus, quin2 effectively lowers [Ca2+]i without impairing insulin action. It is concluded that insulin does not produce changes in [Ca2+]i and that chelating intracellular Ca2+ does not prevent stimulation of hexose uptake by insulin. These results suggest that it is unlikely that changes in [Ca2+]i may play a role in the transduction of information in insulin stimulation of glucose uptake in 3T3-L1 adipocytes.  相似文献   

18.
In studying the regulation of insulin secretion by phorbol esters, we examined their effects on the cytosolic free Ca2+ concentration ([Ca2+]i), using the Ca2+ indicator fura-2 in the rat insulin-secreting beta-cell line RINm5F. [Ca2+]i was measured in parallel with the rate of insulin release. 50 nM 12-O-tetradecanoylphorbol-13-acetate (TPA), which may act via protein kinase C, stimulated insulin release and caused an increase in [Ca2+]i. Ca2+-free conditions eliminated the increase in [Ca2+]i and resulted in a reduced stimulation of insulin release by TPA. The Ca2+ channel blocker nitrendipine (300 nM) inhibited both the increase in [Ca2+]i and the increased rate of insulin secretion. Another phorbol ester, 4 beta-phorbol 12,13-didecanoate, which activates protein kinase C, also induced an increase in [Ca2+]i and in the rate of insulin release, while 4 alpha-phorbol 12,13-didecanoate, which fails to stimulate protein kinase C, was without effect. Further studies with bis-oxonol as an indicator of membrane potential showed that TPA depolarized the beta-cell plasma membrane. From these results, it is concluded that TPA depolarizes the plasma membrane, induces the opening of Ca2+ channels in the RINm5F beta-cell plasma membrane, increases [Ca2+]i, and results in insulin secretion. The action of TPA was next compared with that of a depolarizing concentration of KC1 (25 mM), which stimulates insulin secretion simply by opening Ca2+ channels. TPA consistently elicited less depolarization, a smaller rise of [Ca2+]i, but a greater release of insulin than KC1. Therefore an additional action of TPA is suggested, which potentiates the action of the elevated [Ca2+]i on insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号