首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
T. Yokochi  K. Kusano    I. Kobayashi 《Genetics》1995,139(1):5-17
The double-strand break repair models for homologous recombination propose that a double-strand break in a duplex DNA segment is repaired by gene conversion copying a homologous DNA segment. This is a type of conservative recombination, or two-progeny recombination, which generates two duplex DNA segments from two duplex DNA segments. Transformation with a plasmid carrying a double-strand gap and an intact homologous DNA segment resulted in products expected from such conservative (two-progeny) repair in Escherichia coli cells with active E. coli RecE pathway (recBC sbcA) or with active bacteriophage λ Red pathway. Apparently conservative double-strand break repair, however, might result from successive events of nonconservative recombination, or one-progeny recombination, which generates only one recombinant duplex DNA segment from two segments, involving multiple plasmid molecules. Contribution of such intermolecular recombination was evaluated by transformation with a mixture of two isogenic parental plasmids marked with a restriction site polymorphism. Most of the gap repair products were from intramolecular and, therefore, conservative (two-progeny) reaction under the conditions chosen. Most were conservative even in the absence of RecA protein. The double-strand gap repair reaction was not affected by inversion of the unidirectional replication origin on the plasmid. These results demonstrate the presence of the conservative (two-progeny) double-strand break repair mechanism. These experiments do not rule out the occurrence of nonconservative (one-progeny) recombination since we set up experimental conditions that should favor detection of conservative (two-progeny) recombination.  相似文献   

2.
The occurrence of reciprocal exchange of flanking DNA during gene conversion between the repeated segments of the yeast plasmid, 2-micron circle has been examined. The conversion event is induced by making a double-stranded gap within one of the repeats in vitro and allowing the gap to be repaired in vivo. The repair takes place with frequent recombination of flanking markers. Neither the topology of the plasmid substrates (linear or circular) nor the relative orientation of the repeats affects the association rule significantly. These events are reminiscent of meiotic gene conversion between homologous chromosomes but contrast sharply with mitotic or meiotic intrachromosomal gene conversion. It would appear that the difference between the outcomes of intramolecular gene conversion on a chromosome and on a plasmid gapped in vitro does not result from the different physical states of intracellular versus transformed DNA. A gene conversion event in a 2-micron circle : : Tn5 plasmid mediated by the 2-micron circle recombinase (FLP) in vivo, which is formally analogous to the yeast mating type interconversion, often results in recombination of flanking markers. The reaction can be mimicked, in the absence of FLP, by gapping the plasmid within one of the 2-micron circle repeats in vitro and carrying out gap repair in vivo.  相似文献   

3.
Gene conversions and crossovers are related products of the repair of double-stranded DNA breaks by homologous recombination. Most previous studies of mitotic gene conversion events have been restricted to measuring conversion tracts that are <5 kb. Using a genetic assay in which the lengths of very long gene conversion tracts can be measured, we detected two types of conversions: those with a median size of ∼6 kb and those with a median size of >50 kb. The unusually long tracts are initiated at a naturally occurring recombination hotspot formed by two inverted Ty elements. We suggest that these long gene conversion events may be generated by a mechanism (break-induced replication or repair of a double-stranded DNA gap) different from the short conversion tracts that likely reflect heteroduplex formation followed by DNA mismatch repair. Both the short and long mitotic conversion tracts are considerably longer than those observed in meiosis. Since mitotic crossovers in a diploid can result in a heterozygous recessive deleterious mutation becoming homozygous, it has been suggested that the repair of DNA breaks by mitotic recombination involves gene conversion events that are unassociated with crossing over. In contrast to this prediction, we found that ∼40% of the conversion tracts are associated with crossovers. Spontaneous mitotic crossover events in yeast are frequent enough to be an important factor in genome evolution.  相似文献   

4.
In Escherichia coli, bulky DNA lesions are repaired primarily by nucleotide excision repair (NER). Unrepaired lesions encountered by DNA polymerase at the replication fork create a blockage which may be relieved through RecF-dependent recombination. We have designed an assay to monitor the different mechanisms through which a DNA polymerase blocked by a single AAF lesion may be rescued by homologous double-stranded DNA sequences. Monomodified single-stranded plasmids exhibit low survival in non-SOS induced E. coli cells; we show here that the presence of a homologous sequence enhances the survival of the damaged plasmid more than 10-fold in a RecA-dependent way. Remarkably, in an NER proficient strain, 80% of the surviving colonies result from the UvrA-dependent repair of the AAF lesion in a mechanism absolutely requiring RecA and RecF activity, while the remaining 20% of the surviving colonies result from homologous recombination mechanisms. These results uncover a novel mechanism - RecA-mediated excision repair - in which RecA-dependent pairing of the mono-modified single-stranded template with a complementary sequence allows its repair by the UvrABC excinuclease.  相似文献   

5.
DNA double-strand breaks may be induced by endonucleases, ionizing radiation, chemical agents, and mechanical forces or by replication of single-stranded nicked chromosomes. Repair of double-strand breaks can occur by homologous recombination or by nonhomologous end joining. A system was developed to measure the efficiency of plasmid gap repair by homologous recombination using either chromosomal or plasmid templates. Gap repair was biased toward gene conversion events unassociated with crossing over using either donor sequence. The dependence of recombinational gap repair on genes belonging to the RAD52 epistasis group was tested in this system. RAD51, RAD52, RAD57, and RAD59 were required for efficient gap repair using either chromosomal or plasmid donors. No homologous recombination products were recovered from rad52 mutants, whereas a low level of repair occurred in the absence of RAD51, RAD57, or RAD59. These results suggest a minor pathway of strand invasion that is dependent on RAD52 but not on RAD51. The residual repair events in rad51 mutants were more frequently associated with crossing over than was observed in the wild-type strain, suggesting that the mechanisms for RAD51-dependent and RAD51-independent events are different. Plasmid gap repair was reduced synergistically in rad51 rad59 double mutants, indicating an important role for RAD59 in RAD51-independent repair.  相似文献   

6.
Sequence homology is expected to influence recombination. To further understand mechanisms of recombination and the impact of reduced homology, we examined recombination during transformation between plasmid-borne DNA flanking a double-strand break (DSB) or gap and its chromosomal homolog. Previous reports have concentrated on spontaneous recombination or initiation by undefined lesions. Sequence divergence of approximately 16% reduced transformation frequencies by at least 10-fold. Gene conversion patterns associated with double-strand gap repair of episomal plasmids or with plasmid integration were analyzed by restriction endonuclease mapping and DNA sequencing. For episomal plasmids carrying homeologous DNA, at least one input end was always preserved beyond 10 bp, whereas for plasmids carrying homologous DNA, both input ends were converted beyond 80 bp in 60% of the transformants. The system allowed the recovery of transformants carrying mixtures of recombinant molecules that might arise if heteroduplex DNA--a presumed recombination intermediate--escapes mismatch repair. Gene conversion involving homologous DNAs frequently involved DNA mismatch repair, directed to a broken strand. A mutation in the PMS1 mismatch repair gene significantly increased the fraction of transformants carrying a mixture of plasmids for homologous DNAs, indicating that PMS1 can participate in DSB-initiated recombination. Since nearly all transformants involving homeologous DNAs carried a single recombinant plasmid in both Pms+ and Pms- strains, stable heteroduplex DNA appears less likely than for homologous DNAs. Regardless of homology, gene conversion does not appear to occur by nucleolytic expansion of a DSB to a gap prior to recombination. The results with homeologous DNAs are consistent with a recombinational repair model that we propose does not require the formation of stable heteroduplex DNA but instead involves other homology-dependent interactions that allow recombination-dependent DNA synthesis.  相似文献   

7.
A key intermediate in general genetic recombination is a structure in which two double-stranded DNA molecules are covalently linked by a single-strand crossover characteristic of a Holliday junction. When the DNA molecules are circular, the recombinant structures take the form of a figure eight. We have used purified E. coli enzymes to construct biparental figure-eight DNA molecules in vitro from the DNA of two partially homologous plasmids. When purified figure-eight structures are transfected into recA- E. coli cells, they are resolved to produce monomeric or dimeric plasmid progeny, apparently by the cutting and joining of the Holliday crossover. The maturation of figure-eight molecules in bacteria is characterized by the formation and recovery of both parental and recombinant types, cross-over at a frequency of up to 50% and the capability for mismatch repair at regions of hybrid DNA. In these three regards, the products of figure-eight maturation resemble recombinant chromosomes formed at meiosis. These observations show that biparental figure eights behave as recombination intermediates that can be resolved into mature recombinants without need for a functional recA+ gene product.  相似文献   

8.
A. Nussbaum  M. Shalit    A. Cohen 《Genetics》1992,130(1):37-49
To test the double-strand break (DSB) repair model in recombination by the RecE pathway of Escherichia coli, we constructed chimeric phages that allow restriction-mediated release of linear plasmid substrates of the bioluminescence recombination assay in infected EcoRI+ cells. Kinetics of DSB repair and expression of recombination products were followed by Southern hybridization and by the bioluminescence recombination assay, respectively. Plasmid recombinants were analyzed with restriction endonucleases. Our results indicate that a DSB can induce more than one type of RecE-mediated recombination. A DSB within the homology induced intermolecular recombination that followed the rules of the DSB repair model: (1) Recombination was enhanced by in vivo restriction. (2) Repair of the break depended on homologous sequences on the resident plasmid. (3) Break-repair was frequently associated with conversion of alleles that were cis to the break. (4) Conversion frequency decreased as the distance from the break increased. (5) Some clones contained a mixture of plasmid recombinants as expected by replication of a heteroduplex in the primary recombinant. The rules of the DSB repair model were not followed when recombination was induced by a DSB outside the homology. Both the cut and the uncut substrates were recipients in conversion events. Recombination events were associated with deletions that spanned the break site, but these deletions did not reach the homology. We propose that a break outside the homology may stimulate a RecE-mediated recombination pathway that does not involve direct participation of DNA ends in the homologous pairing reaction.  相似文献   

9.
Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the collateral introduction of UV damage can potentially compromise genetic interpretations.  相似文献   

10.
The characterization of a new system to study the induction of plasmid-chromosome recombination is described. Single-stranded and double-stranded centromeric vectors bearing 8-methoxypsoralen photoinduced lesions were used to transform a wild-type yeast strain bearing the leu2-3,112 marker. Using the SSCP methodology and DNA sequencing, it was demonstrated that repair of the lesions in plasmid DNA was mainly due to conversion of the chromosomal allele to the plasmid DNA.  相似文献   

11.
We asked if single-stranded vector DNA molecules could be used to reintroduce cloned DNA sequences into a eukaryotic cell and cause genetic transformation typical of that observed using double-stranded DNA vectors. DNA was presented to Saccharomyces cerevisiae following a standard transformation protocol, genetic transformants were isolated, and the physical state of the transforming DNA sequence was determined. We found that single-stranded DNA molecules transformed yeast cells 10- to 30-fold more efficiently than double-stranded molecules of identical sequence. More cells were competent for transformation by the single-stranded molecules. Single-stranded circular (ssc) DNA molecules carrying the yeast 2 μ plasmid-replicator sequence were converted to autonomously replicating double-stranded circular (dsc) molecules, suggesting their efficient utilization as templates for DNA synthesis in the cell. Single-stranded DNA molecules carrying 2 μ plasmid non-replicator sequences recombined with the endogenous multicopy 2 μ plasmid DNA. This recombination yielded either the simple molecular adduct expected from homologous recombination (40% of the transformants examined) or aberrant recombination products carrying incomplete transforming DNA sequences, endogenous 2 μ plasmid DNA sequences, or both (60% of the transformants examined). These aberrant recombination products suggest the frequent use of a recombination pathway that trims one or both of the substrate DNA molecules. Similar aberrant recombination products were detected in 30% of the transformants in cotransformation experiments employing single-stranded and double-stranded DNA molecules, one carrying the 2 μ plasmid replicator sequence and the other the selectable genetic marker. We conclude that single-stranded DNA molecules are useful vectors for the genetic transformation of a eukaryotic cell. They offer the advantage of high transformation efficiency, and yield the same intracellular DNA species obtained upon transformation with double-stranded DNA molecules. In addition, single-stranded DNA molecules can participate in a recombination pathway that trims one or both DNA recombination substrates, a pathway not detected, at least at the same frequency, when transforming with double-stranded DNA molecules  相似文献   

12.
Transformation-based gap-repair assays have long been used to model the repair of mitotic double-strand breaks (DSBs) by homologous recombination in yeast. In the current study, we examine genetic requirements of two key processes involved in DSB repair: (1) the processive 5′-end resection that is required to efficiently engage a repair template and (2) the filling of resected ends by DNA polymerases. The specific gap-repair assay used allows repair events resolved as crossover versus noncrossover products to be distinguished, as well as the extent of heteroduplex DNA formed during recombination to be measured. To examine end resection, the efficiency and outcome of gap repair were monitored in the absence of the Exo1 exonuclease and the Sgs1 helicase. We found that either Exo1 or Sgs1 presence is sufficient to inhibit gap-repair efficiency over 10-fold, consistent with resection-mediated destruction of the introduced plasmid. In terms of DNA polymerase requirements for gap repair, we focused specifically on potential roles of the Pol ζ and Pol η translesion synthesis DNA polymerases. We found that both Pol ζ and Pol η are necessary for efficient gap repair and that each functions independently of the other. These polymerases may be involved either in the initiation of DNA synthesis from the an invading end, or in a gap-filling process that is required to complete recombination.  相似文献   

13.
B Michel  B Niaudet    S D Ehrlich 《The EMBO journal》1982,1(12):1565-1571
We have constructed plasmids carrying direct internal repeats 260-2000 bp long. Monomers of such plasmids transformed Bacillus subtilis competent cells. The efficiency of transformation varied with the square of the length of repeats. The transformed clones harbored either the entire transforming plasmid and the plasmid arising by recombination between the repeats, or only the latter plasmid. Internally-repeated plasmids linearized by in vitro cleavage with restriction endonuclease could transform, yielding clones which exclusively harbored a plasmid resulting from recombination between the repeats. When the transforming plasmid carried repeats which differed slightly, conversion of one repeat into the other could occur. The following model of plasmid transformation accounts for these data: (1) plasmid DNA is cleaved and rendered linear in contact with competent cells; (2) a linear, at least partially double-stranded plasmid molecule is introduced or formed by repair within the cell; (3) a circular viable plasmid is produced by recombination between repeats carried on this molecule; (4) alternatively, a viable plasmid is produced by repairing the cut within one of the repeats by DNA synthesis which uses the other repeat as a template.  相似文献   

14.
Double-strand break (DSB)-induced gene conversion was investigated using plasmid x chromosome (P x C) and chromosomal direct-repeat recombination substrates with markers arranged such that functional (selected) products could not arise by longpatch mismatch repair initiated from the DSB. As seen previously with analogous substrates, these substrates yield products with discontinuous conversion tracts, albeit at low frequency. Most conversion tracts were of minimum length, suggesting that heteroduplex DNA (hDNA) is limiting, or that co-repair imposes selective pressure against products with more extensive hDNA. When functional products can arise by long-patch mismatch repair, the broken allele is converted in nearly all products. In contrast, in the absence of long-patch mismatch repair, unbroken alleles are frequently converted, and we show that such conversion depends on both marker structure (i.e., long palindromic vs. nonpalindromic insertions) and the chromosomal environment of the recombination substrate. We propose that conversion of unbroken alleles is largely a consequence of the segregation of unrepaired markers, and that differences in mismatch repair efficiency underlie the observed effects of marker structure and chromosome environment on allele conversion preference.  相似文献   

15.
Clikeman JA  Wheeler SL  Nickoloff JA 《Genetics》2001,157(4):1481-1491
DNA double-strand break (DSB) repair in yeast is effected primarily by gene conversion. Conversion can conceivably result from gap repair or from mismatch repair of heteroduplex DNA (hDNA) in recombination intermediates. Mismatch repair is normally very efficient, but unrepaired mismatches segregate in the next cell division, producing sectored colonies. Conversion of small heterologies (single-base differences or insertions <15 bp) in meiosis and mitosis involves mismatch repair of hDNA. The repair of larger loop mismatches in plasmid substrates or arising by replication slippage is inefficient and/or independent of Pms1p/Msh2p-dependent mismatch repair. However, large insertions convert readily (without sectoring) during meiotic recombination, raising the question of whether large insertions convert by repair of large loop mismatches or by gap repair. We show that insertions of 2.2 and 2.6 kbp convert efficiently during DSB-induced mitotic recombination, primarily by Msh2p- and Pms1p-dependent repair of large loop mismatches. These results support models in which Rad51p readily incorporates large heterologies into hDNA. We also show that large heterologies convert more frequently than small heterologies located the same distance from an initiating DSB and propose that this reflects Msh2-independent large loop-specific mismatch repair biased toward loop loss.  相似文献   

16.
Double-strand breaks in DNA are known to promote recombination in Saccharomyces cerevisiae. Yeast mating type switching, which is a highly efficient gene conversion event, is apparently initiated by a site-specific double-strand break. The 2 micrograms circle site-specific recombinase, FLP, has been shown to make double-strand breaks in its substrate DNA. By using a hybrid 2 micrograms circle::Tn5 plasmid, a portion of which resembles, in its DNA organization, the active (MAT) and the silent (HML) yeast mating type loci, it is shown that FLP mediates a conversion event analogous to mating type switching. Whereas the FLP site-specific recombination is not dependent on the RAD52 gene product, the FLP-induced conversion is abolished in a rad52 background. The FLP-promoted conversion in vivo can be faithfully reproduced by making a double-stranded gap in vitro in the vicinity of the FLP site and allowing the gap to be repaired in vivo.  相似文献   

17.
The role of different DNA damages in the stimulation of homologous recombination was studied by using an in vivo plasmid recombination assay. Dimethyl sulphate (DMS) treatment of plasmid DNA induced a 20-50-fold increase in the frequency of recombinational events. DMS treatment also stimulated RecA protein binding to double-stranded DNA. In contrast, plasmid DNA containing uracil, which, like DMS, is also subject to repair, was less effective in stimulation of recombination. The ability of purified RecA protein to bind DMS-treated or uracil-containing DNA was tested by measuring its ATPase activity. The result indicates that DMS treatment, but not uracil incorporation, stimulates RecA protein binding to DNA. We conclude, that the main reason (or the first step) for stimulation of recombination by mutagens is activation of RecA binding to damaged DNA.  相似文献   

18.
The lambda phage Red recombination system can mediate efficient homologous recombination in Escherichia coli, which is the basis of the DNA engineering technique termed recombineering. Red mediated insertion of DNA requires DNA replication, involves a single-stranded DNA intermediate and is more efficient on the lagging strand of the replication fork. Lagging strand recombination has also been postulated to explain the Red mediated repair of gapped plasmids by an Okazaki fragment gap filling model. Here, we demonstrate that gap repair involves a different strand independent mechanism. Gap repair assays examining the strand asymmetry of recombination did not show a lagging strand bias. Directly testing an ssDNA plasmid showed lagging strand recombination is possible but dsDNA plasmids did not employ this mechanism. Insertional recombination combined with gap repair also did not demonstrate preferential lagging strand bias, supporting a different gap repair mechanism. The predominant recombination route involved concerted insertion and subcloning though other routes also operated at lower frequencies. Simultaneous insertion of DNA resulted in modification of both strands and was unaffected by mutations to DNA polymerase I, responsible for Okazaki fragment maturation. The lower efficiency of an alternate Red mediated ends-in recombination pathway and the apparent lack of a Holliday junction intermediate suggested that gap repair does not involve a different Red recombination pathway. Our results may be explained by a novel replicative intermediate in gap repair that does not involve a replication fork. We exploited these observations by developing a new recombineering application based on concerted insertion and gap repair, termed SPI (subcloning plus insertion). SPI selected against empty vector background and selected for correct gap repair recombinants. We used SPI to simultaneously insert up to four different gene cassettes in a single recombineering reaction. Consequently, our findings have important implications for the understanding of E. coli replication and Red recombination.  相似文献   

19.
20.
Repair of single-base mismatches formed in recombination intermediates in vivo was investigated in Chinese hamster ovary cells. Extrachromosomal recombination was stimulated by double-strand breaks (DSBs) introduced into regions of shared homology in pairs of plasmid substrates heteroallelic at 11 phenotypically silent mutations. Recombination was expected to occur primarily by single-strand annealing, yielding predicted heteroduplex DNA (hDNA) regions with three to nine mismatches. Product spectra were consistent with hDNA only occurring between DSBs. Nicks were predicted on opposite strands flanking hDNA at positions corresponding to original DSB sites. Most products had continuous marker patterns, and observed conversion gradients closely matched predicted gradients for repair initiated at nicks, consistent with an efficient nick-directed, excision-based mismatch repair system. Discontinuous patterns, seen in ~10% of products, and deviations from predicted gradients provided evidence for less efficient mismatch-specific repair, including G-A -> G-C specific repair that may reflect processing by a homologue of Escherichia coli MutY. Mismatch repair was >80% efficient, which is higher than seen previously with covalently closed, artificial hDNA substrates. Products were found in which all mismatches were repaired in a single tract initiated from one or the other nick. We also observed products resulting from two tracts of intermediate length initiated from two nicks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号