首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 215 毫秒
1.
利用徒手切片,在光学显微镜下对芋(Colocasia esculenta(L.)Schott)营养器官中晶体的类型和分布进行了观察和研究,并用化学方法对晶体的化学成分进行了鉴定。结果表明,芋营养器官中的晶体为草酸钙结晶体,形态上可以分为针晶和簇晶两大类。含针晶束的异细胞有3种类型:含发射型草酸钙针晶束异细胞(存在于叶片、叶柄、块茎中),含大型草酸钙针晶束异细胞(存在于叶片、叶柄、块茎、块茎皮中),含大量草酸钙针晶的管状异细胞(仅存在于不定根中)。草酸钙针晶也有散乱分布于块茎和不定根中的。草酸钙簇晶在叶片、叶柄、块茎、块茎皮、不定根中均有分布,且叶片、叶柄、块茎皮中的簇晶比块茎和不定根中的尖锐。芋营养器官中的草酸钙晶体很可能是作为一种防御机制,防止动物的取食。  相似文献   

2.
为探讨香樟(Cinnamomum camphora)叶肉含晶细胞超微结构的季节变化,阐明香樟叶肉中草酸钙晶体在春夏秋冬的变化规律。该研究以多年生香樟(C. camphora)叶片为材料,分别于春夏秋冬四个季节露地取样,制作超薄切片,用透射电子显微镜(TEM)观察叶肉含晶细胞超微结构的变化。结果表明:春季时香樟叶肉中只有少数细胞有草酸钙晶体,数量较少,晶体结构多为柱状晶、方晶; 夏季时香樟叶肉细胞中随机分布于液泡的草酸钙晶体明显比春季的数量多、体积大、形态丰富,晶体多为柱状晶、方晶、针晶、簇晶; 秋季时香樟叶肉细胞草酸钙晶体和夏季的类似,数量较多,形态多样,以方晶和柱状晶针晶为主,伴有晶簇; 冬季时香樟叶肉含晶细胞晶体形态为柱状晶、方晶、针晶,数量比夏季和秋季的数量略有减少。该研究结果表明在一年四季中香樟叶肉细胞液泡中均有草酸钙晶体结构存在。  相似文献   

3.
首次研究了7种凤仙花属(ImpatiensL.)植物茎的解剖学及细胞组织中草酸钙结晶的特征.结果表明,7种凤仙花属植物茎的解剖学结构非常近似,而茎中草酸钙结晶特征则差异显著,7种凤仙花属植物茎中均有草酸钙针晶,根据草酸钙结晶形态特征的不同,将针晶分为3种类型,即针晶束、针晶簇和散针晶.其中,黄金凤、长角凤仙花、锐齿凤仙花和红纹凤仙花有针晶束分布,而湖北凤仙花、紫花黄金凤和窄萼凤仙花则无针晶束分布,只有针晶簇或散针晶分布;此外,针晶的形态、长度、排列方式及丰富程度等在不同的物种中亦有差异.草酸钙结晶特征对凤仙花属植物的分类具有一定的科学意义.  相似文献   

4.
红豆草中含晶细胞的形态学研究   总被引:5,自引:0,他引:5  
红豆草(Onobrychicviciaefoliascop.)植株的所有器官中都分布有含晶细胞,其结晶的类型主要为棱晶,此外还有砂晶。在营养器官中,含棱晶的细胞主要分布在维管组织之中或外围。横切面上,棱晶则几至几十块纵列成行存在,且常伴生于韧皮纤维旁,但每块棱晶各有一分室隔开;在茎的表皮下偶有与大型粘液细胞伴生的砂晶。花萼的表皮中偶有棱晶,花瓣表皮及雄蕊药隔中有砂晶;子房壁内表皮下一层细胞逐渐发育成含棱晶的连续细胞,同时子房维管组织中也形成大量棱晶。分析表明,结晶成分为草酸钙。  相似文献   

5.
在植物的细胞中,最常见是草酸钙结晶,它们是植物的一种自我解毒的过程,即对植物有毒害作用的多量草酸钙离子中和,它对植物的生长发育无明显的作用,通常认为这是植物新陈代谢产生的一种废弃物。草酸钙为无色透明的结晶,并形成不同的形态,其中有簇晶(呈霰星状)、针晶(针状)、方晶(呈斜方形、菱形、长方形)、砂晶(细小的三角形或箭头状),广泛分布于植物各器官中。一般在一种植物中只能见到一种形态,极少数情况下也有二种或三种形态。在不同的植物中,即使晶体的形态特征相同,而其大小和数量等也不完全相同。另外,即使亲缘关…  相似文献   

6.
五种C4荒漠植物光合器官中含晶细胞的比较分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为了探讨荒漠植物适应干旱环境的机理,选择光合器官发生很大变化的5种C4荒漠植物进行了解剖结构的对比研究。结果表明,这5种植物中含晶细胞的数量、大小、形态和分布位置等存在差异。白梭梭(Haloxylon persicum)和梭梭(H.ammodendron)的同化枝普遍具有含晶细胞;沙拐枣(Calligonum mongolicum)的含晶细胞很少,一般只分布在贮水组织或靠近栅栏组织处;木本猪毛菜(Salsola arbuscula)的含晶细胞也不多,主要分布在栅栏组织和表皮细胞之间;猪毛菜(S.collina)的含晶细胞更少,仅在贮水组织中偶尔可见晶簇。比较梭梭、白梭梭和沙拐枣同化枝不同部位的解剖结构发现,梭梭同化枝基部含晶细胞最多,中部次之,顶部最少;白梭梭同化枝项部的含晶细胞数量较多,中部及基部较少;沙拐枣同化枝顶部与基部的粘液细胞较多,中部较少,基部几乎没有栅栏组织,而其维管组织较为发达。综合晶体的酸碱溶解性及硝酸银组化分析结果,并参照能谱仪的分析结果得知,梭梭、白梭梭、沙拐枣和木本猪毛菜的叶片或同化枝中所含晶体的主要成分为草酸钙。通过比较解剖结构发现,梭梭和白梭梭的同化枝中含晶细胞最多,其它3种植物的同化器官中含晶细胞较少,而沙拐枣同化枝中有粘液细胞存在。  相似文献   

7.
草酸钙结晶存在于很多植物体中,它是植物生长过程中的代谢产物,在一般显微镜下就能观察到,其形态有方形、针状、多棱状集合体、砂粒状、柱状,分别称方晶、针晶、簇晶、砂晶、柱晶。药材植物种类繁多,已入药的达6千余种。其所含草酸钙结晶的形状、大小、多少、分布疏  相似文献   

8.
朱广龙  马茵  韩蕾  霍张丽  魏学智 《生态学报》2014,34(22):6429-6439
晶体是植物体内产生的一种具有特殊形态结构与生理功能的代谢物,其分布广泛,已在500多种植物中发现有晶体的存在。晶体形态多样,有针晶、柱晶、棱晶、砂晶、簇晶等;类型丰富,有草酸钙晶体、钟乳体、硅质体、硫酸钙晶体及其它类型的晶体;功能特殊,具有钙调节、植物保护和防御、重金属解毒、离子平衡、缓解逆境胁迫及其它多种生物功能。晶体的形成涉及钙离子的体外吸收和体内转运,草酸的生物合成,以及钙离子和草酸的耦合过程;晶体的生长发育涉及液泡、晶异细胞的调控及与其它细胞结构的相互协作。对晶体的研究进行综述,以期为晶体的进一步研究提供基础资料。  相似文献   

9.
多花黄精五个居群叶片的比较解剖学研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用石蜡切片技术、叶表皮离析法和电镜扫描技术,对多花黄精五个居群的叶片进行了比较解剖学研究。观察发现:多花黄精五个居群的叶肉细胞中均具有内含针晶束的异细胞,叶表皮细胞为长方形、不规则形或椭圆形,垂周壁一般为平直和弧形;有的居群下表皮有单细胞表皮毛分布。在扫描电镜下,角质层纹饰多为鳞片状。结果表明叶表皮特征,如:气孔器大小、气孔器指数、气孔器密度、气孔器分布特征、角质层纹饰及表皮毛的分布等受环境因子影响较大,同种不同居群间有一定差异,而叶肉的构成、内含物(如针晶束)、气孔器类型、表皮细胞形状等具有种间稳定性,可以作为分类的依据。  相似文献   

10.
利用光学显微镜和扫描电镜观察了葛(Pueraria lobata)叶的解剖学特征。结果表明,葛叶片的上、下表皮都只有一层表皮细胞,上表皮比下表皮厚。上、下表皮都有腺毛和非腺毛。气孔主要分布在下表皮,下表皮的气孔密度为(261±17)mm-2,上表皮只有(6±3)mm-2。叶肉由两层栅栏组织细胞和一层海绵组织细胞构成。叶肉细胞中有丰富的叶绿体。在栅栏组织和海绵组织之间有一层平行于叶脉的薄壁细胞。叶脉中含有大量的草酸钙晶体。葛叶的这些形态特征与其喜阳、耐旱的特点相适应。  相似文献   

11.
The occurrence, type and location of calcium oxalate crystalsin the leaves of 14 species belonging to the family Araceaewere studied by light microscopy. The Pizzolato test and theRubeanic acid-silver nitrate test, used to chemically identifyand locate the crystals in cross sections of laminae, showedthe presence of four types of crystals: druses, raphides, prismaticsand crystal sand. Styloids were not observed in any of the species.Crystals identified as calcium oxalate were observed in eachtissue layer of the leaf blade, druses occurring more frequentlyin the palisade mesophyll layers, raphides more often in thespongy mesophyll. Prismatics were sparse, occurring in the mesophyllof only two species. Specialized spindle-shaped crystal idioblasts,located in the spongy mesophyll in all cases, were observedin seven of the 14 aroids. Crystal sand and variations in crystalforms were most frequently observed to be calcium compoundsother than calcium oxalate. Crystals, calcium oxalate, idioblasts, Araceae  相似文献   

12.
Three main types of calcium oxalate crystal occur in monocotyledons:raphides, styloids and druses, although intermediates are sometimesrecorded. The presence or absence of the different crystal typesmay represent ‘useful’ taxonomic characters. Forinstance, styloids are characteristic of some families of Asparagales,notably Iridaceae, where raphides are entirely absent. The presenceof styloids is therefore a synapomorphy for some families (e.g.Iridaceae) or groups of families (e.g. Philydraceae, Pontederiaceaeand Haemodoraceae). This paper reviews and presents new dataon the occurrence of these crystal types, with respect to currentsystematic investigations on the monocotyledons. Copyright 1999Annals of Botany Company Calcium oxalate, crystals, raphides, styloids, druses, monocotyledons, systematics, development.  相似文献   

13.
Oleaceae leaves surveyed from herbarium specimens of 240 species from 23 genera were rehydrated, bleached, processed into xylol, mounted unstained, and viewed microscopically between crossed polarizers. Occurrence of five crystal types and two variants (tiny acicular crystals and sphaerites) within one family is unusual. Number of crystal types within a single species was one (108 spp.), two (53 spp.), three (51 spp.), four (15 spp.), and five (6 spp.). Seven species lacked crystals. The tiny acicular crystal variant was most common (167 spp.), followed by prisms (67 spp.), raphides (65 spp.), druses (61 spp.), sphaerites variant (50 spp.), styloids (36 spp.), and crystal sand (21 spp.). Epidermal crystals were common (155 spp.), with epidermal crystals clustering at base of trichomes in 21 species. Jasminum was exceptional in having mostly druses and almost no crystals around vascular bundles. Most Oleaceae crystals are tiny, usually about 5 μm in length, except for larger styloids and raphides.  相似文献   

14.
Although cells that synthesize crystals are known throughout the plant kingdom, their functional significance is still unknown. Mechanical support, mineral balance, waste sequestration, and protection against herbivores have all been proposed as crystal functions. To seek clues to their role(s), I systematically examined all organs except fruit of Dieffenbachia seguine (Araceae) for crystals. Crystals were found in nearly every organ. Raphides (long, slim, pointed crystals) were most common, but druses (crystal aggregates) and prisms were also found. Raphides varied in size by a factor of 10 and also in organization from tightly bundled to loosely organized. Biforines, a type of cell capable of expelling raphides, or biforine-like cells, were found in nearly all organs, but especially in leaves, spathes, and anthers. Different organs had different crystal complements, and characteristic crystals were found at specific locations, such as among pollen, along the undersides of leaf veins, and at root branch points. All crystals appeared to be composed of calcium oxalate, based on acid solubility. Possible roles of the crystals are discussed in light of these findings.  相似文献   

15.
This study presents a survey of the species of the Araceae where extracellular production of calcium oxalate crystals has been observed and discusses the patterns of production of the crystals in different genera. For all Araceae studied using SEM, the oxalate crystals exuding on the epidermal surface correspond to extended aggregate/druses or crystal sand and the oxalate crystals mixed with pollen correspond to raphides or styloids (prismatic crystals). The type of crystals associated with pollen varies among genera. However, the presence of crystals associated with pollen is a specific rather than a generic characteristic. Our results show that the presence of raphides mixed with pollen seems to be a widespread phenomenon in the aroid family.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 146 , 181–190.  相似文献   

16.
Calcium oxalate (CaOx) crystals in higher plants occur in five forms: raphides, styloids, prisms, druses, and crystal sand. CaOx crystals are formed in almost all tissues in intravacuolar crystal chambers. However, the mechanism of crystallization and the role of CaOx crystals have not been clearly explained. The aim of this study was to explore the occurrence and location of CaOx crystals in organs of Tinantia anomala (Torr.) C.B. Clarke (Commelinaceae) with special attention to ultrastructural changes in the quantity of tapetal raphides during microsporogenesis. We observed various parts of the plant, that is, stems, leaves, sepals, petals, anthers, staminal trichomes and stigmatic papillae and identified CaOx crystals in all parts except staminal trichomes and stigmatic papillae in Tinantia anomala. Three morphological forms: styloids, raphides and prisms were found in different amounts in different parts of the plant. Furthermore, in this species, we identified tapetal raphides in anthers. The number of tapetal raphides changed during microsporogenesis. At the beginning of meiosis, the biosynthesis of raphides proceeded intensively in the provacuoles. These organelles were formed from the endoplasmic reticulum system. In the tetrad stage, we observed vacuoles with needle-shaped raphides (type I) always localised in the centre of the organelle. When the amoeboid tapetum was degenerating, vacuoles also began to fade. We observed a small number of raphides in the stage of mature pollen grains.  相似文献   

17.

Background and Aims

Formation of calcium oxalate crystals is common in the plant kingdom, but biogenic formation of calcium sulfate crystals in plants is rare. We investigated the morphologies and elemental compositions of crystals found in phyllodes and branchlets of Acacia robeorum, a desert shrub of north-western Australia.

Methods

Morphologies of crystals in phyllodes and branchlets of A. robeorum were studied using scanning electron microscopy (SEM), and elemental compositions of the crystals were identified by energy-dispersive X-ray spectroscopy. Distributional patterns of the crystals were studied using optical microscopy together with SEM.

Key Results

According to the elemental compositions, the crystals were classified into three groups: (1) calcium oxalate; (2) calcium sulfate, which is a possible mixture of calcium sulfate and calcium oxalate with calcium sulfate being the major component; and (3) calcium sulfate · magnesium oxalate, presumably mixtures of calcium sulfate, calcium oxalate, magnesium oxalate and silica. The crystals were of various morphologies, including prisms, raphides, styloids, druses, crystal sand, spheres and clusters. Both calcium oxalate and calcium sulfate crystals were observed in almost all tissues, including mesophyll, parenchyma, sclerenchyma (fibre cells), pith, pith ray and cortex; calcium sulfate · magnesium oxalate crystals were only found in mesophyll and parenchyma cells in phyllodes.

Conclusions

The formation of most crystals was biologically induced, as confirmed by studying the crystals formed in the phyllodes from seedlings grown in a glasshouse. The crystals may have functions in removing excess calcium, magnesium and sulfur, protecting the plants against herbivory, and detoxifying aluminium and heavy metals.  相似文献   

18.
Crystals in 16 species of poisonous plants growing naturally in Saudi Arabia were studied with light microscopy. Three types of crystals were observed: druses, prismatics, and crystal sand. Raphides and styloids were not observed in any of the species studied. Druses occur more frequently in the leaf midrib and in the cortex and pith of the stem. In contrast, crystal sand and prismatic crystals are rare and occur in the leaf, intercostal lamina, and in the vascular tissues. The preliminary results show the absence of the three types of calcium oxalate crystals in the stem and leaf of seven species: Ammi majus L., Anagallis arvensis L., Calotropis procera Ait., Citrullus colocynthis (L.) Schard, Euphorbia peplis L., Hyoscyamus muticus L., and Solarium nigrum L., and the presence of druses, prismatic crystals, and crystal sand either in the leaf and stem or in the leaves or stems of nine species: Anabasis articulata (Forssk.) Moq. in DC., Chenopodium album L., Convolvulus arvensis L., Datura stramonium L., Nerium oleander L., Ricinus communis L., Rumex nervosus Vahl., Pergularia tomentosa L., and Withania somnifera (L.) Dun. in DC. These observations indicate that there is no apparent relationship between the distribution of calcium oxalate crystals and the toxic organs of the plants, and supports the view that the presence of calcium oxalate crystals may not be related to plant toxicity.  相似文献   

19.
Calcium oxalate crystals in higher plants occur in five major forms namely raphides, styloids, prisms, druses and crystal sand. The form, shape and occurrence of calcium oxalate crystals in plants are species- and tissue-specific, hence the presence or absence of a particular type of crystal can be used as a taxonomic character. So far, four different types of needle-like raphide crystals have been reported in plants. The present work describes two new and unusual forms of raphide crystals from the tubers of Dioscorea polystachya—six-sided needles with pointed ends (Type V) and four-sided needles with beveled ends (Type VI). Both of these new types of needles are distinct from the other four types by each having a surrounding membrane that envelopes a bundle of 10–20 closely packed thin crystalline sheets. The previously known four types of needles have solid or homogenous crystalline material, surrounded by a membrane or lamellate sheath called a crystal chamber. Only the Type VI crystals have beveled ends and the needles of the other five types have pointed ends.  相似文献   

20.
? Premise of the study: This is the first large-scale study comparing leaf crystal macropatterns of the species-rich sister genera Piper and Peperomia. It focuses on identifying types of calcium oxalate crystals and their macropatterns in leaves of both genera. The Piper results are placed in a phylogenetic context to show evolutionary patterns. This information will expand knowledge about crystals and provide specific examples to help study their form and function. One example is the first-time observation of Piper crystal sand tumbling in chlorenchyma vacuoles. ? Methods: Herbarium and fresh leaves were cleared of cytoplasmic content and examined with polarizing microscopy to identify types of crystals and their macropatterns. Selected hydrated herbarium and fresh leaf punches were processed for scanning electron microscopy and x-ray elemental analysis. Vibratome sections of living Piper and Peperomia leaves were observed for anatomical features and crystal movement. ? Key results: Both genera have different leaf anatomies. Piper displays four crystal types in chlorenchyma-crystal sand, raphides, styloids, and druses, whereas Peperomia displays three types-druses, raphides, and prisms. Because of different leaf anatomies and crystal types between the genera, macropatterns are completely different. Crystal macropattern evolution in both is characterized by increasing complexity, and both may use their crystals for light gathering and reflection for efficient photosynthesis under low-intensity light environments. ? Conclusions: Both genera have different leaf anatomies, types of crystals and crystal macropatterns. Based on Piper crystals associated with photosynthetic tissues and low-intensity light, further study of their function and association with surrounding chloroplasts is warranted, especially active crystal movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号